Skip to main content
Log in

Nanocomposite films of PLA/PBAT blends incorporated with porous clay heterostructure from mixed surfactant systems and their effect of temperature and pressure on dielectric properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The dielectric nanocomposite films with excellent dielectric behaviour was successfully prepared by compatibilized poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends with porous clay heterostructure (PCH) from mixed surfactant of cetyltrimethyl ammonium bromide (CTAB) and cetyltrimethy ammonium chloride (CTAC) using melt-mixing process. The results demonstrated that the dielectric constant (ɛr) increased with increasing temperature from -50 °C to 120 °C at 104 Hz, indicating that the α-relaxation of main chain segments was occurred and the mobility of main chain could reorient the dipolar group, side group and end group to the same direction, and also increased at the temperature higher than glass transition temperature (Tg) of the polymer matrix and remained constant under a wide range of temperature because the rigidity of PCH decreased the mobility of the main chain segments. Furthermore, the disordered (α′) to ordered (α) phase transition is confirmed by the strong (110)/(200) and (203) reflection peaks, implying dipole alignment from the ordered main chain segments. In addition, after applying the pressure, the results demonstrated the change in charge density with increasing pressure, leading to a change in capacitance and the dielectric constant. Thus, this dielectric material with sensing and monitoring properties had considerable promise for a dielectric sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mehta NM, Parsania PH (2006) Fabrication and evaluation of some mechanical and electrical properties of jute-biomass based hybrid composites. J Appl Polym Sci 100:1754. https://doi.org/10.1002/app.23014

    Article  CAS  Google Scholar 

  2. Cheng R, Wang Y, Men R et al (2022) High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage. iScience 25:104837. https://doi.org/10.1016/j.isci.2022.104837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo H, Wang F, Guo R et al (2022) Progress on polymer dielectrics for electrostatic capacitors application. Adv Sci 2202438. https://doi.org/10.1002/advs.202202438

  4. Sreekumar PA, Saiter JM, Joseph K, Unnikrishnan G, Thomas S (2012) Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding. Compos A Appl Sci Manuf 43:507. https://doi.org/10.1016/j.compositesa.2011.11.018

    Article  CAS  Google Scholar 

  5. Chand N, Jain D (2005) Effect of sisal fibre orientation on electrical properties of sisal fibre reinforced epoxy composites. Compos A Appl Sci Manuf 36:594. https://doi.org/10.1016/j.compositesa.2004.08.002

    Article  CAS  Google Scholar 

  6. Joseph S, Thomas S (2008) Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 109:256. https://doi.org/10.1002/app.27452

    Article  CAS  Google Scholar 

  7. Jacob M, Varughese KT, Thomas S (2006) Dielectric characteristics of sisal–oil palm hybrid biofibre reinforced natural rubber biocomposites. J Mater Sci 41:5538. https://doi.org/10.1007/s10853-006-0298-y

    Article  CAS  Google Scholar 

  8. Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Part A 33:585. https://doi.org/10.1080/10601329608010880

    Article  Google Scholar 

  9. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  10. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123. https://doi.org/10.1016/S0079-6700(02)00012-6

    Article  Google Scholar 

  11. Saini P, Arora M, Kumar MNVR (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47. https://doi.org/10.1016/j.addr.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  12. Ando M, Kawamura H, Kageyama K, Tajitsu Y (2012) Film Sensor Device Fabricated by a Piezoelectric Poly(L-lactic acid) Film. Jpn J Appl Phys 51:09LD14. https://doi.org/10.1143/JJAP.51.09LD14

    Article  CAS  Google Scholar 

  13. Sawano M, Tahara K, Orita Y, Nakayama M, Tajitsu Y (2010) New design of actuator using shear piezoelectricity of a chiral polymer, and prototype device. Polym Int 59:365. https://doi.org/10.1002/pi.2758

    Article  CAS  Google Scholar 

  14. Yoshida T, Imoto K, Nakai T et al (2011) Piezoelectric motion of multilayer film with alternate rows of optical isomers of chiral polymer film. Jpn J Appl Phys 50:09ND13. https://doi.org/10.1143/JJAP.50.09ND13

    Article  CAS  Google Scholar 

  15. Yuan X, Gao X, Shen X, Yang J, Li Z, Dong S (2021) A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application. Nano Energy 85:105985. https://doi.org/10.1016/j.nanoen.2021.105985

    Article  CAS  Google Scholar 

  16. Su YP, Sim LN, Li X, Coster HGL, Chong TH (2021) Anti-fouling piezoelectric PVDF membrane: Effect of morphology on dielectric and piezoelectric properties. J Membr Sci 620:118818. https://doi.org/10.1016/j.memsci.2020.118818

    Article  CAS  Google Scholar 

  17. Li H, Jin S-W, Lim JH, Lim S (2022) Solvent-assisted precipitation direct-write printing toward in-suit oriented β-phase polyvinylidene fluoride with tunable microarchitectures for energy harvesting and self-powered sensing. Appl Mater Today 29:101633. https://doi.org/10.1016/j.apmt.2022.101633

    Article  Google Scholar 

  18. Lovell CS, Fitz-Gerald JM, Park C (2011) Decoupling the effects of crystallinity and orientation on the shear piezoelectricity of polylactic acid. J Polym Sci Part B Polym Phys 49:1555. https://doi.org/10.1002/polb.22345

