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Abstract
A semi-automated purification module for the cyclic separation of 99mTc was designed for production of [99mTc]TcO4

– from 
γ irradiated 100Mo target. The separation process was carried out by using a 3-column purification system and the final 
product, [99mTc]TcO4

–, was obtained in a total volume of 7 mL. To confirm proper separation achieved for 99mTc, a radio-
labeling procedure using DTPA chelator was performed. The radiochemical purity was higher than 95%, which meets the 
strict radiopharmaceutical requirements. The yielded 99mTc can be separated with high efficiency from Mo in a quick and 
repeated way. Loss of 99mTc radioactivity during such a three-column separation process was not larger than 10%.
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Introduction

The radionuclide technetium-99 m (99mTc) is a gamma emit-
ter ideal for diagnostic applications due to its realatively 
short half-life (t1/2 = 6.0 h) and the emitted photon energy 
(γ = 140.5 keV) which are well suited for Single-Photon 
Emission Computed Tomography (SPECT) imaging In addi-
tion, it allows for exploiting its multi-oxidation states thus 
resulting in the ability to produce a variety of complexes. 
Due to these peculiar properties, 99mTc is the most widely 
used radionuclide in nuclear medicine and currently more 
than 80% of imaging diagnostic procedures are based upon 
this radioisotope [1, 2]. 99mTc is easily available in hospitals 
via 99Mo/99Tc generator systems. The parent isotope, molyb-
denum-99 (99Mo) is routinely produced in nuclear reactors 
by fission of highly- or low-enriched uranium-235 targets.

In recent years, 99Mo supplies have been limited by 
extended or unplanned shutdown of designated reactors 
around the world. Whereas there used to be about 400 
research nuclear reactors in operation, this number has 
halved to-date and is continuing to decline rapidly [3]. 
Conversely, due to the aging of society, the demand for 

diagnostic tests using 99mTc is markedly increasing. In order 
to mitigate the 99Mo/99mTc shortage occurred in the last dec-
ade, a variety of alternatives production routes, including 
both reactor and accelerator, are being investigated with 
the aim of achieving sustainable direct production of 99Mo 
or 99mTc for clinical use [4, 5]. Alternative technologies 
classified as short-term approaches include uranium fis-
sion in homogeneous solution reactors, neutron activation 
and cyclotron production. Molybdenum-99 production via 
neutron-induced activation of 98Mo is simple, however the 
98Mo(n,γ)99Mo nuclear reaction produces only low specific 
99Mo activity [6]. Accelerator-based production of 99Mo 
through the 238U(γ,f)99Mo reaction is feasible [7], but the 
production efficiency is poor due to the low cross section of 
the nuclear reaction. Direct cyclotron production of 99mTc 
via the 100Mo(p,2n)99mTc identified almost 40 years ago, is 
now considered as the best route [8]. Since then, its produc-
tion parameters have been investigated using a wide range 
of cyclotrons [9–13]. Using this method, it is possible to 
produce large quantities of 99mTc, by using proton beams 
with energies of 16 meV, featured by hundreds of medical 
cyclotrons all over the world. This may suggest that small 
cyclotrons, which are typically used in PET isotope manu-
facturing, could also be used to produce 99mTc. This technol-
ogy requires > 99% 100Mo-enriched targets, and the recycling 
of target material is very important from the economic point 
of view of this process. Furthermore, direct 99mTc produc-
tion by using proton cyclotrons can only meet local needs.
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The 100Mo(γ,n)99Mo photonuclear reaction, where high-
energy photons obtained from an electron accelerator are 
used, is considered as a “mid-term” technology (available 
up to 2025) [14]. The photo-neutron absorption cross section 
presents its maximum at 14 meV. The bremsstrahlung pro-
cess exploited by such linear accelerators with beam pow-
ers as high as 50 kW are used to generate high flux of such 
energetic photons [15]. Unfortunately, the specific activity of 
99Mo thus obtained following such a production pathwayis 
however too poor to be considered for a commercial supply 
of 99mTc generator systems that use alumina columns and 
which require other separation methods.

