Skip to main content
Log in

Facile synthesis of 2,6-di-tert-butylphenol modified polystyrene and its antioxidative properties as the heterogeneous antioxidant

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The heterogeneous antioxidant, namely, PS-2, 6-DTBP, was easily synthesized from chloromethylated polystyrene (CMPS) with 2, 6-di-tert-butylphenol by a simple one-step Friedel–Crafts reaction. As compared with CMPS (78 m2/g and 34.8 nm, respectively), the Brunauer–Emmett–Teller (BET) surface area (SBET) of PS-2, 6-DTBP was greatly increased to 623 m2/g, while the average pore size was sharply reduced to 7.0 nm. The antioxidative property of PS-2, 6-DTBP was extensively evaluated by the scavenging activity of superoxide and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH·) in inhibiting oxidation of benzaldehyde, and the results indicated that 2,6-di-tert-butylphenol loaded on PS-2, 6-DTBP had excellent capability in scavenging O2· and DPPH·, and effectively inhibited the oxidation of benzaldehyde. As a heterogeneous antioxidant with free radical scavenger, PS-2, 6-DTBP can be conveniently separated from the liquid phase and is environment friendly, showing promising potential in solid antioxidant field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Li C, Sun P, Yu H, Zhang N, Wang J (2017) Scavenging ability of dendritic PAMAM bridged hindered phenolic antioxidants towards DPPH· and ROO· free radicals. RSC Adv 7:1869–1876

    Article  CAS  Google Scholar 

  2. Wang X, Xing W, Tang G, Hong N, Hu W, Zhan J, Song L, Yang W, Hu Y (2013) Synthesis of a novel sulfur-bearing secondary antioxidant with a high molecular weight and its comparative study on antioxidant behavior in polypropylene with two commercial sulfur-bearing secondary antioxidants having relatively low molecular weight. Polym Degrad Stab 98:2391–2398

    Article  CAS  Google Scholar 

  3. Krishnaswamy RK (2007) Influence of wall thickness on the creep rupture performance of polyethylene pipe. Polym Eng Sci 47:516–521

    Article  CAS  Google Scholar 

  4. Wu Y, Li W, Zhang M, Wang X (2013) Improvement of oxidative stability of trimethylolpropane trioleate lubricant. Thermochim Acta 569:112–118

    Article  CAS  Google Scholar 

  5. Al-Malaika S, Ashley H, Issenhuth S (1994) The antioxidant role of α-tocopherol in polymers. I. The nature of transformation products of α-tocopherol formed during melt processing of LDPE. J Polym Sci A Polym Chem 32:3099–3113

    Article  CAS  Google Scholar 

  6. Sadeghifar H, Argyropoulos DS (2015) Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustain Chem Eng 3:349–356

    Article  CAS  Google Scholar 

  7. Pisoschi AM, Pop A, Iordache F, Stanca L, Bilteanu L, Serban AI (2021) Antioxidant determination with the use of carbon-based electrodes. Chemosensors 9:72–117

    Article  CAS  Google Scholar 

  8. Gogoi S, Karak N (2014) Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain Chem Eng 2:2730–2738

    Article  CAS  Google Scholar 

  9. Ritter A, Michel E, Schmid M, Affolter S (2005) Interlaboratory test on polymers: determination of antioxidants in polyolefins. Polym Test 24:498–506

    Article  CAS  Google Scholar 

  10. Maringer L, Roiser L, Wallner G, Nitsche D, Buchberger W (2016) The role of quinoid derivatives in the UV-initiated synergistic interaction mechanism of HALS and phenolic antioxidants. Polym Degrad Stab 131:91–97

    Article  CAS  Google Scholar 

  11. Scott G (1988) Antioxidants. Bull Chem Soc Jpn 61:165–170

    Article  CAS  Google Scholar 

  12. Wang X, Wang B, Song L, Wen P, Tang G, Hu Y (2013) Antioxidant behavior of a novel sulfur-bearing hindered phenolic antioxidant with a high molecular weight in polypropylene. Polym Degrad Stab 98:1945–1951

    Article  CAS  Google Scholar 

  13. Gensler R, Plummer C, Kausch H (2000) Thermo-oxidative degradation of isotactic polypropylene at high temperatures: phenolic antioxidants versus HAS. Polym Degrad Stab 67:195–208

