Skip to main content
Log in

Application of supercritical CO2 extraction technology in spent nuclear fuel reprocessing

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Supercritical fluid extraction technology for metal complexes is a novel and green technology for extracting lanthanides and actinides from high-level liquid waste, solid or solution of spent fuel reprocessing. This technology can greatly reduce the generation of secondary solvent waste due to it can eliminate the requirement of large amount of organic solution. The influence factors for the solubility of radioactive elements in supercritical CO2 were introduced and analyzed and the research progress of supercritical CO2 extraction of lanthanides and actinides complexes and selective separation of uranium element were reviewed. Finally, the problems to be solved and the research direction in the future were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodriguez-Penalonga L, Moratilla Soria BY (2017) A review of the nuclear fuel cycle strategies and the spent nuclear fuel management technologies. Energies 10(8):1235. https://doi.org/10.3390/en10081235

    Article  CAS  Google Scholar 

  2. Al Saadi S, Yi Y (2015) Dry storage of spent nuclear fuel in UAE - economic aspect. Ann Nucl Energy 75:527–535. https://doi.org/10.1016/j.anucene.2014.09.003

    Article  CAS  Google Scholar 

  3. (OECD/NEA) OFEC-OADNEA (2013) The economics of the back end of the nuclear fuel cycle. Organisation for economic co-operation and development/nuclear energy agency (OECD/NEA), Paris, France

  4. Ramana MV, Suchitra JY (2007) Costing plutonium: economics of reprocessing in India. Int J Global Energy Issues 27(4):454–471. https://doi.org/10.1504/ijgei.2007.014867

    Article  Google Scholar 

  5. Park BH, Gao F, Kwon E-h, Ko WI (2011) Comparative study of different nuclear fuel cycle options: quantitative analysis on material flow. Energy Policy 39(11):6916–6924. https://doi.org/10.1016/j.enpol.2011.03.083

    Article  CAS  Google Scholar 

  6. Silverio LB, Lamas WQD (2011) An analysis of development and research on spent nuclear fuel reprocessing. Energy Policy 39(1):281–289. https://doi.org/10.1016/j.enpol.2010.09.040

    Article  CAS  Google Scholar 

  7. Roo GD, Parsons JE (2011) A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling. Energy Econ 33(5):826–839. https://doi.org/10.1016/j.eneco.2011.01.008

    Article  Google Scholar 

  8. Widder S (2010) Benefits and concerns of a closed nuclear fuel cycle. J Renew Sustain Energy 2(6):062801. https://doi.org/10.1063/1.3506839

    Article  Google Scholar 

  9. Gelis AV, Vandegrift GF, Bakel A, Bowers DL, Hebden AS, Pereira C, Regalbuto M (2009) Extraction behaviour of actinides and lanthanides in TALSPEAK, TRUEX and NPEX processes of UREX. Radiochim Acta 97(4–5):231–232. https://doi.org/10.1524/ract.2009.1601

    Article  CAS  Google Scholar 

  10. Duan W, Cao P, Zhu Y (2010) Extraction of rare earth elements from their oxides using organophosphorus reagent complexes with HNO3 and H2O in supercritical CO2. J Rare Earths 28(2):221–226. https://doi.org/10.1016/s1002-0721(09)60084-3

    Article  CAS  Google Scholar 

  11. Quach DL, Mincher BJ, Wai CM (2014) Supercritical fluid extraction and separation of uranium from other actinides. J Hazard Mater 274:360–366. https://doi.org/10.1016/j.jhazmat.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  12. Zhou D, Qiao BQ, Li G, Xue S, Yin JZ (2017) Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Biores Technol 238:609–615. https://doi.org/10.1016/j.biortech.2017.04.097

    Article  CAS  Google Scholar 

  13. Wai CM (2011) Emerging separation techniques: supercritical fluid and ionic liquid extraction techniques for nuclear fuel reprocessing and radioactive waste treatment. In: Nash KL, Lumetta GL (eds) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing, Cambridge, pp 414–435

    Chapter  Google Scholar 

  14. Xu H (2005) Research of supercritical carbon dioxide fluid extraction of strontium. China Institute of Atomic Energy (in Chinese)