The separation of 99mTc from Mo target mass has been 
investigated with the aim of extracting higher quantities of 
99mTc from low specific activity 99Mo. Several processes, 
such as sublimation [16, 17], solvent–solvent extraction with 
Methyl Ethyl Ketone (MEK) [18] have been developed. In 
this process, Mo target is dissolved and mixed with MEK, 
forming two phases which are then separated. The MEK 
phase containing 99mTc is passed through the alumina col-
umn to trap any trace amounts of Mo. In the next step, the 
MEK phase is evaporated off and the 99mTc residue is dis-
solved in saline. This method is effective and the separation 
system has been fully automated as described by Martini 
et al. [19]. It has been later replaced by extraction chro-
matography techniques [20–23], automation of which is 
easily achievable. Extraction chromatography combines 
the advantages of selectivity in solvent extraction and high 
separation efficiency. During this approach, the extract-
ant is immobilized on the surface of inert resin beads. The 
most commonly used resin in extraction chromatography 
for technetium separation is TEVA®, produced and com-
mercialized by Eichrom Technologies Inc, the functional 
group of which is an aliphatic quaternary amine. Column 
chromatography is the most commonly used technique and 
the uptake of technetium on TEVA resin from a variety of 
matrices is high in mildly acidic conditions [24]. Various 
resins selective to [99mTc]TcO4

–, such as zirconium molyb-
date gel [25], ion-exchange resin [26], PEG modified C18 
[27] and AnaLig®Tc-02 resin [28–30], have been tested.

The 99mTc separation technology needs to be automated 
for purposes of routine production. Morley et al. [31] and 
Dash et al. [32] described automated module systems based 
upon column chromatography. In those systems the target 
dissolution occurs outside the separation and purification 
system and TcO4

–/MoO4
– solution is passed through the 

module. Conversely, a dissolution reactor is included in 
the solvent-extraction module setup described by Martini 
et al. [19, 33] and Capogni et al.[34], composing a fully-
automated, remotely controlled module for the extraction 
and purification of 99mTc.

Molecular recognition technology (MRT) is the most 
advanced approach among separation techniques, by using 

specially designed organic chelating agents or ligands where 
the metal-selective ligand can bind metal in a particular 
form. The selectivity of MRT is affected by ion radius, 
coordination chemistry, geometry, charge. For example, 
ReO4

– will compete with TcO4
– for binding sites due to 

these compounds sharing almost the same ion radius. The 
composition of the matrix has no influence on the efficiency 
of the separation process even in the presence of high con-
centrations of competing species. The effectiveness of Ana-
Lig® Tc-02 resin in separation procedures has been already 
reported [28, 29, 35].

Here the design and development of a separation system 
is described, based upon column chromatography with an 
AnaLig®Tc-02 resin for the isolation of 99mTc from 100Mo 
target irradiated with high energy γ photons. The aim of this 
study was to set up a semi-automated purification module 
for cyclic [99mTc]TcO4

– separation 100Mo-enriched target 
irradiated by a gamma beam. This is the first study, where 
AnaLig®Tc-02 resin has been used to construct a 99mTc gen-
erator from the low specific activity 99Mo.

Experimental

Materials

AnaLig® Tc-02 was purchased from IBC Advanced Tech-
nologies Inc. (USA). Dowex-50 WX2100–200 mesh and 
Alumina A were obtained from SERVA Electrophoresis 
GmbH (Germany) and MP Biomedicals GmbH (Germany), 
respectively. Other reagents and solvents (reagent grade) 
were purchased from Sigma-Aldrich, Merck and Avantor 
Performance Materials (USA) and were used without further 
purification. Deionized water (18.2 MΩ·cm) was prepared 
in a Hydrolab water purification system (Hydrolab, Poland).

The radioactivity measurement was performed by 
γ-spectrometry on Coaxial High Purity Germanium (HPGe) 
detector (GX 1080) connected to a DSA-1000 multichannel 
analyzer (Canberra, Meriden, CT, USA). The radiochemical 
purity of the preparation on the ITLC sheets was determined 
by Perkin Elmer Cyclone Plus Radiometric TLC Reader and 
analyzed using Optiquant software.

