Skip to main content

Advertisement

Log in

A review on the micro-encapsulation of phase change materials: classification, study of synthesis technique and their applications

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The requirement for energy and its management is growing in today's world. The energy sector is an area of interest for many countries around the world. To address the current fossil fuel issue, the scientific community is developing novel energy-saving experiments. Thermal energy storage is a mode of conserving energy. Thermal energy storage not only reduces energy consumption inconsistencies but also improves energy efficiency and reliability, which is an important part of energy conservation. In the realm of thermal energy storage, phase change materials (PCMs) are growing popularity and gaining awareness. By expanding, the area of heat transfer and reducing the seepage of melting materials, microcapsules improve the mechanical and thermal performance of PCMs used in the storage of thermal energy. PCM encapsulation is required to avoid PCM leakage, increase heat transmission, and control and reduce PCM reactivity with the environment. A vast number of researches on PCM microcapsules have been reported recently to explain their utility in energy systems. A complete evaluation of PCM microcapsules for thermal energy storage is presented in this paper. This review covers five topics: PCM classification, shell materials of encapsulation, microencapsulation methods, characterization of PCM microcapsules, and thermal applications. This review intends to aid researchers from diverse domains to gain a better understanding of PCM microcapsules and provide crucial guidance for future thermal energy storage using this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Memon SA (2014) Phase change materials integrated in building walls: A state of the art review. Renew Sustain Energy Rev 31(C):870–906. https://doi.org/10.1016/J.RSER.2013.12.042

    Article  Google Scholar 

  2. Verdier D, Ferrière A, Falcoz Q, Siros F, Couturier R (2014) Experimentation of a high temperature thermal energy storage prototype using phase change materials for the thermal protection of a pressurized air solar receiver. Energy Proc 49:1044–1053. https://doi.org/10.1016/J.EGYPRO.2014.03.112

    Article  CAS  Google Scholar 

  3. Powell KM et al (2016) Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market. Energy (Oxford) 113(C):52–63. https://doi.org/10.1016/J.ENERGY.2016.07.009

    Article  Google Scholar 

  4. Sarbu I, Sebarchievici C (2018) A Comprehensive review of thermal energy storage. Sustain 10(1):191. https://doi.org/10.3390/SU10010191

    Article  Google Scholar 

  5. Hussain A, Arif SM, Aslam M, Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: State of the art. Renew Sustain Energy Rev. 71(C):12–28. https://doi.org/10.1016/J.RSER.2016.12.033

    Article  Google Scholar 

  6. Chen Zhao B, Song Cheng M, Liu C, Min Dai Z (2017) Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power. Appl Energy 195(C):761–773. https://doi.org/10.1016/J.APENERGY.2017.03.110

    Article  Google Scholar 

  7. Yang Z, Garimella SV (2013) Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants. CTRC Res Publ 103:256–265. https://doi.org/10.1016/j.apenergy.2012.09.043

    Article  Google Scholar 

  8. Ahmed SF et al (2017) Recent progress in solar thermal energy storage using nanomaterials. Renew Sustain Energy Rev 67(C):450–460. https://doi.org/10.1016/J.RSER.2016.09.034

    Article  CAS  Google Scholar 

  9. Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11(9):1913–1965. https://doi.org/10.1016/J.RSER.2006.05.005

    Article  CAS  Google Scholar 

  10. Pasupathy A, Velraj R, Seeniraj RV (2008) Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energy Rev 12(1):39–64. Available: https://ideas.repec.org/a/eee/rensus/v12y2008i1p39-64.html. Accessed 17 Dec 2021

  11. Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283. https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  CAS  Google Scholar 

  12. Schossig P, Henning HM, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Sol Energy Mater Sol Cells 89(2–3):297–306. https://doi.org/10.1016/J.SOLMAT.2005.01.017

    Article  CAS  Google Scholar 

  13. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  14. Zhou D, Zhao CY (2011) Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng 31(5):970–977. https://doi.org/10.1016/J.APPLTHERMALENG.2010.11.022

