Skip to main content

Advertisement

Log in

Preparation and properties of cationic polyacrylamide flocculant for drilling fluid based on modified nano SiO2

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

SiO2 particles of different particle sizes were prepared by sol–gel method using ethyl orthosilicate (TEOS) as raw material. Nano-silica/cationic polyacrylamide (S-CPAM) prepared by inverse emulsion polymerization of modified silica (C-SiO2) as a hydrophobic component with acrylamide (AM), dimethyl diallyl ammonium chloride (DMDAAC) and Methacryloyloxyethyl trimethyl ammonium chloride (DMC). FT-IR, TEM, 1H-NMR, SEM, TG, surface tension meter and twelve-speed rotational viscometer were used for characterization. The impact of C-SiO2 particle size and content on the product properties was investigated. FT-IR and H-NMR tests were used to identify the structure and composition of the product. Scanning electron microscopy and surface tension tests showed that the introduction of C-SiO2 increased the adsorption capacity of S-CPAM, and the critical association concentration (CAC) of S-CPAM was determined to be 1 g/L. Results showed that when the particle size of C-SiO2 was 15 nm, the product had better water solubility, viscosity building and flocculation property. The flocculation, temperature, salt, shear resistance and ageing resistance of S-CPAM were assessed in relation to the C-SiO2 content. The addition of C-SiO2 improved the performance of the product, and the best performance was obtained for 0.7–1% of the monomer mass of added C-SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are provided in this paper.

References

  1. Zhang Y, Miao Z, Zou J (2014) A new cation-modified Al-polyacrylamide flocculant for solid-liquid separation in waste drilling fluid. J Appl Polym Sci 132. https://doi.org/10.1002/app.41641

  2. Peng S, Jiang G, Li X, Yang L, Liu F, He Y (2018) Flocculation of submicron particles in water-based drilling fluids by CMC-g-DMDAAC. J Petrol Sci Eng 162:55–62. https://doi.org/10.1016/j.petrol.2017.12.036

    Article  CAS  Google Scholar 

  3. Ko S, Huh C (2019) Use of nanoparticles for oil production applications. J Petrol Sci Eng 172:97–114. https://doi.org/10.1016/j.petrol.2018.09.051

    Article  CAS  Google Scholar 

  4. Ruiz-Canas MC, Quintero HI, Corredor LM, Manrique E, Romero Bohorquez AR (2020) New nanohybrid based on hydrolyzed polyacrylamide and silica nanoparticles: Morphological, structural and thermal properties. Polymers (Basel) 12(5). https://doi.org/10.3390/polym12051152

  5. Hegazy SH, Mohamed SK (2021) Starch-graft-polyacrylamide copolymer /Fe3O4 /graphene oxide nanocomposite: synthesis, characterization, and application as a low-cost adsorbent for Ni (II) from aqueous solutions. J Polym Res 28(2). https://doi.org/10.1007/s10965-020-02275-2

  6. Kumar K, Adhikary P, Krishnamoorthi S (2014) Synthesis, characterization and application of water-soluble star polymers based on 2,4,6-tris-hydroxymethyl phenol and polyacrylamide. Polym Int 63(10):1842–1849. https://doi.org/10.1002/pi.4706

    Article  CAS  Google Scholar 

  7. Wang H, Chao L, Wei X, Li J, Ji C, Wang B, Qi X, Hu P, Ying Y, Tian M (2019) Design of SiO2-TiO2-PAM composite flocculant with self-degrading characteristics and optimization of the flocculation process using a combination of central composite design and response surface methodology. Colloids Surf A Physicochem Eng Asp 583. https://doi.org/10.1016/j.colsurfa.2019.123982

  8. Giraldo LJ, Giraldo MA, Llanos S, Maya G, Zabala RD, Nassar NN, Franco CA, Alvarado V, Cortés FB (2017) The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. J Petrol Sci Eng 159:841–852. https://doi.org/10.1016/j.petrol.2017.10.009

    Article  CAS  Google Scholar 

  9. Kumar K, Adhikary P, Karmakar NC, Gupta S, Singh RP, Krishnamoorthi S (2015) Synthesis, characterization and application of novel cationic and amphoteric flocculants based on amylopectin. Carbohydr Polym 127:275–281. https://doi.org/10.1016/j.carbpol.2015.03.044

    Article  CAS  PubMed  Google Scholar 

  10. Hasan A, Fatehi P (2018) Synthesis and characterization of lignin-poly(acrylamide)-poly(2-methacryloyloxyethyl) trimethyl ammonium chloride copolymer. J Appl Polym Sci 135(23). https://doi.org/10.1002/app.46338

  11. Li F, Luo Y, Hu P, Su G, Zheng M (2016) Preparation and evaluation of fluorinated hydrophobically associating polyacrylamide. J Polym Res 23(8). https://doi.org/10.1007/s10965-016-1067-5

