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Abstract
This study embedded graphene nanoplatelet (GNP), nano-sized aluminum and copper in epoxy-reinforced woven glass fiber.  
The 0.5 wt% nanofillers were incorporated into epoxy resin. Nanofilled glass fiber/epoxy hybrid composite laminates were 
fabricated using the hand layup technique. Fillers were dispersed in an epoxy matrix via the ultrasonic processor. The influ-
ence of the inclusion of these nanofillers on the physical and mechanical performance of glass fiber/epoxy composites was 
studied. The resulting hybrid nanocomposites illustrated good characteristics when compared to control specimens. The 
graphene nanophased glass fiber/epoxy composite achieved the maximum improvement of 59.2%, 91.5%, 74.7%, and 100% 
in in-plane shear, fracture toughness, impact, and interlaminar shear strength, respectively. Additionally, glass fiber/epoxy 
filled with GNP behaved as the lowest seawater absorption. Control filled with 0.5 wt% GNP showed strong fiber/matrix 
interfacial bonding in scanning electron microscopy images after being subjected to a fracture toughness test.
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Introduction

 Polymeric composites have several benefits over traditional 
materials, including high specific stiffness and strength, 
good damping properties, good toughness, high impact 
resistance, low thermal expansion, good corrosion resist-
ance, high wear resistance, ease of shaping, and lower cost 
than lightweight metals [1–7]. The most popular structural 
polymer is epoxy, which possesses outstanding bonds, high 
chemical resistance, high strength and elastic modulus, low 
shrinkage, ease of processing, good dimensional stability, 
and good adhesiveness to various substrates [8–10]. For gen-
erating lightweight components, which is the primary neces-
sity for industries today, nanofillers are a superior choice to 
other reinforcements [11, 12].

As a result of the tremendous interfacial area and prox-
imity of the nano-fillers, polymers reinforced with them 

have unique properties [13, 14]. Due to their high surface 
area, nanofillers generally improved the fracture toughness 
of polymers and fiber-reinforced polymers more effectively 
than micro-fillers and at significantly lower filler concentra-
tions [15, 16].

Graphene nanoplatelets (GNP) with percentages from 
0.1 to 2.0 wt% were distributed within epoxy utilizing 
a high processor and 3-roll milling. The most notable 
increase in fracture toughness, 66%, is attained at 0.1 
weight% GNP, followed by adding 0.5 weight% GNP  
[17]. An improvement of 51.2% in the fracture properties 
was obtained in epoxy nanocomposites using plasma-
functionalized GNP at low filler content (0.25 wt%) [18]. 
Megahed et al. [19] investigated the impact of introducing 
aluminum (Al) fillers with sizes ranging from 0.2 to 4 
wt% to epoxy composites reinforced with glass fibers. 
The study assesses the increase in mechanical properties 
by including Al particles with nanometer and micrometer 
sizes in control composites. Compared to control, the 
composites displayed improved tensile, flexural, hardness, 
wear, and impact behavior. Flexural strength, flexural 
strain, and flexural stiffness were enhanced by 52.2%, 
21.4%, and 76.6%, respectively. The effect of copper 
(Cu) nanopowder on kevlar fiber reinforced epoxy resin 
composites was investigated [20]. Sample with 15% 
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Kevlar/82% Epoxy/3% Cu nanopowder showed the highest 
results for charpy test. Sample with 15% Kevlar/85% 
Epoxy/0% Cu nanopowder showed the highest results for 
the Izod test.