    Article  CAS  Google Scholar 

  15. Zhao CY, Wu ZG (2011) Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite. Sol Energy Mater Sol Cells 95(2):636–643. https://doi.org/10.1016/J.SOLMAT.2010.09.032

    Article  CAS  Google Scholar 

  16. Zhao CY, Lu W, Tian Y (2010) Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy 84(8):1402–1412. https://doi.org/10.1016/J.SOLENER.2010.04.022

    Article  CAS  Google Scholar 

  17. Zhang P, Ma ZW, Wang RZ (2010) An overview of phase change material slurries: MPCS and CHS. Renew Sustain Energy Rev 14(2):598–614. Available: https://ideas.repec.org/a/eee/rensus/v14y2010i2p598-614.html. Accessed 17 Dec 2021

  18. Fernandes D et al (2012) Thermal energy storage: ‘How previous findings determine current research priorities.’ Energy 39(1):246–257. https://doi.org/10.1016/J.ENERGY.2012.01.024

    Article  CAS  Google Scholar 

  19. van der Linden and Septimus (2006) Bulk energy storage potential in the USA, current developments and future prospects. Energy 31(15):3446–3457. https://doi.org/10.1016/J.ENERGY.2006.03.016

  20. Dinçer I, Rosen MA (2021) Thermal energy storage systems and applications. John Wiley & Sons. Available: https://www.wiley.com/en-ie/Thermal+Energy+Storage+Systems+and+Applications%2C+3rd+Edition-p-9781119713159. Accessed 21 Dec 2021

  21. Kousksou T, Jamil A, Bruel P (2010) Asymptotic behavior of a storage unit undergoing cyclic melting and solidification processes. J Thermophys Heat Transf 24(2):355–363. Available: https://hal.archives-ouvertes.fr/hal-00511024. Accessed 21 Dec 2021

  22. Fernandez AI, Martnez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94(10):1723–1729. https://doi.org/10.1016/J.SOLMAT.2010.05.035

    Article  CAS  Google Scholar 

  23. Laing D, Bahl C, Bauer T, Lehmann D, Steinmann WD (2011) Thermal energy storage for direct steam generation. Sol Energy 85(4):627–633. https://doi.org/10.1016/J.SOLENER.2010.08.015

    Article  Google Scholar 

  24. Haller M, Cruickshank CA, Stricher W, Harrrison SJ (2009) Methods to determine stratification efficiency of thermal energy storage processes - review and theoretical comparison - Centre for Advanced Building Envelope Research. https://carleton.ca/caber/2020/methods-to-determine-stratification-efficiency-of-thermal-energy-storage-processes-review-and-theoretical-comparison/. Accessed 21 Dec 2021

  25. Hauer A (2007) Sorption theory for thermal energy storage. Therm Energy Storage Sustain Energy Consum, pp. 393–408. https://doi.org/10.1007/978-1-4020-5290-3_24

  26. Inglezakis VJ, Poulopoulos SG (2006) Adsorption, ion exchange and catalysis: design of operations and environmental applications. p. 602

  27. Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: A state of art. Renew Sustain Energy Rev 11(6):1146–1166. https://doi.org/10.1016/j.rser.2005.10.002

    Article  Google Scholar 

  28. Motahar S (2020) Experimental study and ANN-based prediction of melting heat transfer in a uniform heat flux PCM enclosure. J. Energy Storage 30. https://doi.org/10.1016/j.est.2020.101535

  29. Kuznik F, Virgone J (2009) Experimental assessment of a phase change material for wall building use. Appl Energy 86(10):2038–2046. https://doi.org/10.1016/j.apenergy.2009.01.004

    Article  CAS  Google Scholar 

  30. Venkitaraj KP, Suresh S, Praveen B, Nair SC (2018) Experimental heat transfer analysis of macro packed neopentylglycol with CuO nano additives for building cooling applications. J Energy Storage 17:1–10. https://doi.org/10.1016/j.est.2018.02.005