  12. Kang W, Hou X, Chen C, Shao S, Zhang X, Zhu T, Wang T, Yang H (2019) Study on rheological behavior and salt-thickening mechanism of a synthesized twin-tailed hydrophobically modified polyacrylamide. J Mol Liq 294. https://doi.org/10.1016/j.molliq.2019.111619

  13. Yoon DH, Jang JW, Cheong IW (2012) Synthesis of cationic polyacrylamide/silica nanocomposites from inverse emulsion polymerization and their flocculation property for papermaking. Colloids Surf A 411:18–23. https://doi.org/10.1016/j.colsurfa.2012.06.036

    Article  CAS  Google Scholar 

  14. Zhao X, Qiu Z, Zhang Y, Zhong H, Huang W, Tang Z (2017) Zwitterionic polymer P(AM-DMC-AMPS) as a low-molecular-weight encapsulator in deepwater drilling fluid. Appl Sci 7(6). https://doi.org/10.3390/app7060594

  15. Carro S, Gonzalez-Coronel VJ, Castillo-Tejas J, Maldonado-Textle H, Tepale N (2017) Rheological properties in aqueous solution for hydrophobically modified polyacrylamides prepared in inverse emulsion polymerization. Int J Polym Sci 2017:1–13. https://doi.org/10.1155/2017/8236870

    Article  CAS  Google Scholar 

  16. Ying C, Gongwei T, Yuning L, Qi Z, Jing L (2018) Ammonium persulfate-initiated polymerization of cationic starch-grafted-cationic polyacrylamide flocculant for the enhanced flocculation of oil sludge suspension. J Dispersion Sci Technol 40(9):1246–1255. https://doi.org/10.1080/01932691.2018.1505526

    Article  CAS  Google Scholar 

  17. Ciriminna R, Fidalgo A, Pandarus V, Beland F, Ilharco LM, Pagliaro M (2013) The sol-gel route to advanced silica-based materials and recent applications. Chem Rev 113(8):6592–6620. https://doi.org/10.1021/cr300399c

    Article  CAS  PubMed  Google Scholar 

  18. Sonker E, Tungala K, Krishnamoorthi S, Kumar K (2019) Synthesis of IONP’s decorated graft copolymers and study of their magnetic force–induced wastewater treatment. Polym Adv Technol 31(1):60–72. https://doi.org/10.1002/pat.4747

    Article  CAS  Google Scholar 

  19. Wang Z, Liu MC, Chang ZY, Li HB (2021) Study on the graft modification mechanism of macroporous silica gel surface based on silane coupling agent vinyl triethoxysilane. RSC Adv 11(41):25158–25169. https://doi.org/10.1039/d1ra04296c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rong MZ, Zhang MQ, Ruan WH (2013) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater Sci Technol 22(7):787–796. https://doi.org/10.1179/174328406x101247

    Article  Google Scholar 

  21. Xu B, Zhang Q (2021) Preparation and Properties of Hydrophobically Modified Nano-SiO2 with Hexadecyltrimethoxysilane. ACS Omega 6(14):9764–9770. https://doi.org/10.1021/acsomega.1c00381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He Z, Zhang Z, Bi S (2020) Nanoparticles for organic electronics applications. Mater Res Express 7(1). https://doi.org/10.1088/2053-1591/ab636f

  23. Zhang P, Zhao DQ (2020) Characterization and dimethyl phthalate flocculation performance of the cationic polyacrylamide flocculant P(AM-DMDAAC) produced by microwave-assisted synthesis. Molecules 25(3). https://doi.org/10.3390/molecules25030624

  24. Cheng Z, Dong Z, Su M, Zhang Y, Wang Z, He P (2019) Synthesis of cationic polyacrylamide via inverse emulsion polymerization method for the application in water treatment. J Macromol Sci Part A 56(1):76–85. https://doi.org/10.1080/10601325.2018.1547113

    Article  CAS  Google Scholar 

  25. Kolya H, Tripathy T (2014) Biodegradable flocculants based on polyacrylamide and poly(N, N-dimethylacrylamide) grafted amylopectin. Int J Biol Macromol 70:26–36. https://doi.org/10.1016/j.ijbiomac.2014.06.028

    Article  CAS  PubMed  Google Scholar 

  26. Fu X, Yang Q, Zhang Y (2020) Thermal decomposition behavior and mechanism study of cationic polyacrylamide. J Therm Anal Calorim 146(3):1371–1381. https://doi.org/10.1007/s10973-020-10131-0

    Article  CAS  Google Scholar 

  27. Huang L, Liu M, Mao L, Xu D, Wan Q, Zeng G, Shi Y, Wen Y, Zhang X, Wei Y (2017) Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP. Appl Surf Sci 412:571–577. https://doi.org/10.1016/j.apsusc.2017.04.026