Glass/epoxy composites had organically modified 
nano-silica added with weight percentages of 0, 0.5, 1, 
and 3 wt% [21]. Compared to other polymeric composites 
and nanocomposites, nanocomposite containing 0.5 
wt% nano-silica displayed the highest ballistic limit 
and energy absorption. At 0.5 wt%, the most increased 
fracture toughness of 1.12 MJ/m3 occurred. Additionally, 
epoxy was used to embed GNP at weight percentages of 
0.1, 0.2, and 0.3 [22]. Compared to pure polymer, the 
critical stress intensity factor was enhanced by 64% with 
the inclusion of 0.3 wt% GNP. Additionally, Nayak and 
Ray [23] observed that seawater diffusivity increased 
by 15% due to inserting 0.1% of titanium oxide nano 
particles into the epoxy. The interlaminar shear strength 
and flexural strength of seawater-aged nanocomposites 
were increased by 23% and 15%, respectively. However, 
adding 1.25 wt% multiwall carbon nanotubes to a glass 
fiber/epoxy composite increased its flexural strength by 
13.8% and its interlaminar shear strength by 6.51% [24]. 
Additionally, adding 2 wt% multiwall carbon nanotubes 
to glass fiber/epoxy composite increases f lexural 
strength and interlaminar shear strength by 20.34% and 
34%, respectively. Glass/epoxy composites filled with 
0.5% nanosilica recorded higher ballistic limit, energy 
absorption and fracture toughness as compared with 
other nanocomposites [21]. Moreover, with the inclusion 
of 0.5% weight carbon nanotube, there was improvement 
of 24.37% in interlaminar shear strength in epoxy based 
composites and 10.05% enhancement in thermoplastic 
polyurethane reinforced glass fiber composites [25]. 
In addition, the most significant improvement of 66% 
in fracture toughness was obtained by adding 0.1 wt % 
GNP to epoxy resin followed by adding 0.5wt% GNP 
[17]. Furthermore, Ravichandran et  al. [2] reported 
that the inclusion of 0.5 wt% halloysite nanotubes has 
considerably increased the tensile strength, tensile 
modulus, flexural strength, flexural modulus, fracture 
toughness, critical strain energy release rate and micro-
hardness of the nanocomposites by 45, 49, 46, 17, 125, 
134 and 11% respectively.

AL is distinguished by its light weight due to its 
low density, high strength, and ease of machining, as 
well as its outstanding corrosion resistance [5, 26, 27]. 
Adding Al to epoxy enhanced hardness and dimension 
accuracy [28–31]. Graphene nanoparticles have been 
extensively investigated since they offer a wide range 
of favorable benefits [32]. Since GNP are well known 
for their good strength and thermal properties, produce 
high-performance composite structures at lower costs, 

and may improve the interfacial stress transfer, they 
were chosen as potential alternative fillers in the cur-
rent work instead of other conductive fillers [33–36]. 
Composites reinforced with Cu are characterized by 
their outstanding wear resistance, and good chemical 
resistance [37].

Studies on the development of innovative composites 
have been carried out consistently. Most research studied 
the effect of adding Al and Cu fillers in polymeric com-
posites but in micron size with high weight%. Despite the 
various benefits of using metal nanofillers as Al and Cu, 
little research has been done to investigate the addition of 
Al and Cu in nano size to woven glass/epoxy composites, 
according to the review of the body of existing literature. 
Comparing the nanocomposites with composite filled with 
widely used nanofiller as graphene nanoplatelet filler was 
the study’s objective. This work shows the impact of intro-
ducing low-cost nanofillers (Al, Cu and GNP) with a low 
weight content of 0.5 wt% on the mechanical behavior and 
corrosion resistance of glass fiber/epoxy.

Experimental work

Materials

The fabricated composite material in this work consisted 
of eight layers of E-glass woven fiber (300 g/m2) embed-
ded into epoxy. E-glass has an areal density of. Kema-
poxy 150 RGL represented the epoxy system and was 
supplied by CNB Company. Several nano-fillers (Al, Cu, 
and graphene nanoplatelet) were included into epoxy with 
0.5 wt%. Al and Cu nanofillers with a purity of 99.9% 
and a diameter of 70 nm were provided by US Research 
Nanomaterials. However, the graphene nanoplatelet was 
provided by Aldrich Company. The graphene nanoplatelet 
size was 5 μm with a 6–8 nm thickness and a surface area 
of 120–150  m2/g. Physical and mechanical properties of 
the used glass fibers and epoxy as provided by the suppli-
ers are illustrated in Table 1. Table 2 shows the character-
istics of the used Al, Cu, and GNP.