    Article  Google Scholar 

  31. Mourid A, El Alami M, Kuznik F (2018) Experimental investigation on thermal behavior and reduction of energy consumption in a real scale building by using phase change materials on its envelope. Sustain Cities Soc 41:35–43. https://doi.org/10.1016/j.scs.2018.04.031

    Article  Google Scholar 

  32. Kalnæs SE, Jelle BP (2015) Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings, vol. 94. Elsevier Ltd, pp. 150–176. https://doi.org/10.1016/j.enbuild.2015.02.023

  33. Hu ZT et al (2021) Ecofriendly microencapsulated phase-change materials with hybrid core materials for thermal energy storage and flame retardancy. Langmuir 37(21):6380–6387. https://doi.org/10.1021/acs.langmuir.0c03587

    Article  CAS  Google Scholar 

  34. Wang H, Wang JP, Wang X, Li W, Zhang X (2013) Preparation and properties of microencapsulated phase change materials containing two-phase core materials. Ind Eng Chem Res 52(41):14706–14712. https://doi.org/10.1021/ie401055r

    Article  CAS  Google Scholar 

  35. Ma Y, Sun S, Li J, Tang G (2014) Preparation and thermal reliabilities of microencapsulated phase change materials with binary cores and acrylate-based polymer shells. Thermochim Acta 588:38–46. https://doi.org/10.1016/j.tca.2014.04.023

    Article  CAS  Google Scholar 

  36. Jelle BP, Kalnæs SE (2017) Phase change materials for application in energy-efficient buildings. In: Cost-effective energy efficient building retrofitting: materials, technologies, optimization and case studies, Elsevier Inc., pp. 57–118

  37. Nematpour Keshteli A, Sheikholeslami M (2019) Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review. Journal of Molecular Liquids, vol. 274. Elsevier B.V., pp. 516–533. https://doi.org/10.1016/j.molliq.2018.10.151

  38. Xie N, Huang Z, Luo Z, Gao X, Fang Y, Zhang Z (2017) Inorganic salt hydrate for thermal energy storage. Appl Sci 7(12). https://doi.org/10.3390/app7121317

  39. Gutierrez A, Ushak S, Galleguillos H, Fernandez A, Cabeza LF, Grágeda M (2015) Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Appl Energy 154:616–621. https://doi.org/10.1016/j.apenergy.2015.05.040

    Article  CAS  Google Scholar 

  40. Aguirre MA, Hassan MM, Shirzad S, Daly WH, Mohammad LN (2016) Micro-encapsulation of asphalt rejuvenators using melamine-formaldehyde. Constr Build Mater 114:29–39. https://doi.org/10.1016/j.conbuildmat.2016.03.157

    Article  CAS  Google Scholar 

  41. Liu Z et al (2018) A review on macro-encapsulated phase change material for building envelope applications. Build Environ 144:281–294. https://doi.org/10.1016/J.BUILDENV.2018.08.030

    Article  Google Scholar 

  42. Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158. https://doi.org/10.1016/J.ENCONMAN.2016.02.045

    Article  CAS  Google Scholar 

  43. Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74(1–2):195–202. https://doi.org/10.1016/S0306-2619(02)00146-0

    Article  CAS  Google Scholar 

  44. Lam PL et al (2015) Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application. Int J Mol Med 35(2):503–510. https://doi.org/10.3892/ijmm.2014.2027

    Article  CAS  Google Scholar 

  45. Salazar-López EI, Jiménez M, Salazar R, Azuara E (2015) Incorporation of microcapsules in pineapple intercellular tissue using osmotic dehydration and microencapsulation method. Food Bioprocess Technol 8(8):1699–1706. https://doi.org/10.1007/s11947-015-1534-8

    Article  CAS  Google Scholar 

  46. Sari A, Alkan C, Döğüşcü DK, Kizil C (2015) Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Sol Energy 115:195–203. https://doi.org/10.1016/j.solener.2015.02.035

    Article  CAS  Google Scholar 

  47. Butstraen C, Salaün F, Devaux E (2015) Sol-gel microencapsulation of oil phase with Pickering and nonionic surfactant based emulsions. Powder Technol 284:237–244. https://doi.org/10.1016/j.powtec.2015.06.055

