Skip to main content
Log in

Effect of blend ratio on thermal, mechanical, and shape memory properties of poly (lactic acid)/thermoplastic polyurethane bio-blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The increase in surgical interventions and the need for rapid patient recovery have sped up biomaterials research. Materials for sutures that feature shape memory properties prevent the opening of surgical stitches and accelerate wound healing and patient recovery. Shape memory polymers (SMP) are stimuli-responsive materials that can recover to their original shape, for example, non-strained, after some external stimulus, as the temperature can be used for thermo-responsive SMP. Poly (lactic acid) (PLA)/thermoplastic polyurethane (TPU) bio-blends have shape memory properties and can be an excellent choice of biomaterial for use in this area. In this work, PLA/TPU bio-blends with different blend mass ratios (100/0, 90/10, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90, and 0/100) were prepared using a twin-screw extruder and the effect of blend ratio on the mechanical (tensile tests and Izod impact strength), thermal, morphological, rheological and shape memory properties of PLA/TPU bio-blends were evaluated. PLA/TPU bio-blends presented a dispersed phase morphology of the lower content component. A decrease in the degree of crystallinity of the PLA phase was observed for the PLA/TPU blends with the increase of the TPU phase. PLA/TPU bio-blends with higher TPU contents showed better shape recovery, highly prized property in SMP, and increased recovery temperature positively and directly affected this property. PLA/TPU (30/70) presented the best results for the use in sutures lines and passed the self-tightening knot test, with an elongation at break of 80% and a shape recovery ratio of 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting this study's findings are available from the corresponding author, Backes EH or Passador FR, upon reasonable request.

References

  1. Lendlein A, Kelch S (2002) Shape-Memory Effect From permanent shape. Angewandte Chemie (International Ed in English) 41:2034–57. https://doi.org/10.1433/7851/02/4112-2035.

  2. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410. https://doi.org/10.1002/adma.200904447

    Article  CAS  Google Scholar 

  3. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: A review. J Mater Sci 43:254–269. https://doi.org/10.1007/s10853-007-2176-7

    Article  CAS  Google Scholar 

  4. Sun YC, Cai S, Ren J, Naguib EH (2017) Room temperature deformable shape memory composite with fine-tuned crystallization induced via nanoclay particles. J Polym Sci Part B: Polym Phys 55:1197–1206. https://doi.org/10.1002/polb.24370

    Article  CAS  Google Scholar 

  5. Wei Y, Huang R, Dong P, Qi XD, Fu Q (2018) Preparation of Polylactide/Poly(ether)urethane Blends with Excellent Electro-actuated Shape Memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers. Chinese J Polym Sci (English Edition) 36:1175–1186. https://doi.org/10.1007/s10118-018-2138-3

    Article  CAS  Google Scholar 

  6. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C et al (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952. https://doi.org/10.1007/s10965-012-9952-z

    Article  CAS  Google Scholar 

  7. Diani J, Gall K (2006) Finite Strain 3D Thermoviscoelastic Constitutive Model. Society. https://doi.org/10.1002/pen

  8. Lendlein A (2010) Shape-Memory Polymers. https://doi.org/10.1007/978-3-642-12359-7

    Article  Google Scholar 

  9. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40:1661–1672. https://doi.org/10.1016/j.compositesa.2009.08.011

    Article  CAS  Google Scholar 

  10. Barmouz M, Behravesh AH (2017) Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: Analytical and experimental assessment. Compos A Appl Sci Manuf 101:160–172. https://doi.org/10.1016/j.compositesa.2017.06.014

    Article  CAS  Google Scholar 

  11. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000. https://doi.org/10.1016/j.polymer.2011.08.003

    Article  CAS  Google Scholar 

  12. Dogan SK, Boyacioglu S, Kodal M, Gokce O, Ozkoc G (2017) Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization.” J Mech Behav Biomed Mater 71:349–361. https://doi.org/10.1016/j.jmbbm.2017.04.001

    Article  CAS  Google Scholar 

  13. Lai SM, Wu WL, Wang YJ (2016) Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res 23. https://doi.org/10.1007/s10965-016-0993-6

  14. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676. https://doi.org/10.1126/science.1066102

    Article  Google Scholar 

  15. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2%3c89::AID-PI86%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  16. Mohanty AK, Misra M, Drzal LT (2005) Natural fiber, Biopolymer, and Biocomposites