    Article  CAS  Google Scholar 

  19. Smyth M, Poursorkhabi V, Mohanty AK, Gregori S, Misra M (2014) Electrospinning highly oriented and crystalline poly(lactic acid) fiber mats. J Mater Sci 49:2430. https://doi.org/10.1007/s10853-013-7899-z

    Article  CAS  Google Scholar 

  20. Jeszka JK, Pietrzak L, Pluta M, Boiteux G (2010) Dielectric properties of polylactides and their nanocomposites with montmorillonite. J Non-Cryst Solids 356:818. https://doi.org/10.1016/j.jnoncrysol.2009.06.057

    Article  CAS  Google Scholar 

  21. Elsawy MA, Saad GR, Sayed AM (2016) Mechanical, thermal, and dielectric properties of poly(lactic acid)/chitosan nanocomposites. Polym Eng Sci 56:987. https://doi.org/10.1002/pen.24328

    Article  CAS  Google Scholar 

  22. Hsieh Y-T, Nozaki S, Kido M, Kamitani K, Kojio K, Takahara A (2020) Crystal polymorphism of polylactide and its composites by X-ray diffraction study. Polym J 52:755. https://doi.org/10.1038/s41428-020-0343-8

    Article  CAS  Google Scholar 

  23. Al-Itry R, Lamnawar K, Maazouz A (2014) Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur Polym J 58:90. https://doi.org/10.1016/j.eurpolymj.2014.06.013

    Article  CAS  Google Scholar 

  24. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898. https://doi.org/10.1016/j.polymdegradstab.2012.06.028

    Article  CAS  Google Scholar 

  25. Sun Z, Zhang B, Bian X et al (2015) Synergistic effect of PLA–PBAT–PLA tri-block copolymers with two molecular weights as compatibilizers on the mechanical and rheological properties of PLA/PBAT blends. RSC Adv 5:73842. https://doi.org/10.1039/C5RA11019J

    Article  CAS  Google Scholar 

  26. Ding Y, Lu B, Wang P, Wang G, Ji J (2018) PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends. Polym Degrad Stab 147:41. https://doi.org/10.1016/j.polymdegradstab.2017.11.012

    Article  CAS  Google Scholar 

  27. Chotiradsirikun S, Guo R, Bhalla AS, Manuspiya H (2021) Novel synthesis route of porous clay heterostructures via mixed surfactant template and their dielectric behavior. J Porous Mater 28:117. https://doi.org/10.1007/s10934-020-00971-4

    Article  CAS  Google Scholar 

  28. Shinyama K (2018) Mechanical and electrical properties of polylactic acid with aliphatic-aromatic polyester. J Eng 2018:6597183. https://doi.org/10.1155/2018/6597183

    Article  CAS  Google Scholar 

  29. Cetiner S, Sirin S, Olariu M, Sarac AS (2016) Frequency and temperature dependence of dielectric behaviors for conductive acrylic composites. Adv Polym Tech 35. https://doi.org/10.1002/adv.21523

  30. Kuo D-H, Chang C-C, Su T-Y, Wang W-K, Lin B-Y (2001) Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 21:1171. https://doi.org/10.1016/S0955-2219(00)00327-7

    Article  CAS  Google Scholar 

  31. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804. https://doi.org/10.1063/1.126787

    Article  CAS  Google Scholar 

  32. Chen X, Han L, Zhang T, Zhang J (2014) Influence of crystal polymorphism on crystallinity calculation of poly(l-lactic acid) by infrared spectroscopy. Vib Spectrosc 70:1. https://doi.org/10.1016/j.vibspec.2013.10.003

    Article  CAS  Google Scholar 

  33. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352. https://doi.org/10.1021/ma0706071

    Article  CAS  Google Scholar 

  34. Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442. https://doi.org/10.1016/j.polymer.2005.10.065

    Article  CAS  Google Scholar 

  35. Gundrati NB, Chakraborty P, Zhou C, Chung DDL (2018) Effects of printing conditions on the molecular alignment of three-dimensionally printed polymer. Compos B Eng 134:164. https://doi.org/10.1016/j.compositesb.2017.09.067

    Article  CAS  Google Scholar 

  36. Wang Y-P, Gao X-H, Wang R-M, Liu H-G, Yang C, Xiong Y-B (2008) Effect of functionalized montmorillonite addition on the thermal properties and ionic conductivity of PVDF–PEG polymer electrolyte. React Funct Polym 68:1170. https://doi.org/10.1016/j.reactfunctpolym.2008.04.002

    Article  CAS  Google Scholar 

  37. Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26. https://doi.org/10.1002/pen.21210

    Article  CAS  Google Scholar 

  38. Rahaman M, Chaki TK, Khastgir D (2014) Polyaniline/ethylene vinyl acetate composites as dielectric sensor. Polym Eng Sci 54:1632. https://doi.org/10.1002/pen.23714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Chulalongkorn University 100th Anniversary Fund for Doctoral Scholarship and the Chulalongkorn University 90th Anniversary Fund (Ratchadaphiseksomphot Endowment Fund), as well as the Graduate School of Chulalongkorn University. Thai Nippon Chemical Industry Co., Ltd. provided support for the materials. The Petroleum and Petrochemical College, Chulalongkorn University provided all the facilities for the instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hathaikarn Manuspiya.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chotiradsirikun, S., Than-ardna, B., Guo, R. et al. Nanocomposite films of PLA/PBAT blends incorporated with porous clay heterostructure from mixed surfactant systems and their effect of temperature and pressure on dielectric properties. J Polym Res 30, 95 (2023). https://doi.org/10.1007/s10965-023-03465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03465-4

Keywords

Navigation