    Article  CAS  Google Scholar 

  14. Nedelcev T, Krupa I, Csomorova K, Janigova I, Rychly J (2007) Synthesis and characterization of the new silane-based antioxidant containing 2,6-di-tert-butylphenolic stabilizing moiety. Polym Adv Technol 18:157–164

    Article  CAS  Google Scholar 

  15. Li C, Wang J, Ning M, Zhang H (2012) Synthesis and antioxidant activities in polyolefin of dendritic antioxidants with hindered phenolic groups and tertiary amine. J Appl Polym Sci 124:4127–4135

    Article  CAS  Google Scholar 

  16. Kasza G, Stumphauser T, Nador A, Osvath Z, Szarka G, Domjan A, Mosnacek J, Ivan B (2017) Hyperbranched polyglycerol nanoparticles based multifunctional, nonmigrating hindered phenolic macromolecular antioxidants: Synthesis, characterization and its stabilization effect on poly(vinyl chloride). Polymer 124:210–218

    Article  CAS  Google Scholar 

  17. Chen J, Yang M, Zhang S (2011) Immobilization of antioxidant on nanosilica and the aging resistance behavior in polypropylene. Compos Part A Appl Sci Manuf 42:471–477

    Article  Google Scholar 

  18. Gao X, Meng X, Wang H, Wen B, Ding Y, Zhang S, Yang M (2008) Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene. Polym Degrad Stab 93:1467–1471

    Article  CAS  Google Scholar 

  19. Podesva J, Kovarova J, Hrdickova M, Netopilik M (2009) Stabilization of polyurethanes based on liquid OH-telechelic polybutadienes: Comparison of commercial and polymer-bound antioxidants. Polym Degrad Stab 94:647–650

    Article  CAS  Google Scholar 

  20. Kim TH, Oh DR (2004) Melt grafting of maleimides having hindered phenol antioxidant onto low molecular weight polyethylene. Polym Degrad Stab 84:499–503

    Article  CAS  Google Scholar 

  21. Munteanu D, Csunderlik C (1991) Polyethylene-bound antioxidants. Polym Degrad Stab 34:295–307

    Article  CAS  Google Scholar 

  22. Xue B, Ogata K, Toyota A (2007) Synthesis and radical scavenging ability of new polymers from sterically hindered phenol functionalized norbornene monomers via ROMP. Polymer 48:5005–5015

    Article  CAS  Google Scholar 

  23. Zeng X, Huang J (2020) Anisole-modified hyper-cross-linked resins for efficient adsorption of aniline from aqueous solution. J Colloid Interface Sci 569:177–183

    Article  CAS  Google Scholar 

  24. Caldwell J, Moyer H (1935) Determination of chloride: a modification of the Volhard method. Ind Eng Chem 7:38–39

    CAS  Google Scholar 

  25. Saeed I, Guo X, Azeem M, Elshikh MS, Zainab B, Ayaz Z, You L, Alwahibi MS, Abbasi AM (2021) Comparative assessment of polyphenolics’ content, free radicals’ scavenging and cellular antioxidant potential in apricot fruit. J King Saud Univ Sci 33:101459

    Article  Google Scholar 

  26. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  27. Ma C, Zhao J, Wu F, Zhang Q, Zhao X (2022) The non-covalent interacting forces and scavenging activities to three free radicals involved in the caseinate-flavonol (kaempferol and quercetin) complexes. J Food Meas Charact 16:114–125

    Article  Google Scholar 

  28. Liang X, Wang X, Li Z, Hao Q, Wang S (2010) Improved in vitro assays of superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity of isoflavones and isoflavone metabolites. J Agric Food Chem 58:11548–11552

    Article  CAS  Google Scholar 

  29. Zhao S, Lan M, Zhu X, Xue H, Ng TW, Meng X, Lee CS, Wang P, Zhang W (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060

    Article  CAS  Google Scholar 

  30. Makuch E, Nowak A, Guenther A, Pelech R, Kucharski L, Duchnik W, Klimowicz A (2020) Enhancement of the antioxidant and skin permeation properties of eugenol by the esterification of eugenol to new derivatives. AMB Expr 10:187

    Article  CAS  Google Scholar 

  31. Gao R, Yuan Z, Zhao Z, Gao X (1998) Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochem Bioenerg 45:41–45

    Article  CAS  Google Scholar 

  32. Khalil A, Gerardin-Charbonnier C, Chapuis H, Ferji K, Six J (2021) Original bio-based antioxidant poly(meth)acrylate from gallic acid-based monomers. ACS Sustain Chem Eng 9:11458–11468