    Article  CAS  Google Scholar 

  48. Carvalho IT, Estevinho BN, Santos L (2016) Application of microencapsulated essential oils in cosmetic and personal healthcare products - A review. Int J Cosmetic Sci 38(2). Blackwell Publishing Ltd, pp. 109–119. https://doi.org/10.1111/ics.12232

  49. Akhavan Mahdavi S, Jafari SM, Assadpoor E, Dehnad D (2016) Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int J Biol Macromol 85:379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011

    Article  CAS  Google Scholar 

  50. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int 40(9):1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004

    Article  CAS  Google Scholar 

  51. Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review

  52. Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147. https://doi.org/10.1016/j.solmat.2008.09.009

    Article  CAS  Google Scholar 

  53. Giro-Paloma J, Martínez M, Cabeza LF, Fernández AI (2016) Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew Sustain Energy Rev 53:1059–1075. https://doi.org/10.1016/J.RSER.2015.09.040

    Article  CAS  Google Scholar 

  54. Liu C, Rao Z, Zhao J, Huo Y, Li Y (2015) Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement. Nano Energy 13:814–826. https://doi.org/10.1016/J.NANOEN.2015.02.016

    Article  CAS  Google Scholar 

  55. Hu X, Huang Z, Zhang Y (2014) Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials. Carbohydr Polym 101:83–88. https://doi.org/10.1016/J.CARBPOL.2013.08.091

    Article  CAS  Google Scholar 

  56. Park S et al (2014) Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surfaces A Physicochem Eng Asp 450(1):46–51. https://doi.org/10.1016/J.COLSURFA.2014.03.005

    Article  CAS  Google Scholar 

  57. Alehosseini A, Gómez-Mascaraque LG, Ghorani B, López-Rubio A (2019) Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures. LWT 113:108280. https://doi.org/10.1016/J.LWT.2019.108280

    Article  CAS  Google Scholar 

  58. Rostamabadi H, Assadpour E, Tabarestani HS, Falsafi SR, Jafari SM (2020) Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol 100:190–209. https://doi.org/10.1016/J.TIFS.2020.04.012

    Article  CAS  Google Scholar 

  59. Hoseyni SZ, Jafari SM, ShahiriTabarestani H, Ghorbani M, Assadpour E, Sabaghi M (2020) Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol. Carbohydr. Polym. 235:115979. https://doi.org/10.1016/J.CARBPOL.2020.115979

    Article  CAS  Google Scholar 

  60. Wei G et al (2018) Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew Sustain Energy Rev 81(P2):1771–1786. https://doi.org/10.1016/J.RSER.2017.05.271

    Article  CAS  Google Scholar 

  61. Xu B, Zhou J, Ni Z, Zhang C, Lu C (2018) Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion. Sol Energy Mater Sol Cells 179(February):87–94. https://doi.org/10.1016/j.solmat.2018.02.008

    Article  CAS  Google Scholar 

  62. Sarier N, Onder E (2007) The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim Acta 452(2):149–160. https://doi.org/10.1016/j.tca.2006.08.002

    Article  CAS  Google Scholar 

  63. Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542. https://doi.org/10.1016/j.rser.2013.12.033

    Article  CAS  Google Scholar 

  64. Gravalos LGM, Ignacio CH, Juan MR, Jose CC, Ana María BS, Manuel CF, Juan F, Rodriguez R, José L, Valverde P (2008) Procedure for microencapsulation of phase change materials by spray-drying

  65. Chavarri M, Maranon I, Carmen M (2012) Encapsulation technology to protect probiotic bacteria. Probiotics, InTech

  66. Hawlader MNA, Uddin MS, Zhu HJ (2000) Preparation and evaluation of a novel solar storage material: Microencapsulated paraffin. Int J Sol Energy 20(4):227–238. https://doi.org/10.1080/01425910008914357