  15. Tomioka O, Meguro Y, Enokida Y, Yamamoto I, Yoshida Z (2001) Dissolution behavior of uranium oxides with supercritical CO2 using HNO3-TBP complex as a reactant. J Nucl Sci Technol 38(12):1097–1102. https://doi.org/10.1080/18811248.2001.9715141

    Article  CAS  Google Scholar 

  16. Allada SR (1984) Solubility parameters of supercritical fluids. Ind Eng Chem Process Des Dev 23(2):344–348. https://doi.org/10.1021/i200025a028

    Article  CAS  Google Scholar 

  17. Kauffman JF (2001) Quadrupolar solvent effects on solvation and reactivity of solutes dissolved in supercritical CO2. J Phys Chem A 105(14):3433–3442. https://doi.org/10.1021/jp004359l

    Article  CAS  Google Scholar 

  18. Kachi Y, Tsukahara T, Kayaki Y, Ikariya T, Sato J, Ikeda Y (2007) Raman spectral shifts of CO2 as measure of CO2-philicity of solutes in supercritical carbon dioxide. J Supercrit Fluids 40(1):20–26. https://doi.org/10.1016/j.supflu.2006.05.002

    Article  CAS  Google Scholar 

  19. Raveendran P, Wallen SL (2002) Cooperative C-H center dot center dot center dot O hydrogen bonding in CO2-Lewis base complexes: implications for solvation in supercritical CO2. J Am Chem Soc 124(42):12590–12599. https://doi.org/10.1021/ja0174635

    Article  CAS  PubMed  Google Scholar 

  20. Tsukahara T, Kachi Y, Kayaki Y, Ikariya T, Ikeda Y (2008) H-1, C-13, and F-19 NMR studies on molecular interactions of CO2 with beta-diketones and UO2(beta-diketonato)(2)DMSO complexes in supercritical CO2. J Phys Chem B 112(51):16445–16454. https://doi.org/10.1021/jp807041w

    Article  CAS  PubMed  Google Scholar 

  21. Skarmoutsos I, Guardia E, Samios J (2010) Hydrogen bond, electron donor-acceptor dimer, and residence dynamics in supercritical CO2-ethanol mixtures and the effect of hydrogen bonding on single reorientational and translational dynamics: a molecular dynamics simulation study. J Chem Phys 133(1):014504. https://doi.org/10.1063/1.3449142

    Article  CAS  PubMed  Google Scholar 

  22. Jose Tenorio M, Cabanas A, Pando C, Renuncio JAR (2012) Solubility of Pd(hfac)(2) and Ni(hfac)(2)center dot 2H(2)O in supercritical carbon dioxide pure and modified with ethanol. J Supercrit Fluids 70:106–111. https://doi.org/10.1016/j.supflu.2012.06.014

    Article  CAS  Google Scholar 

  23. Ghoreishi SM, Hedayati A, Ansari K (2016) Experimental investigation and optimization of supercritical carbon dioxide extraction of toxic heavy metals from solid waste using different modifiers and chelating agents. J Supercrit Fluids 117:131–137. https://doi.org/10.1016/j.supflu.2016.06.012

    Article  CAS  Google Scholar 

  24. Prabhat P, Rao A, Kumar P, Tomar BS (2016) Supercritical fluid extraction and purification of uranium from crude sodium diuranate. Hydrometallurgy 164:177–183. https://doi.org/10.1016/j.hydromet.2016.06.016

    Article  CAS  Google Scholar 

  25. Haruki M, Kobayashi F, Okamoto M, Kihara S-i, Takishima S (2010) Solubility of beta-diketonate complexes for cobalt(III) and chromium(III) in supercritical carbon dioxide. Fluid Phase Equilib 297(2):155–161. https://doi.org/10.1016/j.fluid.2010.02.028

    Article  CAS  Google Scholar 

  26. Zhu L, Duan W, Xu J, Zhu Y (2009) Kinetics of reactive extraction of Nd from Nd2O3 with TBP-HNO3 complex in supercritical carbon dioxide. Chin J Chem Eng 17(2):214–218. https://doi.org/10.1016/s1004-9541(08)60196-2

    Article  Google Scholar 

  27. Wai CM, Wang SF (1997) Supercritical fluid extraction: metals as complexes. J Chromatogr A 785(1–2):369–383. https://doi.org/10.1016/s0021-9673(97)00679-1