Table 1  Properties of fibers and matrix given by the suppliers

Property Woven glass Fiber Epoxy resin

Density, g/cm3 2.5 1.1
Young’s modulus, GPa 7.6 1.2
Poisson’s ratio 0.22 0.35
Shear modulus, GPa 33 1.4
Elongation, % 1.8–3.2 2.2–2.9
Tensile strength, MPa 3400 55–58
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Nanocomposite laminate preparation

Nanofillers were added to epoxy and manual mixing. After-
ward, this mixture was sonicated for 2 h. Mixing was done at 
an amplitude of 40% using a Hielscher ultrasonic processor 
UP 200 S with 0.5s on/off cycle [38, 39]. The blend was 
cooled by immersing in mixture of ice and water during 
sonication to decrease the generated temperature from the 
sonication process [37, 40, 41] as shown in Fig. 1. Then, a 
hardener was steadily included to the blend with a ratio of 
2:1 and was stirred thoroughly. Nanophased epoxy was uni-
formly spread onto each layer of E-glass fiber by hand layup 
method. The processed laminate was left to cure for 21 days.

Mechanical and physical testing

Fracture toughness, in-plane shear, interlaminar shear, and 
impact tests were investigated on the manufactured speci-
mens. Fracture toughness, in-plane shear, and interlaminar 
shear were done at ambient temperature on a Jinan universal 
Test Machine WDW 100 kN.

In‑plane shear strength

In-plane shear test was done using an Iosipescu fixture at a 
2 mm/min cross-head speed D 5379/D 5379 M – 98 [42]. 
Coupons were cut with two V-notches at the middle coupon. 
In-plane shear strength ( τxy ) can be considered as:

where v is the distance between the roots of the V-notches 
and h is the coupon thickness.

Fracture toughness test

The fracture toughness test (single-edge notch bending 
(SENB)) was performed according to ASTM D5045-99 
[43]. The specimens were tested in the three-point bending 
tests. The specimens were tested at a displacement rate of 
0.05 mm/min. The fracture toughness  (KIC) of SENB sam-
ples was calculated using the following formulation [44]:

(1)τxy =
P1

v h

Table 2  Properties of Al, Cu, 
and GNP

Property Al nanoparticles Cu nanoparticles GNP

Density (g/cm3) 2.76 8.92 1.1–1.5
Tensile strength (MPa) 60–200 200–400 300–700
Tensile modulus (GPa) 70 117 200
Conductivity (M/m.k) 36 58 100
Thermal conductivity (w/m.k) 200 400 (440–480)
Melting point (ºC) 660 1083 4620

Fig. 1  Manufacturing of 
nanophased epoxy/glass fiber 
composites by using the hand 
layup technique
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where PI represents the maximum load, h is the coupon depth, 
and x denotes to the crack length (a)/coupon width (w).

Impact test

Izod test was performed according to ASTM 256-04 [45]. Flat-
wise impact test was conducted on AVERY Denison testing 
machine. The pendulum of the machine has a falling velocity 
of 3.65 m/s and an impact energy of 15 J. The impact strength 
was obtained by dividing the absorbed energy by the original 
cross-section area of the specimen [3, 46].

Short‑beam‑shear test

ASTM D2344/D2344M – 00 [47] was used to perform short 
beam shear test at a rate of 1 mm/min [16, 48, 49]. The appar-
ent interlaminar shear strength (ILSS) was determined by the 
following formula [50, 51, 52]:

where PI  represents the maximum load, h is the coupon 
depth, and w denotes to coupon width.

(2)KIC =
PI

h
√

w
f (x)

(3)

(4)ILSS =
(

0.75Pi
)

∕w h

Water absorption test

Water absorption test was performed according to ASTM 
D5229/D5229M-14 [53]. Specimens were immersed in arti-
ficial seawater at ambient temperature. The manufactured cou-
pons were periodically drawn from seawater and then wiped to 
eliminate seawater. The wiped coupons were then weighed to 
determine the change in weight during adsorption. Coupons 
were submerged for 85 days in seawater. The seawater absorp-
tion percentage M(t) was determined as [54]:

where wt is the coupon weight after time (t) and w0 is the 
initial weight.