    Article  Google Scholar 

  67. Piacentini E, Giorno L, Dragosavac MM, Vladisavljević GT, Holdich RG (2013) Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification. Food Res Int 53(1):362–372. https://doi.org/10.1016/J.FOODRES.2013.04.012

    Article  CAS  Google Scholar 

  68. Mishra M (2015) Handbook of encapsulation and controlled release

  69. Swapan KG (2006) Functional coatings by polymer microencapsulation

  70. Zhang H, Wang X, Wu D (2010) Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interface Sci 343(1):246–255. https://doi.org/10.1016/J.JCIS.2009.11.036

    Article  CAS  Google Scholar 

  71. Benita S (2005) Microencapsulation: methods and industrial applications

  72. Patel M, Patel K, Raval KM, Patel K (2013) Microencapsulation: A vital technique in novel drug delivery system. https://www.researchgate.net/publication/279674682_Microencapsulation_A_vital_technique_in_novel_drug_delivery_system. Accessed 2 Dec 2021

  73. Gouin S (2004) Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15(7–8):330–347. https://doi.org/10.1016/J.TIFS.2003.10.005

    Article  CAS  Google Scholar 

  74. You M, Zhang XX, Li W, Wang XC (2008) Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams. Thermochim Acta 472(1–2):20–24. https://doi.org/10.1016/j.tca.2008.03.006

    Article  CAS  Google Scholar 

  75. Fei X et al (2015) Microencapsulation mechanism and size control of fragrance microcapsules with melamine resin shell. Colloids Surfaces A Physicochem Eng Asp 469:300–306. https://doi.org/10.1016/j.colsurfa.2015.01.033

    Article  CAS  Google Scholar 

  76. Pascu O, Garcia-Valls R, Giamberini M (2008) Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules. Polym Int 57(8):995–1006. https://doi.org/10.1002/pi.2438

    Article  CAS  Google Scholar 

  77. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27(3):187–197. https://doi.org/10.3109/02652040903131301

    Article  CAS  Google Scholar 

  78. Zhao A, An J, Yang J, Yang EH (2018) Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell. Appl Energy 215:468–478. https://doi.org/10.1016/J.APENERGY.2018.02.057

    Article  CAS  Google Scholar 

  79. Jianwei X, Yi L, Edward N, Kwok-wing Y (2003) Method for encapsulating paraffin compounds that can undergo phase transitional and microcapsule resulting therefrom

  80. Hassan A, Laghari MS, Rashid Y (2016) Micro-encapsulated phase change materials: A review of encapsulation, safety and thermal characteristics. Sustain 8(10). https://doi.org/10.3390/su8101046

  81. Zhang H, Wang X (2009) Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells 93(8):1366–1376. https://doi.org/10.1016/j.solmat.2009.02.021

    Article  CAS  Google Scholar 

  82. Rezvanpour M, Hasanzadeh M, Azizi D, Rezvanpour A, Alizadeh M (2018) Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. Mater Chem Phys 215:299–304. https://doi.org/10.1016/j.matchemphys.2018.05.044

    Article  CAS  Google Scholar 

  83. Alay S, Alkan C, Göde F (2011) Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochim Acta 518(1–2):1–8. https://doi.org/10.1016/j.tca.2011.01.014

    Article  CAS  Google Scholar 

  84. Sari A, Alkan C, KahramanDöǧüşcü D, Biçer A (2014) Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells 126:42–50. https://doi.org/10.1016/j.solmat.2014.03.023

    Article  CAS  Google Scholar 

  85. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13(8):2201–2220. https://doi.org/10.1063/1.1383791

    Article  CAS  Google Scholar 

  86. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78(8):1149–1151. https://doi.org/10.1063/1.1345798

    Article  CAS  Google Scholar 

  87. Rutledge GC, Li Y, Fridrikh S, Warner SB, Kalayci VE, Patra P (2001) Electrostatic spinning and properties of ultrafine fibers. Natl Text Cent Rep, pp. 1–10

  88. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) Front Matter. An Introd. to Electrospinning Nanofibers, pp. i–xi. https://doi.org/10.1142/9789812567611_fmatter