    Article  CAS  Google Scholar 

  28. Kersch C, van Roosmalen MJE, Woerlee GF, Witkamp GJ (2000) Extraction of heavy metals from fly ash and sand with ligands and supercritical carbon dioxide. Ind Eng Chem Res 39(12):4670–4672. https://doi.org/10.1021/ie0002226

    Article  CAS  Google Scholar 

  29. Ivanovic J, Ristic M, Skala D (2011) Supercritical CO2 extraction of Helichrysum italicum: influence of CO2 density and moisture content of plant material. J Supercrit Fluids 57(2):129–136. https://doi.org/10.1016/j.supflu.2011.02.013

    Article  CAS  Google Scholar 

  30. Rochette EA, Harsh JB, Hill HH (1998) Supercritical fluid extraction of 2,4-D from soils: pH and organic matter effects. Soil Sci Soc Am J 62(3):602–610. https://doi.org/10.2136/sssaj1998.03615995006200030008x

    Article  CAS  Google Scholar 

  31. Erkey C (2000) Supercritical carbon dioxide extraction of metals from aqueous solutions: a review. J Supercrit Fluids 17(3):259–287. https://doi.org/10.1016/s0896-8446(99)00047-9

    Article  CAS  Google Scholar 

  32. Liang MT, Liang RC, Lin CH, Hsu PJ, Wu LY, Chen HF, Wu YW, Lee WC (2013) Metal extraction of a spiked solid with supercritical carbon dioxide. J Supercrit Fluids 79:324–329. https://doi.org/10.1016/j.supflu.2013.01.008

    Article  CAS  Google Scholar 

  33. Qiao BQ (2016) Microalgae Biodiesel production by supercritical extraction coupling transesterification reaction. Dalian University of Technology (in Chinese)

  34. Kong CY, Watanabe K, Funazukuri T (2017) Measurement and correlation of the diffusion coefficients of chromium (III) acetylacetonate at infinite dilution in supercritical carbon dioxide and in liquid ethanol. J Chem Thermodyn 105:86–93. https://doi.org/10.1016/j.jct.2016.10.012

    Article  CAS  Google Scholar 

  35. Nerome H, Ito M, Machmudah S, Wahyudiono KH, Goto M (2016) Extraction of phytochemicals from saffron by supercritical carbon dioxide with water and methanol as entrainer. J Supercrit Fluids 107:377–383. https://doi.org/10.1016/j.supflu.2015.10.007

    Article  CAS  Google Scholar 

  36. Huang Z, Li JH, Li HS, Miao H, Kawi S, Goh AH (2013) Effect of the polar modifiers on supercritical extraction efficiency for template removal from hexagonal mesoporous silica materials: solubility parameter and polarity considerations. Sep Purif Technol 118:120–126. https://doi.org/10.1016/j.seppur.2013.06.047

    Article  CAS  Google Scholar 

  37. Wai CM, Wang SF, Liu Y, LopezAvila V, Beckert WF (1996) Evaluation of dithiocarbamates and beta-diketones as chelating agents in supercritical fluid extraction of Cd, Pb, and Hg from solid samples. Talanta 43(12):2083–2091. https://doi.org/10.1016/s0039-9140(96)01993-5

    Article  CAS  PubMed  Google Scholar 

  38. Yabalak E, Gizir AM (2013) Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. J Serb Chem Soc 78(7):1013–1022. https://doi.org/10.2298/jsc120321123y

    Article  CAS  Google Scholar 

  39. Ding X, Liu Q, Hou X, Fang T (2017) Supercritical fluid extraction of metal chelate: a review. Crit Rev Anal Chem 47(2):99–118. https://doi.org/10.1080/10408347.2016.1225254

    Article  CAS  PubMed  Google Scholar 

  40. Lin YH, Wu H, Wai CM, Smart NG (2000) Separation of divalent transition metal beta-diketonates and their adducts by supercritical fluid chromatography. Talanta 52(4):695–701. https://doi.org/10.1016/s0039-9140(00)00418-5

    Article  CAS  PubMed  Google Scholar 

  41. Kersch C, Woerlee GF, Witkamp GJ (2004) Supercritical fluid extraction of heavy metals from fly ash. Ind Eng Chem Res 43(1):190–196. https://doi.org/10.1021/ie030114u