99mTc separation and purifiation process 
on a semi‑automated purification module to cyclic 
isolation of [99mTc]TcO4

– from the gamma irradiated 
100Mo target

The process of separation of 99mTc from Mo target was 
tested on a solution simulating a dissolved 100Mo target 
irradiated with a gamma beam. For this purpose, we used 
natMo (≥ 99.99%, Merck) and [99mTc]TcO4

– eluate obtained 
from Polgentec 99Mo/99mTc isotope generator (POLATOM, 



1219Journal of Radioanalytical and Nuclear Chemistry (2021) 328:1217–1224	

1 3

Poland). The natMo solution was prepared by dissolving 
250 mg in 3 mL 30% H2O2. Next, 3 mL of 2 M NaOH or 
2 M (NH4)2CO3 was added to the Mo solution and finally 
the solution was spiked with [99mTc]TcO4

– obtained from 
99Mo/99mTc generator. These mixtures were separated on 
plastic columns (d = 9 mm, h = 20 mm) packed with 70 or 
100 mg resin.

The semi-automated system developed during this 
study for the separation [99mTc]TcO4

– from the Mo mass 
concerned comprises two four-channel peristaltic pumps 
and three plastic columns. The first column (d = 9 mm, 
h = 20 mm) was packed with 100 mg AnaLig® Tc-02 
suspended in 1 M (NH4)2CO3, the second (d = 13 mm, 
h = 65 mm) packed with 1.5 g Dowex-50 WX2 suspended 
in 2 M HCl and third (d = 9 mm, h = 65 mm) packed with 
1 g Alumina A suspended in 0.01 M HNO3. The pumps 
and columns in the system were connected by polymer tub-
ing (Tygon® S3™ E-LFL, 1.52 mm ID, Tygon® Chemical 
2001, 1.52 mm ID) and 3 channel valves. All components 
for the module were purchased from Ismatec REGLO ICC, 
Cole Parmer GmbH (Germany).

The primary parameters for 99mTc radionuclide separa-
tion from Mo target material on the AnaLig®Tc-02 resin 
have already been tested by Pawlak et al. [29] in develop-
ing the technology for the accelerator-produced 99mTc by 
proton irradiation of the 100Mo target.

In our case, we have a completely different problem. 
The separation system we propose concerns a 100Mo target 
irradiated with gamma quanta, where as a result of the 
nuclear reaction 99Mo the parent radionuclide for 99mTc 
is produced. Therefore, the proposed system must pro-
vide multiple 99mTc elution and works as a 99Mo/99mTc 
generator.

The experiments were performed on the columns 
packed with AnaLig® Tc-02 resin. In order to develop 
a semi-automated method, it was also necessary to char-
acterize several parameters, including resin mass in the 
column, flow rates during the adsorption on the bed as 
well as the specific conditions required for efficient 99mTc 
elution. After sorption, 99mTc was eluted with several mil-
liliters of deionized water and the activities in the 1 mL 
fractions were measured. Experiments were carried out 
with different resin quantities (70 and 100 mg), various 
flow rates (0.2–0.4 mL/min) and various water elution flow 
rates (0.2–1 mL/min).

The [99mTc]TcO4
– obtained from the semi-automated 

system developed during this study was used for the radio-
labeling of DTPA ligand. The radio-labeling process was as 
follow: 1 mL of [99mTc]TcO4

– was added to a kit formula-
tion (homemade) containing 10 mg of DTPA, 3 mg of NaCl 
and 0.1 mg of SnCl2 in lyophilized form. The mixture was 
allowed to stand at room temperature for 5–10 min. The 
radiochemical purity was determined by ITLC method.

Results and discussion

99mTc separation process on AnaLig®Tc‑02 resin

The obtained results from independent experiments with 
different resin quantities (70 and 100 mg), various flow 
rates (0.2–0.4 mL/min) and various water elution flow 
rates (0.2–1 mL/min) are shown in Figs. 1 and 2.

In Fig. 1, elution profiles for the two resin masses, 70 
and 100 mg, are plotted and in Fig. 2 the effect of different 
flow rates on the elution curves are shown.

Fig. 1.   99mTc elution from column filled with 70  mg (grey line) 
and 100  mg (black line) AnaLig® Tc-02 resin. Loading flow rate 
was 0.2  mL/min and flow rate of elution [99mTc]TcO4

– with water: 
0.5 mL/min

Fig. 2.   99mTc elution curves from AnaLig® Tc-02 resin depend-
ing on the flow rate of the eluent. (filled square) loading flow rate 
was 0.2  mL/min and flow rate of water (to elute [99mTc]TcO4

−): 
0.2–1  mL/min, (filled circle)loading flow rate was 0.2  mL/min and 
flow rate of water (to elute[99mTc]TcO4

–): 0.5  mL/min, (filled trian-
gle) loading flow rate was 0.4 mL/min and flow rate of water (to elute 
[99mTc]TcO4