    Article  CAS  Google Scholar 

  33. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Chem Eur J 47:469–474

    Article  CAS  Google Scholar 

  34. Xu D, Zhou F, Gu S, Feng K, Hu W, Zhang J, Sun X, Liang X, Jiang A (2021) 1-Methylcyclopropene maintains the postharvest quality of hardy kiwifruit (Actinidia aruguta). J Food Meas Charact 15:3036–3044

    Article  Google Scholar 

  35. Yao Y, Chen S, Li H (2021) An improved system to evaluate superoxide-scavenging effects of bioflavonoids. Chemistryopen 10:503–514

    Article  CAS  Google Scholar 

  36. Abdelkader AF, Esawy MA (2011) Case study of a biological control: Geobacillus caldoxylosilyticus (IRD) contributes to alleviate salt stress in maize (Zea mays L.) plants. Acta Physiol Plant 33:2289–2299

    Article  Google Scholar 

  37. Li X (2012) Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem 60:6418–6424

    Article  CAS  Google Scholar 

  38. Ramasarma T, Rao AVS, Devi MM, Omkumar RV, Bhagyashree KS, Bhat SV (2015) New insights of superoxide dismutase inhibition of pyrogallol autoxidation. Mol Cell Biochem 400:277–285

    Article  CAS  Google Scholar 

  39. Lipski M (2002) Fluorescence Emitted During the Autooxidation of 2,3,4,6-tetrahydroxy-5H-benzocyclohepten-5-one. J Fluoresc 12:83–86

    Article  CAS  Google Scholar 

  40. Pratt DA, Dilabio GA, Brigati G, Pedulli GF, Valgimigli L (2001) 5-Pyrimidinols: novel chain-breaking antioxidants more effective than phenols. J Am Chem Soc 123:4625–4626

    Article  CAS  Google Scholar 

  41. Wu Y, Lai D (1996) A Density functional study of substituent effects on the O-H and O-CH3 bond dissociation energies in phenol and anisole. J Org Chem 61:7904–7910

    Article  CAS  Google Scholar 

  42. Zhong H, Wang L, Sun Y (2003) Why B-ring is the active center for genistein to scavenge peroxyl radical: A DFT study. Bioorganic Med Chem Lett 13:909–911

    Article  Google Scholar 

  43. Wang L, Zhang H (2003) A theoretical investigation on DPPH radical-Scavenging mechanism of edaravone. Bioorganic Med Chem Lett 13:3789–3792

    Article  CAS  Google Scholar 

  44. Sun Y, Chen D, Zhang H (2001) Evaluation of a combined quantum chemical method used in calculating O-H bond dissociation enthalpy. Chinese J Chem 19:657–661

    Article  CAS  Google Scholar 

  45. Sun Y, Zhang H, Chen D, Liu C (2002) Theoretical elucidation on the antioxidant mechanism of curcumin: A DFT study. Org Lett 4:2909–2911

    Article  CAS  Google Scholar 

  46. Li F, Cao Y, Hong X, Chen B, Xu M (2021) A facile synthesis of hyper-cross-linked polystyrene resins for phenol removal. React Funct Polym 167:105018

    Article  CAS  Google Scholar 

  47. Wang H, Fang L, Yang Y, Hu R, Wang Y (2016) Immobilization Na7PW11O39 on quanternary ammonium functionalized chloromethylated polystyrene by electrostatic interactions: An efficient recyclable catalyst for alcohol oxidation. Appl Catal A: Gen 520:35–43

    Article  CAS  Google Scholar 

  48. Fu Y, Huang X, Zhong S, Yi W, Li L (2019) A new chloromethylation method based on polystyrene-divinylbenzene. Chem Pap 73:2183–2188

    Article  CAS  Google Scholar 

  49. Li F, Liu J, Liu W, Xu Y, Cao Y, Chen B, Xu M (2021) Preparation of hyper-cross-linked hydroxylated polystyrene for adsorptive removal of methylene blue. RSC Adv 11:25551–25560

    Article  CAS  Google Scholar 

  50. Peng Q, Zhao H, Wang R, Cao X, Liu H, Liu Q (2022) Ferrocene-based hypercrosslinked polymers derived from phenolic polycondensation with unexpected H2 adsorption capacity. Mater Today Chem 24:100854