  89. Unnithan AR, Arathyram RS, Kim CS (2015) Electrospinning of polymers for tissue engineering. Elsevier Inc

  90. Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy, vol. 92. Elsevier Ltd, pp. 593–605. https://doi.org/10.1016/j.apenergy.2011.08.025

  91. Boussaba L, Foufa A, Makhlouf S, Lefebvre G, Royon L (2018) Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Constr Build Mater 185:156–165. https://doi.org/10.1016/j.conbuildmat.2018.07.098

    Article  Google Scholar 

  92. Höhne GWH, Hemminger WF, Flammersheim H-J (2003) Theoretical fundamentals of differential scanning calorimeters. Differ Scanning Calorim 31–63. https://doi.org/10.1007/978-3-662-06710-9_3

  93. Sun X, Lee KO, Medina MA, Chu Y, Li C (2018) Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis. Phase Transitions 91(6):667–680. https://doi.org/10.1080/01411594.2018.1469019

    Article  CAS  Google Scholar 

  94. Marín JM, Zalba B, Cabeza LF, Mehling H (2003) Determination of enthalpy-temperature curves of phase change materials with the temperature-history method: Improvement to temperature dependent properties. Meas Sci Technol 14(2):184–189. https://doi.org/10.1088/0957-0233/14/2/305

    Article  Google Scholar 

  95. (2017) Fourier transform infrared spectroscopy. Nano and microscale drug delivery systems

  96. Sang G et al (2019) Development of a novel sulphoalumitate cement-based composite combing fine steel fibers and phase change materials for thermal energy storage. Energy Build 183:75–85. https://doi.org/10.1016/j.enbuild.2018.10.039

    Article  Google Scholar 

  97. Sarı A, Sharma RK, Hekimoğlu G, Tyagi VV (2019) Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials. Energy Build 188–189:111–119. https://doi.org/10.1016/j.enbuild.2019.02.008

    Article  Google Scholar 

  98. Alehosseini E, Jafari SM (2020) Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management. Adv Colloid Interface Sci 283:102226. https://doi.org/10.1016/j.cis.2020.102226

    Article  CAS  Google Scholar 

  99. Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Build 144:276–294. https://doi.org/10.1016/J.ENBUILD.2017.03.063

    Article  Google Scholar 

  100. Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242(1–2):55–62. https://doi.org/10.1016/S0378-5173(02)00141-2

    Article  CAS  Google Scholar 

  101. Onder E, Sarier N, Cimen E (2008) Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim Acta 467(1–2):63–72. https://doi.org/10.1016/J.TCA.2007.11.007

    Article  CAS  Google Scholar 

  102. Sarier N, Onder E, Ukuser G (2015) Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochim Acta 613(1):17–27. https://doi.org/10.1016/J.TCA.2015.05.015

    Article  CAS  Google Scholar 

  103. Scacchetti FAP, Pinto E, Soares GMB (2018) Thermal and antimicrobial evaluation of cotton functionalized with a chitosan–zeolite composite and microcapsules of phase-change materials. J Appl Polym Sci 135(15). https://doi.org/10.1002/APP.46135/FORMAT/PDF

  104. Alay Aksoy S, Alkan C, Tözüm MS, Demirbağ S, AltunAnayurt R, Ulcay Y (2017) Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules. J Text Inst 108(1):30–41. https://doi.org/10.1080/00405000.2015.1133128

    Article  CAS  Google Scholar 

  105. Demirbağ S, Aksoy SA (2016) Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics. Fibers Polym 17(3):408–417. https://doi.org/10.1007/s12221-016-5113-z

    Article  CAS  Google Scholar 

  106. Qiu Z, Ma X, Li P, Zhao X, Wright A (2017) Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications. Renew Sustain energy Rev 77:246–262. https://doi.org/10.1016/J.RSER.2017.04.001

    Article  Google Scholar 

  107. Kong M, Alvarado JL, Terrell W, Thies C (2016) Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube. Int J Heat Mass Transf C(101):901–914. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.05.047