–): 0.4 mL/min
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Optimal results were obtained by using 100 mg of resin, 
loading the solution at a flow rate of 0.2 mL/min and elut-
ing [99mTc]TcO4

− at a flow rate of 0.5 mL/min. When using 
70 mg of resin, no loss of [99mTc]TcO4

– activity was recorded 
and recovery efficiency of up to 92% was achieved, but the 
99mTc elution curve is wide and has a non-Gaussian shape. 
Passing sample through the column at flow rates higher than 
0.2 mL/min results in insufficient retention of [99mTc]TcO4

−. 
Moreover, if water elution flow rate is kept above 0.5 mL/
min, [99mTc]TcO4

− is eluted with low efficiency.

Semi‑automated module of three‑column 
purification system based on AnaLig® Tc‑02 resin

Due to high cost of the target material, recovery of 100Mo 
target material is anyway highly recommended. Contamina-
tion of recovered 100Mo should be avoided and therefore Na+ 
and K+ salts cannot be used due to risk of activation of these 
ions by repeated irradiation. The use of ammonium carbon-
ate (NH4)2CO3 salt is instead recommended to increase the 
ionic strength, as this salt decomposes at high temperatures 
to volatile gaseous products, which are easily removed. This 
is unquestionable advantage of the (NH4)2CO3 salt in terms 
of recycling Mo-100.

After optimization of ideal resin mass and flow param-
eters, a three-column separation system was constructed 
aimed at 99mTc isolation. As show in Fig.  3a, b, three 
columns, containing respectively AnaLig® Tc-02 resin, 
Dowex-50WX2 ion exchange resin and alumina were set up.

On the first column, which was packed with AnaLig® 
Tc-02 resin, 99mTc is separated from the Mo target mass. 
The first fraction eluted from the column, containing 100Mo 
target material and 99Mo, is collected in the tank and after 
growing of 99mTc is returned to the AnaLig® Tc-02 col-
umn. The fraction containing pertechnetate ions, eluted with 
water, must then be passed through a cation exchange resin, 
in order to improve binding of pertechnetate to the alumina 
column, which is sensitive to pH increase above neutral. 
Therefore, on the second column, NH4

+ ions are removed 
by Dowex-50WX2 ion exchange resin and replaced by H+. 
Finally, [99mTc]TcO4

– is trapped on the alumina column and 
eluted with 0.9% saline solution, delivering 99mTc ready for 
medical applications. This system includes two four-channel 
peristaltic pumps in a configuration allowing users to run 
two or more processes simultaneously. Primary advantages 
of the proposed semi-automatic system include a guarantee 
of repeatability, convenient operation and shorter duration 
of [99mTc]TcO4

– separation process in comparison with a 
system based on a single-channel peristaltic pump.

The following parameters were optimized for [99mTc]
TcO4

– separation: 250 mg of Mo was dissolved into 3 mL 
of 30% H2O2. To this solution, 3 mL of 2 M (NH4)2CO3 
was added and the solution was spiked with [99mTc]

TcO4
– obtained from the 99Mo/99mTc generator. The solution 

was passed through the first column packed with AnaLig® 
Tc-02 resin (arrow no. 4 in Fig. 3). After loading, the col-
umn was washed with 3 mL of 1 M (NH4)2CO3 (arrow no. 
5 in Fig. 3) and [99mTc]TcO4

– was eluted in 1 mL fractions 
using 17 mL of water (arrow no. 6 in Fig. 3) at a flow rate of 
0.5 mL/min. The aqueous 99mTc eluate was passed through 
the Dowex-50WX2 ion exchange resin, removing NH4

+ ions 
and replacing them with H+ ions. For this purpose, 1.5 g 
of Dowex-50WX2 resin was washed and equilibrated with 
water, conditioned with 15 mL of 2 M HCl (arrow no. 1 in 
Fig. 3) and rinsed again with water to reach pH level equal to 
3 (arrow no. 2 in Fig. 3).The flow-through from the Dowex-
50WX2 column was applied to the Al2O3 column and 
[99mTc]TcO4

– was eluted from this column by using 7 mL of 
0.9% NaCl (arrow no. 7 in Fig. 3) as is shown in Fig. 4. The 
solution from the first column containing 99Mo, obtained in 
the process of loading and rinsing with (NH4)2CO3, is trans-
ferred to the tank, where, after the decay time required for 
the generation of new 99mTc daughter nuclei, it can be loaded 
onto AnaLig® Tc-02 resin once again. When the activity of 
99Mo decreases, the solution is transferred to another reser-
voir and, after complete 99Mo decay, recovery of 100Mo can 
carried out.

