Skip to main content
Log in

Synthesis of nanocrystalline Al2O3:C by thermal plasma reactor for radiation dosimetry applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Al2O3:C is a well-known OSLD dosimetry phosphor but difficult to prepare due to its high melting point and carbon doping. In this paper carbon-doped Al2O3 nanophosphor (Al2O3:C-NP) was synthesized by a novel thermal plasma method using mixture of Al and C as starting materials in the presence of oxygen. Characterization of the material by XRD and TEM shows highly crystalline nanoparticles of γ-Al2O3 in the range of 10–100 nm. The maximum TL intensity with a very wide-range of doses was observed for the material containing 10 wt% of carbon when irradiated with \(\gamma\) rays and electron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bos AJJ (2007) Theory of thermoluminescence. Radiat Meas 41:S45–S56

    Article  CAS  Google Scholar 

  2. Kortov VS (2010) Nanophosphors and outlooks for their use in ionizing radiation detection. Radiat Meas 45:512–515

    Article  CAS  Google Scholar 

  3. Salah N, Sahare PD, Lochab SP, Kumar P (2006) TL and PL studies on CaSO4:Dy nanoparticles. Radiat Meas 41:40–47

    Article  CAS  Google Scholar 

  4. Salah N, Sahare PD, Rupasov AA (2007) Thermoluminescence of nanocrystalline LiF:Mg, Cu, P. J Lumin 124:357–364

    Article  CAS  Google Scholar 

  5. Lochab SP, Pandey A, Sahare PD, Chauhan RS, Salah N, Ranjan R (2007) Nanocrystalline MgB4O7:Dy for high dose measurement of gamma radiation. Phys Stat Sol (a) 204:2416–2425

    Article  CAS  Google Scholar 

  6. Lochab SP, Sahare PD, Chauhan RS, Salah N, Ranjan R, Pandey A (2007) Thermoluminescence and photoluminescence study of nanocrystalline Ba0.97Ca0.03SO4:Eu. J Phys D: Appl Phys 40:1343–1350

    Article  CAS  Google Scholar 

  7. Mandlik N, Sahare PD, Kulkarni MS, Bhatt BC, Bhoraskar VN, Dhole SD (2014) Study of TL and optically stimulated luminescence of K2Ca2(SO4)3:Cu nanophosphor for radiation dosimetry. J Lumin 146:128–132

    Article  CAS  Google Scholar 

  8. Mandlik N, Sahare PD, Patil BJ, Bhoraskar VN, Dhole SD (2013) Thermoluminescence study of K2Ca2(SO4)3:Cu nanophosphor for gamma ray Dosimetry. Nucl Instrum Methods Phys Res B 315:273–277

    Article  CAS  Google Scholar 

  9. Sahare PD, Ranjan R, Salah N, Lochab SP (2007) K3Na(SO4)2:Eu nanoparticles for high dose of ionizing radiation. J Phys D: Appl Phys 40:759–764

    Article  CAS  Google Scholar 

  10. Mandlik NT, Sahare PD, Rondiya SR, Dzade NY, Deore AV, Dahiwale SS, Dhole SD (2020) Characteristics of K2Ca2(SO4)3:Eu TLD nanophosphor for its applications in electron and gamma rays dosimetry. Opt Mater 109:110272

    Article  CAS  Google Scholar 

  11. Mandlik NT, Sahare PD, Dhole SD, Balraj A (2020) Effect of annealing temperature and phase change on thermoluminescence and photoluminescence of K2Ca2(SO4)3:Eu nanophosphor. Nucl Instrum Methods Phys Res B 480:105–114

    Article  CAS  Google Scholar 

  12. Mandlik NT, Sahare PD, Kulkarni MS, Rawat NS, Gaikwad NP, Dhole SD (2021) Study of optically stimulated luminescence and calculation of trapping parameters of K2Ca2(SO4)3:Eu nanophosphor. Appl Radiat Isot 167:109388