    Article  CAS  Google Scholar 

  28. Wiśniewska M, Chibowski S, Urban T (2016) Adsorption of cationic polyacrylamide on the surface of mesoporous nanozirconia and its influence on the solid aqueous suspension stability. Colloids Surf A 509:214–223. https://doi.org/10.1016/j.colsurfa.2016.09.019

    Article  CAS  Google Scholar 

  29. Ma G, Li X, Wang X, Liu G, Jiang L, Yang K (2018) Preparation, rheological and drag reduction properties of hydrophobically associating polyacrylamide polymer. J Dispersion Sci Technol 40(2):171–178. https://doi.org/10.1080/01932691.2018.1461637

    Article  CAS  Google Scholar 

  30. Pu W, Du D, Liu R, Li K, Huang T (2016) Synthesis and evaluation of β-cyclodextrin-functionalized hydrophobically associating polyacrylamide. RSC Adv 6(98):96006–96014. https://doi.org/10.1039/c6ra14209e

    Article  CAS  Google Scholar 

  31. Chao L, Wang H, Wei X, Li J, Ji C, Qi X (2020) Design of SiO2-TiO2-P(AM-DMC) cationic composite flocculant and optimization of the flocculation process using response surface methodology. J Dispersion Sci Technol 42(8):1132–1145. https://doi.org/10.1080/01932691.2020.1728301

    Article  CAS  Google Scholar 

  32. Zhao C, Zheng H, Gao B, Liu Y, Zhai J, Zhang S, Xu B (2018) Ultrasound-initiated synthesis of cationic polyacrylamide for oily wastewater treatment: Enhanced interaction between the flocculant and contaminants. Ultrason Sonochem 42:31–41. https://doi.org/10.1016/j.ultsonch.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  33. McCarron AM, Crispo S, Smith-Palmer T (2002) The flocculation of kaolin by cationic polyacrylamides and the effect of cationic surfactant on this process. J Appl Polym Sci 83(11):2382–2389. https://doi.org/10.1002/app.10220

    Article  CAS  Google Scholar 

  34. Zhang X, Huang Y, Fu K, Yuan S, Huang C, Li H (2016) Preparation and performance of cationic flocculant for papermaking based on the graft polymerization of cationic chains from colloidal silica particles. Colloids Surf A 491:29–36. https://doi.org/10.1016/j.colsurfa.2015.12.003

    Article  CAS  Google Scholar 

  35. Sarsenbekuly B, Kang W, Fan H, Yang H, Dai C, Zhao B, Aidarova SB (2017) Study of salt tolerance and temperature resistance of a hydrophobically modified polyacrylamide based novel functional polymer for EOR. Colloids Surf A 514:91–97. https://doi.org/10.1016/j.colsurfa.2016.10.051

    Article  CAS  Google Scholar 

  36. Zhao T, Peng J, Zhang Y, Chen J, Chen Y, Sun W, Li S (2020) Synthesis of ultra-high concentration of salt-resistant polyacrylamide. Polym Adv Technol 31(12):2980–2989. https://doi.org/10.1002/pat.5021

    Article  CAS  Google Scholar 

  37. He Z, Zhang Z, Bi S, Chen J (2021) Tuning charge transport in organic semiconductors with nanoparticles and hexamethyldisilazane. J Nanopart Res 23(1). https://doi.org/10.1007/s11051-021-05151-2

  38. Nasser MS, James AE (2008) Compressive and shear properties of flocculated kaolinite–polyacrylamide suspensions. Colloids Surf A 317(1–3):211–221. https://doi.org/10.1016/j.colsurfa.2007.10.021

    Article  CAS  Google Scholar 

  39. Jiang Z, Yang H, Xu Y, Li Y, Wang X, Chen F, Yu X (2020) A viscoelastic self-regulating agent for enhance oil recovery. Colloids Surf A Physicoch Eng Asp 603. https://doi.org/10.1016/j.colsurfa.2020.125267

  40. Zhou M, Nie X, Zhou L, Hou L, Zhao J, Yang Y (2017) Study of crosslinked copolymer nanospheres with temperature resistance, salinity resistance, and deep profile control. J Appl Polym Sci 134(40). https://doi.org/10.1002/app.45131

Download references

Acknowledgements

This work was supported by a project of the China National Offshore Oil Corporation Limited (No: B2019H10025-1) and a related national project (No. 2022YFC2806202). Thanks also to the MogoEdit for reviewing the language of the article [25].

Author information

Authors and Affiliations

Authors

Contributions

Zhao Qingmei (Corresponding author): Provision of conceptualization and methodological and manuscript review. Yang hao (First author): Data management and manuscript writing and translation. Yue Qiansheng: Providing project and financial support.

Corresponding author

Correspondence to Qingmei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhao, Q. & Yue, Q. Preparation and properties of cationic polyacrylamide flocculant for drilling fluid based on modified nano SiO2. J Polym Res 30, 93 (2023). https://doi.org/10.1007/s10965-023-03457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03457-4

Keywords

Navigation