    Article  Google Scholar 

  108. Qiu Z, Ma X, Zhao X, Li P, Ali S (2016) Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system. Appl Energy 165(C):260–271. https://doi.org/10.1016/J.APENERGY.2015.11.053

    Article  Google Scholar 

  109. Zeng R et al (2009) Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl Energy 86(12):2661–2670. https://doi.org/10.1016/J.APENERGY.2009.04.025

    Article  CAS  Google Scholar 

  110. Song S, Shen W, Wang J, Wang S, Xu J (2014) Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid. Int J Heat Mass Transf 73:21–28. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.01.059

    Article  CAS  Google Scholar 

  111. Roberts NS, Al-Shannaq R, Kurdi J, Al-Muhtaseb SA, Farid MM (2017) Research paper. Appl Therm Eng C(122):11–18. https://doi.org/10.1016/J.APPLTHERMALENG.2017.05.001

    Article  Google Scholar 

  112. Zhang S, Niu J (2016) Two performance indices of TES apparatus: Comparison of MPCM slurry vs. stratified water storage tank. Energy Build 127:512–520. https://doi.org/10.1016/J.ENBUILD.2016.05.085

    Article  Google Scholar 

  113. Konuklu K, Ostry M, Paksoy HO, Charvat P (2015) Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build 106:134–155. https://doi.org/10.1016/J.ENBUILD.2015.07.019

  114. Cabeza LF, Castellón C, Nogués M, Medrano M, Leppers R, Zubillaga O (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energy Build 39(2):113–119. https://doi.org/10.1016/J.ENBUILD.2006.03.030

    Article  Google Scholar 

  115. Giro-Paloma J, Al-Shannaq R, Fernández AI, Farid MM (2016) Preparation and characterization of microencapsulated phase change materials for use in building applications. Materials (Basel) 9(1). https://doi.org/10.3390/MA9010011

  116. Aguayo M et al (2016) The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations. Cem Concr Compos 73:29–41. https://doi.org/10.1016/J.CEMCONCOMP.2016.06.018

    Article  CAS  Google Scholar 

  117. Su W, Darkwa J, Kokogiannakis G (2018) Nanosilicon dioxide hydrosol as surfactant for preparation of microencapsulated phase change materials for thermal energy storage in buildings. Int J Low-Carbon Technol 13(4):301–310. https://doi.org/10.1093/IJLCT/CTY032

    Article  CAS  Google Scholar 

  118. Essid N, Loulizi A, Neji J (2019) Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material. Constr Build Mater 222:254–262. https://doi.org/10.1016/J.CONBUILDMAT.2019.06.156

    Article  Google Scholar 

  119. Castellón C et al (2010) Effect of microencapsulated phase change material in sandwich panels. Renew Energy 35(10):2370–2374. https://doi.org/10.1016/J.RENENE.2010.03.030

    Article  Google Scholar 

  120. Cui H, Liao W, Mi X, Lo TY, Chen D (2015) Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials. Energy Build 105:273–284. https://doi.org/10.1016/J.ENBUILD.2015.07.043

    Article  Google Scholar 

  121. Cunha S, Alves VH, Aguiar J, Ferreira VS (2011) Use of phase change materials microcapsules in aerial lime and gypsum mortars. undefined

  122. Urgessa G, Yun KK, Yeon J, Yeon JH (2019) Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions. Cem Concr Compos 104. https://doi.org/10.1016/J.CEMCONCOMP.2019.103391

  123. Borreguero AM, Rodríguez JF, Valverde JL, Peijs T, Carmona M (2013) Characterization of rigid polyurethane foams containing microencapsulted phase change materials: Microcapsules type effect. J Appl Polym Sci 128(1):582–590. https://doi.org/10.1002/APP.38226

    Article  CAS  Google Scholar 

  124. Bonadies I, IzzoRenzi A, Cocca M, Avella M, Carfagna C, Persico P (2015) Heat storage and dimensional stability of poly(vinyl alcohol) based foams containing microencapsulated phase change materials. Ind Eng Chem Res 54(38):9342–9350. https://doi.org/10.1021/ACS.IECR.5B02187