    Article  CAS  Google Scholar 

  42. Wai CM, Kulyako YM, Myasoedov BF (1999) Supercritical carbon dioxide extraction of caesium from aqueous solutions in the presence of macrocyclic and fluorinated compounds. Mendeleev Commun 5:180-180A

    Article  Google Scholar 

  43. Glennon JD, Hutchinson S, Harris SJ, Walker A, McKervey MA, McSweeney CC (1997) Molecular baskets in supercritical CO2. Anal Chem 69(11):2207–2212. https://doi.org/10.1021/ac960850q

    Article  CAS  PubMed  Google Scholar 

  44. Xiao CL, Wang CZ, Yuan LY, Li B, He H, Wang S, Zhao YL, Chai ZF, Shi WQ (2014) Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg Chem 53(3):1712–1720. https://doi.org/10.1021/ic402784c

    Article  CAS  PubMed  Google Scholar 

  45. Xiao CL, Wang CZ, Mei L, Zhang XR, Wall N, Zhao YL, Chai ZF, Shi WQ (2015) Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation. Dalton Trans 44(32):14376–14387. https://doi.org/10.1039/c5dt01766a

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Yuan L, Chai Z, Shi W (2018) Towards understanding the correlation between UO2 (2+) extraction and substitute groups in 2,9-diamide-1,10-phenanthroline. Sci China Chem 61(10):1285–1292. https://doi.org/10.1007/s11426-018-9227-1

    Article  CAS  Google Scholar 

  47. Pitchaiah KC, Sujatha K, Rao CVSB, Subramaniam S, Sivaraman N, Rao PRV (2015) Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds. Radiochim Acta 103(4):245–255. https://doi.org/10.1515/ract-2014-2300

    Article  CAS  Google Scholar 

  48. Kumar P, Pal A, Saxena MK, Ramakumar KL (2007) Supercritical fluid extraction of thorium from tissue paper matrix employing organophosphorus reagents. Radiochim Acta 95(12):701–708. https://doi.org/10.1524/ract.2007.95.12.701

    Article  CAS  Google Scholar 

  49. Ashraf-Khorassani M, Taylor LT (1999) Supercritical fluid extraction of mercury(II) ion via in situ chelation and pre-formed mercury complexes from different matrices. Anal Chim Acta 379(1–2):1–9. https://doi.org/10.1016/s0003-2670(98)00648-5

    Article  CAS  Google Scholar 

  50. Zhang P, Kimura T, Yoshida Z (2004) Luminescence study on the inner-sphere hydration number of lanthanide(III) ions in neutral organo-phosphorus complexes. Solvent Extr Ion Exch 22(6):933–945. https://doi.org/10.1081/sei-200037439

    Article  CAS  Google Scholar 

  51. Duvail M, Guilbaud P (2011) Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations. Phys Chem Chem Phys 13(13):5840–5847. https://doi.org/10.1039/c0cp02535f

    Article  CAS  PubMed  Google Scholar 

  52. Chatterjee S, Campbell EL, Neiner D, Pence NK, Robinson TA, Levitskaia TG (2015) Aqueous binary lanthanide(III) nitrate Ln(NO3)3 electrolytes revisited: extended pitzer and bromley treatments. J Chem Eng Data 60(10):2974–2988. https://doi.org/10.1021/acs.jced.5b00392

    Article  CAS  Google Scholar 

  53. Wang Z, Liu T, He X, Zhu L, He H (2017) Competitive complexation of solid lanthanide nitrates with tri-n-butyl phosphate in n-hexane. J Radioanal Nucl Chem 311(1):483–489. https://doi.org/10.1007/s10967-016-5027-7

    Article  CAS  Google Scholar 

  54. Zhang P, Kimura T (2006) Complexation of Eu(III) with dibutyl phosphate and tributyl phosphate. Solvent Extr Ion Exch 24(2):149–163. https://doi.org/10.1080/07366290500464276

    Article  CAS  Google Scholar 

  55. Fox RV, Ball RD, Harrington PD, Rollins HW, Wai CM (2005) Holmium nitrate complexation with tri-n-butyl phosphate in supercritical carbon dioxide. J Supercrit Fluids 36(2):137–144. https://doi.org/10.1016/j.supflu.2005.05.003