    Article  CAS  PubMed  Google Scholar 

  13. Mandlik NT, Dhole SD, Sahare PD (2020) Effect of size variation and gamma irradiation on thermoluminescence and photoluminescence characteristics of CaSO4:Eu micro and nanophosphor. Appl Radiat Isot 159:109080 (1–8)

    Article  CAS  PubMed  Google Scholar 

  14. Mandlik NT, Rondiya SR, Dzade NY, Kulkarni MS, Sahare PD, Bhatt BC, Dhole SD (2020) Thermoluminescence, photoluminescence and optically stimulated luminescence characteristics of CaSO4:Eu phosphor: experimental and density functional theory (DFT) investigations. J Lumin 221:117051 (1–10)

    Article  CAS  Google Scholar 

  15. Mandlik NT, Varma VB, Kulkarni MS, Bhatt BC, Sahare PD, Raut SA, Mathe VL, Bhoraskar SV, Dhole SD (2020) Luminescence and dosimetric characteristics of nanocrystalline Al2O3:C synthesized by thermal plasma reactor. Nucl Instrum Methods Phys Res B 466:90–101

    Article  CAS  Google Scholar 

  16. Mandlik NT, Bhoraskar VN, Patil BJ, Dahiwale SS, Sahare PD, Dhole SD (2017) Thermoluminescence studies of CaSO4:Eu nanophosphor for electron dosimetry. Indian J Pure App Phys 55:413–419

    Google Scholar 

  17. Mandlik N, Dhole SD, Sahare PD, Bakare JS, Balraj A, Bhatt BC (2019) Thermoluminescence studies of CaSO4:Dy nanophosphor for application in high dose measurements. Appl Radiat Isot 148:253–261

    Article  CAS  PubMed  Google Scholar 

  18. Azorin J, Furetta C, Scacco A (1993) Preparation and properties of thermoluminescent materials. Phys Stat Sol (A) 138:9–46

    Article  CAS  Google Scholar 

  19. Sahare PD, Singh M, Kumar P (2015) Effect of annealing and impurity concentration on the TL characteristics of nanocrystalline Mn-doped CaF2. Radiat. Measurement 80:29–37

    Article  CAS  Google Scholar 

  20. Singh M, Sahare PD (2015) Redox reactions in Cu-activated nanocrystalline LiF TLD phosphor. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 289:59–67

    Article  Google Scholar 

  21. Rani G, Sahare PD (2013) Effect of phase transitions on thermoluminescence characteristics of nanocrystalline alumina. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 311:71–77

    Article  CAS  Google Scholar 

  22. Rieke JK, Daniels F (1957) Thermoluminescence studies of aluminum oxide. J Phys Chem 61(5):629–633

    Article  CAS  Google Scholar 

  23. Buckman WG (1972) Aluminum oxide thermoluminescence properties for detecting radiation. Health Phys 22(4):402–404

    CAS  PubMed  Google Scholar 

  24. Junusov MS, Tsoy AN, Muminhadsaev KM, Haimov-Malkov BJ (1974) The use of ruby thermoluminescence for gamma radiation dosimetry. Atoms Energy 36(4):315–317

    Google Scholar 

  25. McDougall RS, Rudin S (1970) Thermoluminescence dosimetry of aluminum oxide. Health Phys 19(2):281–283

    Article  CAS  PubMed  Google Scholar 

  26. Portal G (1972) French Patent 7103757 Publ. 2123889 (1972)

  27. Osvay M, Biró T (1980) Aluminum oxide in TL dosimetry. Nucl Instrum Methods 175:60–61

    Article  CAS  Google Scholar 

  28. Mehta SK, Sengupta S (1976) Gamma dosimetry with Al2O3 thermoluminescent phosphor. Phys Med Biol 21(6):955–964

    Article  CAS  PubMed  Google Scholar 

  29. Mehta SK, Sengupta S (1977) Annealing characteristics and nature of traps in Al2O3 thermoluminescent phosphor. Phys Med Biol 22(5):863–872

