Skip to main content
Log in

Optimization of radiolytic degradation of sulfadiazine by combining Fenton and gamma irradiation processes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Gamma radiation (GR) is a promising technique, among known advanced oxidation processes, degrading water contaminants. Nevertheless, few authors report the degradation of sulfonamides by GR, and limited information exists concerning the use of GR in the case of sulfadiazine (SDZ). The objectives of this work are (1) evaluating GR as an alternative method for treating wastewater contaminated with SDZ and examinating the intensification of GR with oxidants (H2O2 or Fenton reagent). GR was performed with a high-activity 60Co source. The gamma radiation/Fenton process gave the best result, leading to total SDZ removal and high (74.13%) pollutant mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ et al (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  2. Quesada Peñate I, Ulises Javier JH, Wilhelm A, Delmas H (2009) Contaminación de las aguas con productos farmacéuticos. Estrategias para enfrentar la problemática. CENIC Ciencias Biológicas 40:173–179

    Google Scholar 

  3. Padhye LP, Yao H, Kungu FT, Huang CH (2014) Year-long evaluation on the occurrence and fate ofpharmaceuticals, personal care products, andendocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266–276. https://doi.org/10.1016/j.watres.2013.10.070

    Article  CAS  Google Scholar 

  4. Andreu V, Gimeno-García E, Pascual JA et al (2015) Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: potential interactions and the influence of the environment. Sci Total Environ 540:278–286. https://doi.org/10.1016/j.scitotenv.2015.08.007

    Article  Google Scholar 

  5. Wen ZH, Chen L, Meng XZ et al (2014) Occurrence and human health risk of wastewater-derived pharmaceuticals in a drinking water source for Shanghai, East China. Sci Total Environ 490:987–993. https://doi.org/10.1016/j.scitotenv.2014.05.087

    Article  CAS  Google Scholar 

  6. Monteiro MA, Spisso BF, Rodrigues J et al (2016) Occurrence of antimicrobials in river water samples from rural region of the state of Rio de Janeiro, Brazil. J Environ Prot 7:230–241

    Article  CAS  Google Scholar 

  7. Bouissou-Schurtz C, Houeto P, Guerbet M et al (2014) Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regul Toxicol Pharmacol 69:296–303. https://doi.org/10.1016/j.yrtph.2014.04.006

    Article  CAS  Google Scholar 

  8. Giebułtowicz J, Nałecz-Jawecki G (2014) Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol Environ Saf 104:103–109. https://doi.org/10.1016/j.ecoenv.2014.02.020

    Article  Google Scholar 

  9. Pereira AMPT, Silva LJ, Meisel LM et al (2015) Environmental impact of pharmaceuticals from portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment. Environ Res 136:108–119. https://doi.org/10.1016/j.envres.2014.09.041

    Article  CAS  Google Scholar 

  10. Matongo S, Birungi G, Moodley B, Ndungu P (2015) Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 134:133–140. https://doi.org/10.1016/j.chemosphere.2015.03.093

    Article  CAS  Google Scholar 

  11. Taylor D, Senac T (2014) Human pharmaceutical products in the environment—the “problem” in perspective. Chemosphere 115:95–99. https://doi.org/10.1016/j.chemosphere.2014.01.011

    Article  CAS  Google Scholar 

  12. Cardoso O, Porcher JM, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere 115:20–30. https://doi.org/10.1016/j.chemosphere.2014.02.004

    Article  CAS  Google Scholar 

  13. Deo RP (2014) Pharmaceuticals in the surface water of the USA: a review. Curr Environ Heal Reports 1:113–122. https://doi.org/10.1007/s40572-014-0015-y

    Article  CAS  Google Scholar 

  14. Caban Magda, Kumirska J, Bialk-Bielińska A, Stepnowski P (2015) Current issues in pharmaceutical residues in drinking water. Curr Anal Chem. https://doi.org/10.2174/1573411012666151009194401

    Google Scholar 

  15. Bagheri H, Afkhami A, Noroozi A (2016) Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review. Anal Bioanal Chem Res 3:1–18

    Google Scholar 

  16. Kummerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effuent. Clin Microbiol Infect Dis 9:1203–1214

    Article  CAS  Google Scholar 

  17. Singer RS, Ward MP, Maldonado G (2006) Can landscape ecology untangle the complexity of antibiotic resistance? Nat Rev Microbiol 4:943–952

    Article  CAS  Google Scholar 

  18. Martínez JL (2008) Antibiotics and antibiotic resistance gens in natural environments. Science 321:365–367. https://doi.org/10.1126/science.1159483

    Article  Google Scholar 

  19. Graham DW, Olivares S, Knapp CW et al (2011) Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ Sci Technol 45:418–424