The proposed semi-automatic process of separating 99mTc 
from the Mo target mass appears to be very efficient: the 
whole process, including 99mTc separation from Mo and 
purification can be carried out in 90 min and 99mTc loss 
during three-column separation was below 10% (Table 1).

The 99mTc recovery yield turned out to be above 90% 
(Table 1.) and losses of 99mTc were less than 10%. When 
eluting 99mTc from alumina columns by means of 0.9% 
NaCl, 8% of 99mTc activity is still retained on the resin. The 
concentration of molybdenum in the final solution is about 
0.04 ppm.

Also it should be taken into account that, the 
enriched  100Mo material (NorthStar) consists of  100Mo 
(97.39%) and 98Mo (2.59%) but also other elements are pre-
sent at ppm level (amon others Fe, Cr, W). Apart from 99Mo 
some side-products are formed due to presence of these 
impurities.

The major side products identifed after irradia-
tion of enriched targets are  95,96,97,98mNb isotopes 
and 95Zr [36]. These radionuclides are not retained by Ana-
Lig ®Tc-02 and at first step of separation procedure these 
side-reaction products are separated from final [99mTc]
TcO4

− solution. AnaLig ®Tc-02 resin retained only Tc in 
form of pertechnetate ion; only the ReO4

− could compete 
with [99mTc]TcO4

− for binding sites but this ion is not pre-
sent. If there are other than 99mTc technetium isotopes they 
will necessarily follow the same extraction route as 99mTc. 
Isotopes of the same element cannot be chemically separated 
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but fortunately 9xTc isotopes are not identified in the irradi-
ated targets.

Radiolabelling of DTPA ligand

In order to confirm that the 99mTc separated in the proce-
dure described above will meet radiopharmaceutical stand-
ards, thus allowing to considering its use in diagnostic 
procedures, synthesis of a diethylenetriaminepentaacetic 
acid (DTPA) complex of 99mTc was carried out. In nuclear 
medicine, [99mTc]Tc-DTPA is routinely used to assess kid-
ney function in a variety of conditions and to measure the 
glomerular filtration rate. Synthesized [99mTc]Tc-DTPA 

complex was analyzed by Instant Thin-Layer Chromatog-
raphy (ITLC). As showed in Fig. 5, the [99mTc]Tc-DTPA 
complex migrated with the 0.9% NaCl eluent front (Rf = 1) 
and stayed at the origin in acetone (Rf = 0). Lack of 99mTc 
colloidal forms at the origin in both solvents and absence 
of signal from free, unbound pertechnetate in [99mTc]
TcO4

– which migrated with the 0.9% NaCl solvent front, 
indicates high radio-labeling yield. Based on these results, 
the radio-labeling was estimated as higher than 95%.

Fig. 3   Semi-automated module 
of three-column purification 
system based on AnaLig® 
Tc-02 resin (a). Diagram of 
99mTc separation using three-
column process (b)
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Conclusions

A semi-automated module prototype set up for the sepa-
ration and use of 99mTc radionuclide yielded by decay of 
parent 99Mo, obtained from 100Mo targets irradiated by 
high-energy gamma beams is here described, along with 
subsequent extraction of [99mTc]TcO4

– from Mo using new 
AnaLig® Tc-02 extraction resin. The three-column mod-
ule allows for the purification and preparation of 99mTc 
in a 7 mL final volume. The procedure is fast and can be 
repeated every 24 h (the time needed to achieve the maxi-
mum activity for 99mTc). The suitability of the separation 
process based on AnaLig® Tc-02 resin has been confirmed 
by > 95% yield of [99mTc]Tc-DTPA synthesis. The other 
quality control parameters, reported in the European Phar-
macopoeia, have to be fulfilled prior to finally claim that 
the 99mTc product could be used for medical application. 
In the future we plan to do experiments on gamma-irradi-
ated target to confirm purity of the final product to assess 
radionuclide, radiochemical and chemical purity values. 
It should be noted that the module can also be applied to 
separate 99mTc from neutron-irradiated 98Mo target.
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