Results and discussions

In‑plane shear strength

The average in-plane shear strengths of the control speci-
men and glass fiber/epoxy reinforced by the three different 
nano-fillers were determined. Glass fiber/epoxy filled with 
GNP demonstrated the maximum improvement of 59.2% in 
in-plane shear strength as compared with the control speci-
men. Moreover, 30.2% and 55.9% increased in in-plane  

(5)M(t) =

(

wt − w0

w0

)

× 100
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Fig. 2  In-plane shear of nanophased epoxy/glass fiber composites

Fig. 3  Fracture surface for 
specimens after subjecting to 
in-plane shear for a control, b 
AL, c Cu, and d Gr 
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shear strength was recorded for glass fiber/epoxy filled with 
Cu and AL, respectively (as shown in Fig. 2). Figure 3 shows 
the failure mechanism in the control specimen and speci-
men reinforced with nano-fillers under in-plane shear load. 
Severe damage grew at the V-notch roots in the control speci-
men center. However, moderate delamination at the V-notch 
roots was attained in glass fiber/epoxy laminates filled with 
Al nanoparticles and control filled with Cu nanofiller. Gra-
phene nanocomposite laminate is perfectly bonded with 
slight delamination, indicating improved adhesion com-
pared to the control specimen. Insignificant delamination was 
detected between the layers of nanocomposites. This revealed 
the excellent bond between graphene nanofilled epoxy and 
glass fibers, which improved the in-plane shear resistance 
compared to control specimens. The addition of nanofiller to 
polymer offers a more efficient stress transfer that decreases 
the local stress concentration around the interlayer of fiber/
epoxy and enhances the interfacial adhesion, thus, the prop-
erties of the manufactured laminates [55].

Fracture toughness

Fracture toughness is an essential material property deter-
mining the stress value required to propagate an existing 
crack [56]. Figure 4 displays the average fracture tough-
ness values of the control and nanofilled glass fiber/epoxy 

composite. A 91.5%, 84%, and 40% enhancement in frac-
ture toughness was achieved with glass fiber/epoxy filled 
with GNP, Cu, and Al nanofillers, respectively, compared 
with the control composite. A 51.5% and 7.5% enhance-
ment occurred in fracture toughness by adding GNP to 
glass fiber/epoxy, as compared to Al and Cu nanoparticles. 
Similarly, the fracture toughness rose to 66% compared to 
neat epoxy, containing 0.1 weight% GNP. Conversely, when 
GNP were added, the flexural modulus increased steadily 
from 0.1 to 2.0. As a result, the applied stress was success-
fully transferred to the matrix-containing particles, improv-
ing the  Al2O3 nanocomposites’ flexural strength, modu-
lus, and fracture toughness by 26.4%, 12.0%, and 24.0%, 
respectively [57]. Moreover, GLARE loaded with  Al2O3, 
 SiO2, Al, and Cu nanoparticles increased fracture toughness 
by 3.7%, 4.2%, 0.92%, and 2.75% [46]. Gouda et al. [35] 
developed a micro bamboo filler in an epoxy resin hybrid 
composite with varied weight percentages of GNP [35]. The 
existence of nanofiller minimizes the crack propagation and 
decreases the brittleness character of the hybrid composite 
material. The interlaminar fracture properties of the devel-
oped materials were enhanced by incorporating different 
types of graphene [15]. In addition, an increasing waviness 
of graphene can improve mechanical performance by block-
ing the debonding region at interfaces between graphene 
and epoxy [33]. Because of the exceptionally high surface 

Fig. 5  Failure of specimens 
after subjecting to fracture 
toughness test. a Control, b AL, 
c Cu, and d Gr crack
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area, as compared to other graphite derivatives, an enor-
mous improvement in properties is observed for grapheme 
nanoplatelet-filled composites [34].

Figure 5 demonstrates the failure mechanism in control and 
composite laminates incorporating different nanofillers under 
a fracture toughness test. The control composite has distinct 
delamination and cracks between the plies of the composite 
laminate in the higher support region, extending across the 
thickness of the control specimen. On the other hand, a small 
amount of delamination and cracking among composite lami-
nate plies developed on the area of the top support through the 
thickness of the control specimen in glass fiber/epoxy loaded 
with Al nanoparticles. There is a minor delamination in the 
laminate layers of the nanocomposite. A good adhesion in the 
glass fiber/epoxy loaded with graphene nanoparticles sug-
gested a better bonding between the nanocomposite than in 
the control. Compared to the control, this showed good adhe-
sion between the woven glass fibers and nanophase epoxy, 
increasing the fracture toughness. Figure 6 displays the SEM 
pictures of the control and control filled with GNP fracture 
surface after fracture toughness testing. The control speci-
men exhibited poor adhesion, leading to a fracture toughness 
drop. However, the control loaded with GNP showed strong 
interfacial bonding. The fracture progression path through 
the nanophase epoxy is oriented by an excellent interfacial 
connection. Compared to the control specimen, the crack’s 
long traveling route improves the fracture toughness, which 
uses considerable energy [58]. A similar observation was 
obtained with Hashim and Jumaha [22]. They attributed their 
results to incorporating resistant and stiff nanofillers such as 