    Article  CAS  Google Scholar 

  20. Larsson DG (2014) Antibiotics in the environment. Ups J Med Sci 119:108–112. https://doi.org/10.1016/0738-1751(84)90019-4

    Article  Google Scholar 

  21. McArthur JV, Tuckfield RC (2000) Spatial patterns in antibiotic resistance among stream bacteria: effects of industrial pollution. Appl Environ Microbiol 66:3722–3726

    Article  CAS  Google Scholar 

  22. Stepanauskas R, Glenn TC, Jagoe CH et al (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39:3671–3678

    Article  CAS  Google Scholar 

  23. Ikehata K, Naghashkar NJ, El-din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: review. Ozone Sci Eng 28:353–414. https://doi.org/10.1080/01919510600985937

    Article  CAS  Google Scholar 

  24. Holm JV, Rugge K, Bjerg PL, Christensen TH (1995) Ocurrence and distribution of pharmaceutical organic compunds in the groundwater downgradient of a Landfill (Grindted, Denmark). Environ Sci Technol 29:1415–1420

    Article  CAS  Google Scholar 

  25. Li W, Nanaboina V, Zhou Q, Korshin GV (2012) Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Res 46:403–412. https://doi.org/10.1016/j.watres.2011.11.002

    Article  CAS  Google Scholar 

  26. Cruz-González G, González-Labrada K, Milián-Rodríguez Y et al (2015) Enhancement of paracetamol degradation by sono-fenton process. Int J Chem Mater Environ Res 2:37–45

    Google Scholar 

  27. Lastre-Acosta AM, Cruz-González G, Nuevas-Paz L et al (2015) Ultrasonic degradation of sulfadiazine in aqueous solutions. Environ Sci Pollut Res 22:918–925. https://doi.org/10.1007/s11356-014-2766-2

    Article  CAS  Google Scholar 

  28. Mohajerani M, Mehrvar M, Ein-mozaffari F (2012) Using an external-loop airlift sonophotoreactor to enhance the biodegradability of aqueous sulfadiazine solution. Sep Purif Technol 90:173–181. https://doi.org/10.1016/j.seppur.2012.02.025

    Article  CAS  Google Scholar 

  29. Pan S, Yan N, Liu X, Rittmann BE (2014) How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD). Biodegradation 25:911–921. https://doi.org/10.1007/s10532-014-9711-4

    Article  CAS  Google Scholar 

  30. Yang J, Zhou S, Xiao A et al (2015) Chemical oxidation of sulfadiazine by the Fenton process: kinetics, pathways, toxicity evaluation. J Environ Sci Heal Part B 49:909–916. https://doi.org/10.1080/03601234.2014.951572

    Article  Google Scholar 

  31. Zhou T, Zou X, Mao J, Wu X (2016) Decomposition of sulfadiazine in a sonochemical Fe0 -catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix. Applied Catal B 185:31–41. https://doi.org/10.1016/j.apcatb.2015.12.004

    Article  CAS  Google Scholar 

  32. Zou X, Zhou T, Mao J, Wu X (2014) Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system. Chem Eng J 257:36–44. https://doi.org/10.1016/j.cej.2014.07.048

    Article  CAS  Google Scholar 

  33. Getoff N (1996) Radiation-induced degradation of water pollutants- State of the art. Radiat Phys Chem 47:581–593

    Article  CAS  Google Scholar 

  34. Yu S, Lee B, Lee M et al (2008) Decomposition and mineralization of cefaclor by ionizing radiation: kinetics and effects of the radical scavengers. Chemosphere 71:2106–2112. https://doi.org/10.1016/j.chemosphere.2008.01.020

    Article  CAS  Google Scholar 

  35. Szabó L, Tóth T, Homlok R et al (2012) Radiolysis of paracetamol in dilute aqueous solution. Radiat Phys Chem 81:1503–1507. https://doi.org/10.1016/j.radphyschem.2011.11.036

    Article  Google Scholar 

  36. Cruz-González G, Rivas-Ortiz IB, González-Labrada K et al (2016) Improving degradation of paracetamol by integrating gamma radiation and Fenton processes. J Environ Sci Heal Part A 51:997–1002. https://doi.org/10.1080/10934529.2016.1198140

    Article  Google Scholar 

  37. Kim HY, Jeon J, Yu S et al (2013) Reduction of toxicity of antimicrobial compounds by degradation processes using activated sludge, gamma radiation, and UV. Chemosphere 93:2480–2487. https://doi.org/10.1016/j.chemosphere.2013.08.091