  17. Lindblad MS, Liu Y, Albertsson A-C, Ranucci E, Karlsson S (2002) Polymers from Renewable Resources 139–61. https://doi.org/10.1007/3-540-45734-8_5

  18. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101:8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

    Article  CAS  Google Scholar 

  19. Feijen J (1986) Biodegradable Polymers for Medical Purposes. Polymeric Biomaterials 62–78. https://doi.org/10.1007/978-94-009-4390-2_5

  20. Backes EH, Fernandes EM, Diogo GS, Marques CF, Silva TH, Costa LC et al (2021) Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater Sci Eng C 122. https://doi.org/10.1016/j.msec.2021.111928

  21. Backes EH, de Nóbile Pires L, Selistre-de-Araujo HS, Costa LC, Passador FR, Pessan LA (2020) Development and characterization of printable PLA/β-TCP bioactive composites for bone tissue applications. J Appl Polym Sci 49759. https://doi.org/10.1002/app.49759

  22. Mehrpouya M, Vahabi H, Janbaz S, Darafsheh A, Mazur TR, Ramakrishna S (2021) 4D printing of shape memory polylactic acid (PLA). Polymer 230:124080. https://doi.org/10.1016/j.polymer.2021.124080

    Article  CAS  Google Scholar 

  23. Chen QY, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC (2017) 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl Mater Interfaces 9:4015–4023. https://doi.org/10.1021/acsami.6b11793

    Article  CAS  Google Scholar 

  24. Liu T, Ye L, Liu Y, Nie F (2008) Synthesis and properties of polyester-based TPUs prepared by solution polymerisation. Plast, Rubber Compos 37:331–340. https://doi.org/10.1179/174328908X362926

    Article  CAS  Google Scholar 

  25. Babb DA (2012) Polyurethanes from renewable resources. Adv Polym Sci 245:315–360. https://doi.org/10.1007/12-2011-130

    Article  CAS  Google Scholar 

  26. Yamasaki S (2016) Industrial Synthetic Methods for Rubbers. 8. Polyurethane Elastomers. Int Polym Sci Technol 43:29–35. https://doi.org/10.1177/0307174X1604301107

    Article  Google Scholar 

  27. Frick A, Rochman A (2004) Characterization of TPU-elastomers by thermal analysis (DSC). Polym Testing 23:413–417. https://doi.org/10.1016/j.polymertesting.2003.09.013

    Article  CAS  Google Scholar 

  28. Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher DW (2020) The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Tissue Engineering - Part B: Reviews 26:272–283. https://doi.org/10.1089/ten.teb.2019.0224

    Article  CAS  Google Scholar 

  29. Sánchez-Adsuar MS, Papon E, Villenave J-J (2000) Influence of the synthesis conditions on the properties of thermoplastic polyurethane elastomers. J Appl Polym Sci 76:1590–1595. https://doi.org/10.1002/(SICI)1097-4628(20000606)76:10%3c1590::AID-APP14%3e3.0.CO;2-2

    Article  Google Scholar 

  30. Wang H-H, Yuen U-E (2006) Synthesis of thermoplastic polyurethane and its physical and shape memory properties. J Appl Polym Sci 102:607–615. https://doi.org/10.1002/app.24335

    Article  CAS  Google Scholar 

  31. Qi HJ, Boyce MC (2005) Stress-strain behavior of thermoplastic polyurethanes. Mech Mater 37:817–839. https://doi.org/10.1016/j.mechmat.2004.08.001

    Article  Google Scholar 

  32. Kim BK, Lee SY, Xu M (1996) Polyurethanes having shape memory effects. Polymer 37:5781–5793. https://doi.org/10.1016/S0032-3861(96)00442-9

    Article  CAS  Google Scholar 

  33. Rogulska M, Kultys A, Lubczak J (2015) New thermoplastic polyurethane elastomers based on aliphatic–aromatic chain extenders with different content of sulfur atoms. J Therm Anal Calorim 121:397–410. https://doi.org/10.1007/s10973-015-4445-z

    Article  CAS  Google Scholar 

  34. Buys YF, Ahmad MS, Anuar H, Mahmud MS, Nasir NAM (2020) Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid/thermoplastic polyurethane blends. IIUM Eng J 21:193–201. https://doi.org/10.31436/iiumej.v21i1.1051

  35. Nofar M, Mohammadi M, Carreau PJ (2020) Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. J Appl Polym Sci 49387. https://doi.org/10.1002/app.49387