    Article  CAS  Google Scholar 

  51. Li F, Chen B, Han Y, Cao Y, Hong X, Xu M (2021) Enhanced adsorption of caprolactam on phenols-modified Amberlite XAD16. React Funct Polym 161:104850

    Article  CAS  Google Scholar 

  52. Wang Y, Shu Z, Zeng X, Kuang W, Huang J (2020) Fabrication of O-enriched hypercross-linked polymers and their adsorption of aniline from aqueous solution. Ind Eng Chem Res 59:11705–11712

    Article  CAS  Google Scholar 

  53. Mohamed M, Atayde E, Matsagar B, Na J, Yamauchi Y, Wu K, Kuo S (2020) Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework. J Taiwan Inst Chem Eng 112:180–192

    Article  CAS  Google Scholar 

  54. Mohamed M, El-Mahdy A, Kotp M, Kuo S (2022) Advances in porous organic polymers: syntheses, structures, and diverse applications. Adv Mater 3:707–733

    Article  CAS  Google Scholar 

  55. Puthiaraj P, Ahn W (2016) CO2 Capture by Porous Hyper-Cross-Linked Aromatic Polymers Synthesized Using Tetrahedral Precursors. Ind Eng Chem Res 55:7917–7923

    Article  CAS  Google Scholar 

  56. Errahali M, Gatti G, Tei L, Paul G, Rolla GA, Canti L, Fraccarollo A, Cossi M, Comotti A, Sozzani P, Marchese L (2014) Microporous hyper-cross-linked aromatic polymers designed for methane and carbon dioxide adsorption. J Phys Chem C 118:28699–28710

    Article  CAS  Google Scholar 

  57. Peng R, Chen G, Zhou F, Man R, Huang J (2019) Catalyst-free synthesis of triazine-based porous organic polymers for Hg2+ adsorptive removal from aqueous solution. Chem Eng J 371:260–266

    Article  CAS  Google Scholar 

  58. Zhang W, Peng Q, Yang H, Fang Z, Deng J, Yu G, Liao Y, Liu Q (2021) Modulating carrier transfer over carbazolic conjugated microporous polymers via donor structural design for functionalization of thiophenols. ACS Appl Mater Inter 13:60072–60083

    Article  CAS  Google Scholar 

  59. Liu Q, Xia B, Huang J, Liao B, Liu H, Ou B, Chen L, Zhou Z (2017) Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Mater Chem Phys 199:616–622

    Article  CAS  Google Scholar 

  60. Liu Q, Li G, Tang Z, Chen L, Liao B, Ou B, Zhou Z, Zhou H (2017) Design and synthesis conjugated microporous polymers with different pore-size distribution and tunable surface area. Mater Chem Phys 186:11–18

    Article  CAS  Google Scholar 

  61. Tanaka K, Sakai S, Tomiyama S, Nishiyama T, Yamada F (1991) Molecular orbital approach to antioxidant mechanisms of phenols by an ab initio study. Bull Chem Soc Jpn 64:2677–2680

    Article  CAS  Google Scholar 

  62. Vanacker SA, Koymans LM, Bast A (1993) Molecular pharmacology of vitamin e: structural aspects of antioxidant activity. Free Radic Biol Med 15:311–328

    Article  CAS  Google Scholar 

  63. Litwinienko G, Ingold KU (2005) Abnormal solvent effects on hydrogen atom abstraction. 3. novel kinetics in sequential proton loss electron transfer chemistry. J Org Chem 70:8982–8990

    Article  CAS  Google Scholar 

Download references

Funding

The National key R&D Program of China under Grant NO.2019YFB1504502 and the National Natural Science Foundation of China (no: 51974374) was acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Yuli Fu performed the experiments and wrote the manuscript, Yiwen Cao, You Wang and Meng Li did some calculations and revised the manuscript, Shihua Zhong and Mancai Xu revised the manuscript, Jianhan Huang and Ting Lei were the supervisors.

Corresponding authors

Correspondence to Ting Lei or Jianhan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 197 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Cao, Y., Wang, Y. et al. Facile synthesis of 2,6-di-tert-butylphenol modified polystyrene and its antioxidative properties as the heterogeneous antioxidant. J Polym Res 30, 27 (2023). https://doi.org/10.1007/s10965-022-03394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03394-8

Keywords

Navigation