    Article  CAS  Google Scholar 

  56. Baek DL, Fox RV, Case ME, Sinclair LK, Schmidt AB, McIlwain PR, Mincher BJ, Wai CM (2016) Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri-n-butyl phosphate-nitric acid adducts. Ind Eng Chem Res 55(26):7154–7163. https://doi.org/10.1021/acs.iecr.6b00554

    Article  CAS  Google Scholar 

  57. Sinclair LK, Baek DL, Thompson J, Tester JW, Fox RV (2017) Rare earth element extraction from pretreated bastnasite in supercritical carbon dioxide. J Supercrit Fluids 124:20–29. https://doi.org/10.1016/j.supflu.2017.01.005

    Article  CAS  Google Scholar 

  58. Schurhammer R, Wipff G (2005) Effect of the TBP and water on the complexation of uranyl nitrate and the dissolution of nitric acid into supercritical CO2 - a theoretical study. J Phys Chem A 109(23):5208–5216. https://doi.org/10.1021/jp051029y

    Article  CAS  PubMed  Google Scholar 

  59. Dehghani F, Wells T, Cotton NJ, Foster NR (1996) Extraction and separation of lanthanides using dense gas CO2 modified with tributyl phosphate and di(2-ethylhexyl)phosphoric acid. J Supercrit Fluids 9(4):263–272. https://doi.org/10.1016/s0896-8446(96)90057-1

    Article  CAS  Google Scholar 

  60. Brown CG, Sherrington LG (1979) Solvent-extraction used in industrial separation of rare earths. J Chem Technol Biotechnol 29(4):193–209

    Article  CAS  Google Scholar 

  61. Laintz KE, Tachikawa E (1994) Extraction of lanthanides from acidic solution using tributyl-phosphate modified supercritical carbon dioxide. Anal Chem 66(13):2190–2193. https://doi.org/10.1021/ac00085a040

    Article  CAS  Google Scholar 

  62. Mekkii S, Wai CM, Billard I, Moutiers G, Burt J, Yoon B, Wang JS, Gaillard C, Ouadi A, Hesemann P (2006) Extraction of lanthanides from aqueous solution by using room-temperature ionic liquid and supercritical carbon dioxide in conjunction. Chem-a Eur J 12(6):1760–1766. https://doi.org/10.1002/chem.200500559

    Article  CAS  Google Scholar 

  63. Bondin VV BS, Efremov IG, Revenko YA, Babain VA (2007) Conversion of actinide and RE oxides into nitrates and their recovery into fluids. In: proceedings of international conference on "Global 2007", Boise

  64. Zhu LY, Duan WH, Xu JM, Zhu YJ (2011) Conversion of neodymium oxide with N2O4 into nitrate followed by supercritical fluid extraction of nitrate. J Radioanal Nucl Chem 287(2):443–448. https://doi.org/10.1007/s10967-010-0701-7

    Article  CAS  Google Scholar 

  65. Tian G, Liao W, Wai CM, Rao L (2008) Extraction of trivalent lanthanides with oxa-diamides in supercritical fluid carbon dioxide. Ind Eng Chem Res 47(8):2803–2807. https://doi.org/10.1021/ie071422l

    Article  CAS  Google Scholar 

  66. Duan D, Su B, Zhang Z, Bao Z, Yang Y, Ren Q (2013) Synthesis, characterization and structure effects of polyethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphates on lanthanides extraction with supercritical carbon dioxide. J Supercrit Fluids 81:103–111. https://doi.org/10.1016/j.supflu.2013.05.004

    Article  CAS  Google Scholar 

  67. Duan D, Su BG, Bao ZB, Yang YW, Ren QL (2019) Novel open-chain crown ether bridged diphosphates as chelating ligands for lanthanides extraction in supercritical carbon dioxide. J Supercrit Fluids 147:42–47. https://doi.org/10.1016/j.supflu.2019.01.022

    Article  CAS  Google Scholar 

  68. Myasoedov BE, Kulyako YM, Tananaev IG, Myasoedova GV, Yakshin VV, Tsivadze AY (2007) Methods of separation of actinide elements based on complex formation in extraction and sorption systems. J Alloy Compd 444:391–396. https://doi.org/10.1016/j.jallcom.2007.03.142