  36. Zhao X, Ye L, Coates P, Caton-Rose F, Martyn M (2013) Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretching. Polym Adv Technol 24:853–860. https://doi.org/10.1002/pat.3156

    Article  CAS  Google Scholar 

  37. Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF et al (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33:4767–4776. https://doi.org/10.1016/j.msec.2013.07.037

    Article  CAS  Google Scholar 

  38. Song JJ, Chang HH, Naguib HE (2015) Biocompatible shape memory polymer actuators with high force capabilities. Eur Polymer J 67:186–198. https://doi.org/10.1016/j.eurpolymj.2015.03.067

    Article  CAS  Google Scholar 

  39. Jašo V, Glenn G, Klamczynski A, Petrović ZS (2015) Biodegradability study of polylactic acid/ thermoplastic polyurethane blends. Polym Testing 47:1–3. https://doi.org/10.1016/j.polymertesting.2015.07.011

    Article  CAS  Google Scholar 

  40. Feng F, Ye L (2011) Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 119:2778–2783. https://doi.org/10.1002/app.32863

    Article  CAS  Google Scholar 

  41. Fromstein JD, Woodhouse KA (2002) Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomater Sci Polym Ed 13:391–406. https://doi.org/10.1163/156856202320253929

    Article  CAS  Google Scholar 

  42. Boyacioglu S, Kodal M, Ozkoc G (2020) A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends. Eur Polymer J 122:109372. https://doi.org/10.1016/j.eurpolymj.2019.109372

    Article  CAS  Google Scholar 

  43. Mackenzie D (1973) The history of sutures. Med Hist 17:158–168. https://doi.org/10.1017/s0025727300018469

    Article  CAS  Google Scholar 

  44. American Society for Testing and Materials ASTM Standard D638 (2014) Standard Test Method for Tensile Properties of Plastics 1–17. https://doi.org/10.1520/D0638-14.1

  45. American Society for Testing and Materials ASTM Standard D256 (2006) Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics 1–20. https://doi.org/10.1520/D0256-06A

  46. Jašo V, Cvetinov M, Rakic̈ SSS, Petrovic̈ ZS (2014) Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. J Appl Polym Sci 131:1–8. https://doi.org/10.1002/app.41104

  47. Mo XZ, Wei FX, Tan DF, Pang JY, Lan CB (2020) The compatibilization of PLA-g-TPU graft copolymer on polylactide/thermoplastic polyurethane blends. J Polym Res 27. https://doi.org/10.1007/s10965-019-1999-7

  48. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S (2020) Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv 10:13316–13368. https://doi.org/10.1039/D0RA01801E

    Article  CAS  Google Scholar 

  49. Zhou Y, Luo L, Liu W, Zeng G, Chen Y (2015) Preparation and Characteristic of PC/PLA/TPU Blends by Reactive Extrusion. Adv Mater Sci Eng 2015:1–9. https://doi.org/10.1155/2015/393582

    Article  CAS  Google Scholar 

  50. Khanna YP (1991) Dynamic Melt Rheology. I: Reexamining Dynamic. Polym Eng Sci 31:440–444

    Article  CAS  Google Scholar 

  51. Nofar M, Mohammadi M, Carreau PJ (2020) Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. J Appl Polym Sci 137:1–11. https://doi.org/10.1002/app.49387

    Article  CAS  Google Scholar 

  52. dos Anjos EGR, Backes EH, Marini J, Pessan LA, Montagna LS, Passador FR (2019) Effect of LLDPE-g-MA on the rheological, thermal, mechanical properties and morphological characteristic of PA6/LLDPE blends. J Polym Res 26:1–10. https://doi.org/10.1007/s10965-019-1800-y

    Article  CAS  Google Scholar 

  53. Mark JE (1991) Polymer Data Handbook. First Edit. Oxford University Press, Inc.; 1999

  54. Quero E, Müller AJ, Signori F, Coltelli MB, Bronco S (2012) Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol Chem Phys 213:36–48. https://doi.org/10.1002/macp.201100437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP (process 2020/12501-8) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, process 307933/2021-0) for the financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guilherme Ferreira de Melo Morgado or Eduardo Henrique Backes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo Morgado, G.F., de Moura, N.K., Martins, E.F. et al. Effect of blend ratio on thermal, mechanical, and shape memory properties of poly (lactic acid)/thermoplastic polyurethane bio-blends. J Polym Res 29, 533 (2022). https://doi.org/10.1007/s10965-022-03389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03389-5

Keywords

Navigation