    Article  CAS  PubMed  Google Scholar 

  30. Patent USSR No. 1072461

  31. Patent USSR No. 993728

  32. Akselrod MS, Kortov VS, Kravetsky DJ, Gotlib VI (1990) Highly sensitive thermoluminescent anion-defective alpha-Al2O3:C single crystal detectors. Radiat Prot Dosim 32:15–20

    CAS  Google Scholar 

  33. Kitis G, Gomez-Ros JM, Tuyn JWN (1998) Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J Phys D:Appl Phys 31:2636–2641

    Article  CAS  Google Scholar 

  34. Asgekar VB, Bhalla RK, Raye BS, Bhiday MR, Bhoraskar VN (1980) Single-cavity 8 MeV rack-track microtron. Pramana 15:479–493

    Article  CAS  Google Scholar 

  35. Berger MJ, Coursey JS, Zucker MA, Chang J (2011) Stopping-power and range tables for electrons, protons, and helium ions. NIST, Physical Measurement Laboratory, Gaithersburg

    Google Scholar 

  36. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram L’elargissement des raies de rayons x obtenues des limailles d’aluminium et de tungstene Die verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  37. Qadri SB, Yang JP, Skelton EF, Ratna BR (1997) Evidence of strain and lattice distortion in lead sulfide nanocrystallites. Appl Phys Lett 70:1020–1021

    Article  CAS  Google Scholar 

  38. Potdar HS, Jun KW, Bae JW, Kim SM, Lee YJ (2007) Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl Catal A 321:109–116

    Article  CAS  Google Scholar 

  39. Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181:836–844

    Article  CAS  PubMed  Google Scholar 

  40. McKeever SWS, Akselrod MS, Colyott LE, Agersnap Larsen N, Polf JC, Whitley V (1999) Characterisation of Al2O3 for use in thermally and optically stimulated luminescence dosimetry. Radiat Prot Dosim 84:163–166

    Article  CAS  Google Scholar 

  41. Kulkarni MS, Mishra DR, Muthe KP, Singh A, Roy M, Gupta SK, Kannan S (2005) An alternative method of preparation of dosimetric grade α-Al2O3:C by vacuum-assisted post-growth thermal impurification technique. Radiat Meas 39:277–282

    Article  CAS  Google Scholar 

  42. Yang X, Li H, Cheng Y, Tang Q, Su L, Xu J (2008) Growth of highly sensitive thermoluminescent crystal α-Al2O3:C by the temperature gradient technique. J Cryst Growth 310:3800–3803

    Article  CAS  Google Scholar 

  43. Yang XB, Li HJ, Bi QY, Cheng Y, Tang Q, Xu J (2008) Influence of carbon on the thermoluminescence and optically stimulated luminescence of α-Al2O3:C crystals. J Appl Phys 104:123112 1–6

    Article  Google Scholar 

  44. Yukihara EG, Whitley VH, Polf JC, Klein DM, McKeever SWS, Akselrod AE, Akselrod MS (2003) The effects of deep trap population on the thermoluminescence of Al2O3:C. Radiat Meas 37:627–638

    Article  CAS  Google Scholar 

  45. Pagonis V, Kitis G, Furetta C (2006) Numerical and practical exercises in thermoluminescence. Springer, Berlin

    Google Scholar 

  46. Chen R, Kirsh Y (1981) Analysis of thermally stimulated processes, 1st edn. Pergamon Press, New York, p 162

    Google Scholar 

  47. Chen R (1969) Glow curves with general order kinetics. J Electrochem Soc 116:1254–1257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandkumar T. Mandlik.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandlik, N.T., Varma, V.B., Sahare, P.D. et al. Synthesis of nanocrystalline Al2O3:C by thermal plasma reactor for radiation dosimetry applications. J Radioanal Nucl Chem 330, 1533–1543 (2021). https://doi.org/10.1007/s10967-021-08052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08052-9

Keywords

Navigation