    Article  CAS  Google Scholar 

  69. Kulyako YM, Trofimov TI, Samsonov MD, Myasoedov BE (2003) Dissolution of uranium, neptunium, plutonium and americium oxides in tri-n-butyl phosphate saturated with nitric acid. Mendeleev Commun 6:248–249. https://doi.org/10.1070/MC2003v013n06ABEH001821

    Article  CAS  Google Scholar 

  70. Kumar P, Rao A, Ramakumar KL (2009) Supercritical fluid extraction of thorium from tissue paper matrix employing beta-diketones. Radiochim Acta 97(2):105–112. https://doi.org/10.1524/ract.2009.1570

    Article  CAS  Google Scholar 

  71. Lin YH, Wai CM, Jean FM, Brauer RD (1994) Supercritical fluid extraction of thorium and uranium ions from solid and liduid materials with fluorinated beta-diketones and tributyl-phosphat. Environ Sci Technol 28(6):1190–1193. https://doi.org/10.1021/es00055a034

    Article  CAS  PubMed  Google Scholar 

  72. Lin YH, Smart NG, Wai CM (1995) Supercritical fluid extraction of uranium and thorium from nitric-acid solutions with organophosphorus reagents. Environ Sci Technol 29(10):2706–2708. https://doi.org/10.1021/es00010a036

    Article  CAS  PubMed  Google Scholar 

  73. Kumar P, Pal A, Saxena MK, Ramakumar KL (2008) Supercritical fluid extraction of uranium and thorium from solid matrices. Desalination 232(1–3):71–79. https://doi.org/10.1016/j.desal.2007.08.022

    Article  CAS  Google Scholar 

  74. Iso S, Uno S, Meguro Y, Sasaki T, Yoshida Z (2000) Pressure dependence of extraction behavior of plutonium and uranium(VI) from nitric acid solution to supercritical carbon dioxide containing tributylphosphate. Prog Nucl Energy 37(1–4):423–428. https://doi.org/10.1016/s0149-1970(00)00082-2

    Article  CAS  Google Scholar 

  75. Mincher BJ, Fox RV, Holmes RGG, Robbins RA, Boardman C (2001) Supercritical fluid extraction of plutonium and americium from soil using thenoyltrifluoroacetone and tributylphosphate complexation. Radiochim Acta 89(10):613–617. https://doi.org/10.1524/ract.2001.89.10.613

    Article  CAS  Google Scholar 

  76. Fox RV, Mincher BJ (2003) Supercritical fluid extraction of plutonium and americium from soil using beta-diketone and tributyl phosphate complexants. Supercritical carbon dioxide: separations and processes. Acs Symposium Series. pp. 36–49

  77. AY Shadrin, AA Murzin, VA Babain (2005) Extraction of metal cations by complexone solutions in supercritical and liquid carbon dioxide. In: international solvent extraction conference, Beijing, pp. 1426–1431

  78. Samsonov MD, Trofimov TI, Vinokurov SE, Kulyako YM, Myasoedov BF (2014) Dissolution of oxide nuclear fuel in subacidic iron(III) nitrate solutions and extraction of uranium from it with tributyl phosphate-containing supercritical carbon dioxide. Russ J Phys Chem B 8(7):939–943. https://doi.org/10.1134/s1990793114070124

    Article  CAS  Google Scholar 

  79. Carrott MJ, Wai CM (1998) UV-visible spectroscopic measurement of solubilities in supercritical CO2 using high-pressure fiber-optic cells. Anal Chem 70(11):2421–2425. https://doi.org/10.1021/ac971077h

    Article  CAS  PubMed  Google Scholar 

  80. Lin Y, Brauer RD, Laintz KE, Wai CM (1993) Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone. Anal Chem 65(18):2549–2551

    Article  CAS  Google Scholar 

  81. Wai CM, Waller B (2000) Dissolution of metal species in supercritical fluids - principles and applications. Ind Eng Chem Res 39(12):4837–4841. https://doi.org/10.1021/ie0002879

    Article  CAS  Google Scholar 

  82. Trofimov TI, Samsonov MD, Lee SC, Myasoedov BF, Wai CM (2001) Dissolution of uranium oxides in supercritical carbon dioxide containing tri-n-butyl phosphate and thenoyltrifluoroacetone. Mendeleev Commun 4:129–130