GNP, inducing the formation of fracture mechanisms to devi-
ate the crack propagation. The energy absorbed during the 
crack propagation led to the construction of several fracture 
ditches. Furthermore, the improvement in fracture toughness 
in composites filled with GNP is attributed to the presence of 
nano-fillers, inhibiting crack propagation and is responsible 
for the increase of the acquired fracture toughness values. The 
crack stops upon meeting the nano-fillers and then bifurcates 
on both sides [15].

Impact strength

Figure 7 indicates the average impact strength from fill-
ing glass fiber/epoxy with different nanofillers. The figure 
shows an enhancement in the impact strength by incorpo-
rating all nanofillers into the polymeric composite mate-
rial. When glass fiber/epoxy was filled with 0.5 weight% 
GNP, the impact strength increased to its maximum value. 
Compared to the control composite, the impact strength 
increased by 74.7%. The control composites’ impact 
strength is increased with additional nanofillers. Using 
nanofillers in epoxy matrices prevents cracks from form-
ing and creates a winding channel for them to travel along, 
increasing impact energy [46]. An enhancement of 32.6% 
and 67.8% in impact strength was obtained with glass 
fiber/epoxy loaded with Al and Cu nanoparticles, respec-
tively, compared to the control composite. Similarly, add-
ing three wt% hallow site nanotubes in the nanocomposites 
increased impact energy values by 119.3% compared with 
the same weight% of Al nanofillers [2]. The impact resist-
ance relies on the complex energy dissipation mechanisms; 
thus, the interface properties and the difficult stress con-
centration of the nanoparticles and milled fibers affect the 
control of the composite fracture [59].

Under compression or impact of metals, metallic struc-
tures buckle and/or fold with significant plastic deformation. 
However, fiber-reinforced composites fail due to a series 
of damage mechanisms, including fiber breakage, matrix 
cracking, fiber-matrix debonding, and delamination, which 
take place due to their brittleness [60].

Figure 8 shows the failure mechanism in control and 
nanofilled glass fiber/epoxy composite subjected to impact 
loading. Severe delamination and cracks occur in the control 
composite after striking with the hammer. On the contrary, 
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the glass fiber/epoxy filled with GNP sustains good bonding 
between nanocomposite layers, resulting in crack arresting. 
This improves the impact resistance of glass fiber/epoxy 
filled with GNP. Slight delamination was observed with 
glass fiber/epoxy filled with other nanofillers.

Heaven Dani and Venkateshwaran [61] reported that 
impact strength improvement with nanocomposites is due 
to microload-sharing fine nano-silica particles in an epoxy 
matrix. The presence of nano-silica particles hindered the 
crack propagation, thus increasing the impactor penetration 
resistance. In addition, Alam and Chowdhury [62] indicated 
that the strength of adhesion between the matrix and nano-
filler, as well as the interface molecules’ flexibility, causes 
the dispersing of additional energy, thus avoiding the early 
development of cracks with greater efficiency in composites 
with CuO filler materials.

Interlaminar shear strength

Figure 9 indicates the interlaminar shear stress with dis-
placement of control and nanofilled glass fiber/epoxy com-
posite exposed to a three-point bending force in a short beam 
test. The interlaminar shear stress descends when the dis-
placement increases. The glass fiber/epoxy filled with GNP 
achieved the highest peak interlaminar shear stress among 
other nanocomposites, followed by glass fiber/epoxy filled 
with Al nanoparticles. A pronounced increase in interlami-
nar shear stress was observed with glass fiber/epoxy filled 
with Cu nanofillers. In comparison to the control specimen, 
it showed less displacement. Figure 10 indicates the ILSS of 
the control specimen and nanocomposites. The highest ILSS 
value was obtained for the control specimen filled with a 
GNP nanofiller with an enhancement of 100%. A 77.1% and 
84.4% enhancement in ILSS was presented by glass fiber/
epoxy loaded with Al and Cu nanofillers, as compared to 
the control specimen. This could be explained by adding 
nanoparticles to epoxy to enhance the adhesion between the 
glass fibers and the epoxy that contained nanofillers.