    Article  CAS  Google Scholar 

  38. Liu Y, Hu J, Wang J (2014) Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation. Radiat Phys Chem 96:81–87. https://doi.org/10.1016/j.radphyschem.2013.08.018

    Article  CAS  Google Scholar 

  39. Sánchez-Polo M, López-Peñalver J, Prados-Joya G et al (2009) Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res 43:4028–4036. https://doi.org/10.1016/j.watres.2009.05.033

    Article  Google Scholar 

  40. Bojanowska-Czajka A, Kciuk G, Gumiela M et al (2015) Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ Sci Pollut Res 22:20255–20270. https://doi.org/10.1007/s11356-015-5236-6

    Article  CAS  Google Scholar 

  41. Zheng BG, Zheng Z, Zhang JB et al (2011) Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination 276:379–385. https://doi.org/10.1016/j.desal.2011.03.078

    Article  CAS  Google Scholar 

  42. Sayed M, Ismail M, Khan S et al (2015) Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways. Environ Technol 3330:1–35. https://doi.org/10.1080/09593330.2015.1075597

    Google Scholar 

  43. Guo Z, Zhou F, Zhao Y et al (2012) Gamma irradiation-induced sulfadiazine degradation and its removal mechanisms. Chem Eng J 191:256–262. https://doi.org/10.1016/j.cej.2012.03.012

    Article  CAS  Google Scholar 

  44. Liu Y, Hu J, Wang J (2014) Radiation-induced removal of sulphadiazine antibiotics from wastewater. Environ Technol 35:2028–2034. https://doi.org/10.1080/09593330.2014.889761

    Article  CAS  Google Scholar 

  45. Wang J, Chu L (2016) Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview. Radiat Phys Chem 125:56–64. https://doi.org/10.1016/j.radphyschem.2016.03.012

    Article  CAS  Google Scholar 

  46. Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  47. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (*OH/O*-) in aqueous-solution. J Phys Chem Ref Data 17:513–886. https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  48. Poskrebyshev GA, Neta P, Huie RE (2002) Temperature dependence of the acid dissociation constant of the hydroxyl radical. J Phys Chem A 106:11488–11491

    Article  CAS  Google Scholar 

  49. Lin C, Chang C, Lin W (1997) Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte. J Chromatogr A 768:105–112

    Article  CAS  Google Scholar 

  50. Boriani E, Benfenati E, Baderna D, Thomsen M (2013) Application of ERICA index to evaluation of soil ecosystem health according to sustainability threshold for chemical impact. Sci Total Environ 443:134–142. https://doi.org/10.1016/j.scitotenv.2012.10.025

    Article  CAS  Google Scholar 

  51. Basfar AA, Khan HM, Al-shahrani AA, Cooper WJ (2005) Radiation induced decomposition of methyl tert -butyl ether in water in presence of chloroform: kinetic modelling. Water Res 39:2085–2095. https://doi.org/10.1016/j.watres.2005.02.019

    Article  CAS  Google Scholar 

  52. Chu L, Wang J, Liu Y (2015) Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation. Radiat Phys Chem 108:102–105. https://doi.org/10.1016/j.radphyschem.2014.12.002

    Article  CAS  Google Scholar 

  53. Iqbal M, Bhatti IA (2015) Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: degradation, cytotoxicity, and mutagenicity evaluation. J Hazard Mater 299:351–360. https://doi.org/10.1016/j.jhazmat.2015.06.045

    Article  CAS  Google Scholar 

  54. Torun M, Gültekin Ö, Şolpan D, Güven O (2014) Mineralization of paracetamol in aqueous solution with advanced oxidation processes. Environ Technol 36:970–982. https://doi.org/10.1080/09593330.2014.970585

    Article  Google Scholar 

  55. Bolton JR, Cater SR (1994) Homogeneous photodegradation of pollutants in contanminated water: an introduction. Aqueos Surf Photochem 0:467–490

    CAS  Google Scholar 

  56. Abreu-Zamora MA, González-Labrada K, Robaina-León Y et al (2016) Degradación del paracetamol por radiación ultravioleta y solar en un reactor plano de canal abierto a escala de banco. Rev CENIC Ciencias Biológicas 47:93–102

    Google Scholar 

Download references

Acknowledgements

This research was supported by the project TATARCOP of Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC)-University of Havana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises J. Jáuregui-Haza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas-Ortiz, I.B., Cruz-González, G., Lastre-Acosta, A.M. et al. Optimization of radiolytic degradation of sulfadiazine by combining Fenton and gamma irradiation processes. J Radioanal Nucl Chem 314, 2597–2607 (2017). https://doi.org/10.1007/s10967-017-5629-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5629-8

Keywords

Navigation