    Article  Google Scholar 

  83. Murzin AA, Babain VA, Shadrin AY, Smirnov IV, Lumpov AA, Gorshkov NI, Miroslavov AE, Muradymov MZ (2001) Supercritical fluid extraction of actinide complexes: I. SCE of adduct of uranyl trifluoroacetylacetonate with pyridine. Radiochemistry 43(2):177–182. https://doi.org/10.1023/A:1012871400154

    Article  CAS  Google Scholar 

  84. Pitchaiah KC, Sujatha K, Deepitha J, Ghosh S, Sivaraman N (2019) Recovery of uranium and plutonium from pyrochemical salt matrix using supercritical fluid extraction. J Supercrit Fluids 147:194–204. https://doi.org/10.1016/j.supflu.2018.10.015

    Article  CAS  Google Scholar 

  85. Samsonov MD, Trofimov TI, Kulyako YM, Vinokurov SE, Myasoedov BF (2014) The behavior of uranium and fission products in the processing of model spent nuclear fuel in iron(III) nitrate solutions in the presence of supercritical tributyl phosphate-containing carbon dioxide. Russ J Phys Chem B 8(8):1033–1037. https://doi.org/10.1134/s1990793114080107

    Article  CAS  Google Scholar 

  86. Mincher BJ, Wai CM, Fox RV, Baek DL, Yen C, Case ME (2016) The separation of lanthanides and actinides in supercritical fluid carbon dioxide. J Radioanal Nucl Chem 307(3):2543–2547. https://doi.org/10.1007/s10967-015-4576-5

    Article  CAS  Google Scholar 

  87. Rao A, Kumar P, Tomar BS (2014) Supercritical fluid extraction of uranium and thorium employing dialkyl amides. Sep Purif Technol 134:126–131. https://doi.org/10.1016/j.seppur.2014.07.036

    Article  CAS  Google Scholar 

  88. Pitchaiah KC, Sivaraman N, Joseph M, Mohapatra PK, Madras G (2017) Solubility of tri-iso-amyl phosphate in supercritical carbon dioxide and its application to selective extraction of uranium. Sep Sci Technol 52(14):2224–2237. https://doi.org/10.1080/01496395.2017.1287737

    Article  CAS  Google Scholar 

  89. Meguro Y, Iso S, Takeishi H, Yoshida Z (1996) Extraction of uranium(VI) in nitric acid solution with supercritical carbon dioxide fluid containing tributylphosphate. Radiochim Acta 75(4):185–191

    Article  CAS  Google Scholar 

  90. Samsonov MD, Trofimov TI, Kulyako YM, Malikov DA, Myasoedov BF (2016) Supercritical fluid extraction of rare earth elements, thorium and uranium from monazite concentrate and phosphogypsum using carbon dioxide containing tributyl phosphate and di-(2-ethylhexyl)phosphoric acid. Russ J Phys Chem B 10(7):1078–1084. https://doi.org/10.1134/s1990793116070186

    Article  CAS  Google Scholar 

  91. Liu HW, Shen XH, Chen QD (2015) Extraction mechanism and selectivity of UO2(NO3)2 in tributylphosphine oxide-ionic liquid system. Acta Phys -Chim Sin 31(05):843–851 ((in Chinese))

    Article  CAS  Google Scholar 

  92. Fu J, Chen Q, Shen X (2015) Stripping of uranium from an ionic liquid medium by TOPO-modified supercritical carbon dioxide. Sci China Chem 58(3):545–550. https://doi.org/10.1007/s11426-014-5162-3

    Article  CAS  Google Scholar 

  93. Enokida Y, El-Fatah SA, Wai CM (2002) Ultrasound-enhanced dissolution of UO2 in supercritical CO2 containing a CO2-philic complexant of tri-n-butylphosphate and nitric acid. Ind Eng Chem Res 41(9):2282–2286. https://doi.org/10.1021/ie010761q

    Article  CAS  Google Scholar 

  94. Zhu L, Duan W, Xu J, Zhu Y (2012) Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate. J Hazard Mater 241:456–462. https://doi.org/10.1016/j.jhazmat.2012.09.072