Figure 11 shows the failure of specimens after being 
subjected to interlaminar shear tests of control and nano-
composite laminates. Short span length in the interlaminar 
shear test under a three-point flexural load designates the 
interfacial bonding strength of the manufactured plate. How-
ever, Al nanofillers, Cu nanofillers, and GNP in the epoxy 
matrix enhanced the ILSS of glass fiber/epoxy composites. 
Nanomodification of the epoxy led to improved interfacial 
bonding between the nanophase epoxy and woven glass fib-
ers in addition to shear stresses between the layers showing 
relatively weak bonding at the interface, debonding between 
the composite layers causes failure in the control laminate.
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Water absorption

Figure 12 shows the water absorption of glass fiber/epoxy 
composites reinforced with nanofiller under seawater con-
ditions. The figure indicated that the curve exhibited two 
regions. The first region represented the high rate of water 
uptake, with a second zone signifying the sluggish rate of 
water absorption coming next. The water uptake percent-
age increased as the process by which water molecules 
diffuse into microcracks and defects created between 
glass fiber and polymeric matrices and are absorbed by 
the polymer chains in polymeric composites is known as 
water uptake [63]. Through the interaction of the polar 
molecules of the absorbed saltwater, plasticization hap-
pened as the seawater infiltrated into the epoxy matrix. 
Molecules of absorbed seawater push polymer chains 
apart. Consequently, the free volume rises [64, 65]. The 
figure shows that incorporating 0.5 wt% of nanofiller to 
epoxy reduced the water uptake percentage in seawater 
compared to control. This might be because, compared to 

the control specimen, the nano-sized inclusion resulted 
in a lower rate of saltwater absorption. These plasticized 
composites loaded with nanofillers behaved better because 
of their barrier qualities [66]. In addition, the presence of 
nanofillers reduced seawater permeability in nanocompos-
ites by delaying the relaxation of the epoxy chains sur-
rounding the nanofiller. Because of nanofillers’ hydropho-
bicity and epoxy resin’s hydrophilic nature, incorporating 
nanofillers into glass fiber/epoxy composites decreased 
seawater uptake.

It was suggested that the high aspect ratio of the nano-
filler, which forms winding routes for the water molecules, 
was responsible for improving seawater uptake resistance 
[67]. By blocking the holes inside the epoxy matrix, nano-
fillers increase the density of epoxy cross-linking, decrease 
free volume, and allow for interconnection with molecular 
chains [54]. Nanofillers can create free volume in the poly-
meric matrix, which occurs when these nanofillers start to 
agglomerate due to a high specific interfacial area (fillers 
area per composite volume) where water may be collected. 
Thus, water molecules penetrate the epoxy easily without 
restriction [68]. The epoxy chain’s segmental mobility was 
reduced by the nanofiller’s consistent dispersion through-
out the epoxy matrix [69]. Previous works reported similar 
results [70–72].

Conclusions

This work carried out an experimental investigation regard-
ing the in-plane shear, barrier behavior, fracture toughness, 
impact, and interlaminar shear strength of control and differ-
ent nanocomposites. Various nanofillers were added to the 
glass fiber/epoxy composite with 0.5wt% of epoxy. Nano-
composites, including Al, Cu, and GNP, were prepared using 
the hand layup technique into a glass fiber/epoxy composite. 
The addition of all nanofillers positively affected the bar-
rier behavior, in-plane shear, fracture toughness, impact, 
and interlaminar shear strength properties compared to the 
control specimen. At 0.5 weight%, GNP produced the best 
results. Compared to the control composite, glass fiber/
epoxy loaded with graphene nanoplatelet, Cu, and Al nano-
particles increased fracture toughness by 91.5%, 84%, and 
40%. Nonetheless, glass fiber/epoxy loaded with Al and 
Cu nanoparticles improved impact strength by 32.6% and 
67.8%, respectively.
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