    Article  CAS  PubMed  Google Scholar 

  95. Duan W, Zhu L, Zhu Y (2011) Treatment of UO2 pellets used for preparing fuel elements of HTR-10 followed by supercritical fluid extraction. Prog Nucl Energy 53(6):664–667. https://doi.org/10.1016/j.pnucene.2011.04.011

    Article  CAS  Google Scholar 

  96. Wang K, Adidharma H, Radosz M, Wan P, Xu X, Russell CK, Tian H, Fan M, Yu J (2017) Recovery of rare earth elements with ionic liquids. Green Chem 19(19):4469–4493. https://doi.org/10.1039/c7gc02141k

    Article  CAS  Google Scholar 

  97. Ko WI, Gao F (2012) Economic analysis of different nuclear fuel cycle options. Sci Technol Nuclear Install 2012:293467. https://doi.org/10.1155/2012/293467

    Article  CAS  Google Scholar 

  98. Mao L, Wang M, Fu X, Jiang J, Wu Y (2014), Asme preliminary fuel cycle analysis of a fusion-driven subcritical reactor. In: 21st international conference on nuclear engineering (ICONE21), Chengdu, Peoples R China, Jul 29-Aug 02 2014

  99. Wang H, Liu F(2017) Review of purex process adroad for spent nuclear fuel. 2017 academic annual meeting of China nuclear society, Shandong China. Progress Report on China Nuclear Science & Technology 5:176–184(in Chinese)

  100. Wei Y (2011) Progress and discussion on chemical separation technologies for nuclear fuel reprocessing developed abroad. Progr Chem 23(7):1272–1288

    CAS  Google Scholar 

  101. Liu J, He H, Ye G (2015) Technology of concentration by evaporation for recycling of nitric acid solution and reduction of radioactivity discharge in the reprocessing of nuclear fuel. J Nuclear Radiochem 37(1):1–11

    Google Scholar 

  102. Fanning JC (2000) The chemical reduction of nitrate in aqueous solution. Coord Chem Rev 199:159–179. https://doi.org/10.1016/s0010-8545(99)00143-5

    Article  CAS  Google Scholar 

  103. Kim K-J, Shon J-S, Ryu W-S (2007) A practical method for the disposal of radioactive organic waste. Nucl Eng Technol 39(6):731–736. https://doi.org/10.5516/net.2007.39.6.731

    Article  CAS  Google Scholar 

  104. Wang SJ, Tang SL, Li TL, Xiao YF, Wang WJ (2020) Research progress on concentration and purification of radioactive waste liquid in nuclear fuel reprocessing plant. Energy Res Util 4:25–29. https://doi.org/10.16404/j.cnki.issn1001-5523.2020.04.002 ((in Chinese))

    Article  Google Scholar 

  105. Zhang ZF, Wang JF, Zhang TX (2013) Nuclear fuel reprocessing engineering of power reactor. China Atomic Energy Press, Beijing ((in Chinese))

    Google Scholar 

  106. Zhu L, Wen M, Duan W, Xu J, Zhu Y (2011) Application of supercritical fluid extraction in reprocessing of spent nuclear fuel. Progr Chem 23(7):1308–1315

    CAS  Google Scholar 

  107. Ye G, Zhang H (2011) A review on the development of spent nuclear fuel reprocessing and its related radiochemistry. Progr Chem 23(7):1289–1294

    CAS  Google Scholar 

  108. Saldana MDA, Nagpal V, Guigard SE (2005) Remediation of contaminated soils using supercritical fluid extraction: a review (1994–2004). Environ Technol 26(9):1013–1032. https://doi.org/10.1080/09593332608618490

    Article  CAS  PubMed  Google Scholar 

  109. Shams-Hagani Z, Soltanalli S, Binner ML (2007) Economic evaluation of soil remediation using supercritical fluid. Int J Environ Res 1(4):302–306

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Radioactive Waste Glass Solidification Equipment Research Program funded by the National Development and Reform Commission of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, B., Lin, P., Zheng, W. et al. Application of supercritical CO2 extraction technology in spent nuclear fuel reprocessing. J Radioanal Nucl Chem 331, 1–19 (2022). https://doi.org/10.1007/s10967-021-08069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08069-0

Keywords

Navigation