    Article  CAS  Google Scholar 

  125. Li W, Wan H, Lou H, Fu Y, Qin F, He G (2017) Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam. Energy 127:671–679. https://doi.org/10.1016/J.ENERGY.2017.03.145

    Article  CAS  Google Scholar 

  126. Tobaldi DM et al (2014) Silver-modified nano-titania as an antibacterial agent and photocatalyst. J Phys Chem C 118(9):4751–4766. https://doi.org/10.1021/JP411997K

    Article  CAS  Google Scholar 

  127. Zhang X, Wang X, Wu D, Zhang X, Wang X, Wu D (2016) Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy 111(C):498–512. https://doi.org/10.1016/J.ENERGY.2016.06.017

  128. Tumolva TP, Sabarillo NS (2017) Characterization of MEPCM-Incorporated Paint as Latent Heat Storage System. Int J Chem Eng Appl 8(3):203–209. https://doi.org/10.18178/IJCEA.2017.8.3.657

    Article  CAS  Google Scholar 

  129. Zhang W, Ji X, Zeng C, Chen K, Yin Y, Wang C (2017) A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules. J Mater Chem C 5(32):8169–8178. https://doi.org/10.1039/c7tc02077e

    Article  CAS  Google Scholar 

  130. Feng J, Xiong L, Wang S, Li S, Li Y, Yang G (2013) Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale. Adv Funct Mater 23(3):340–345. https://doi.org/10.1002/adfm.201201712

    Article  CAS  Google Scholar 

  131. Chowdhury MA, Butola BS, Joshi M (2013) Application of thermochromic colorants on textiles: Temperature dependence of colorimetric properties. Color Technol 129(3):232–237. https://doi.org/10.1111/cote.12015

    Article  CAS  Google Scholar 

  132. Chowdhury MA, Joshi M, Butola BS (2014) Photochromic and thermochromic colorants in textile applications. J Eng Fiber Fabr 9(1):107–123. https://doi.org/10.1177/155892501400900113

    Article  Google Scholar 

  133. Panák O, Držková M, Kaplanová M, Novak U, KlanjšekGunde M (2017) The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol”. Dye Pigment 136:382–389. https://doi.org/10.1016/j.dyepig.2016.08.050

    Article  CAS  Google Scholar 

  134. Friškovec M, Kulčar R, Gunde MK (2013) Light fastness and high-temperature stability of thermochromic printing inks. Color Technol 129(3):214–222. https://doi.org/10.1111/cote.12020

    Article  CAS  Google Scholar 

  135. Geng X et al (2018) Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl Energy 217:281–294. https://doi.org/10.1016/J.APENERGY.2018.02.150

    Article  CAS  Google Scholar 

  136. Lampert CM (2004) Chromogenic smart materials. Mater Today 7(3):28–35. https://doi.org/10.1016/S1369-7021(04)00123-3

    Article  CAS  Google Scholar 

  137. Seeboth A, Schneider J, Patzak A (2000) Materials for intelligent sun protecting glazing. Sol Energy Mater Sol Cells 60(3):263–277. https://doi.org/10.1016/S0927-0248(99)00087-2

    Article  CAS  Google Scholar 

  138. Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renew Sustain Energy Rev 15(8):3813–3832. https://doi.org/10.1016/j.rser.2011.07.019

    Article  CAS  Google Scholar 

  139. (2006) Handbook of industrial drying. Handb Ind Dry. https://doi.org/10.1201/9781420017618

  140. Chavarri M, Maranon I, Carmen M (2012) Encapsulation technology to protect probiotic bacteria. Probiotics 501–540. https://doi.org/10.5772/50046

  141. Şahan N, Nigon D, Mantell SC, Davidson JH, Paksoy H (2019) Encapsulation of stearic acid with different PMMA-hybrid shell materials for thermotropic materials. Sol Energy 184(April):466–476. https://doi.org/10.1016/j.solener.2019.04.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mukesh Yadav.

Ethics declarations

Conflicts of interest/Competing interests

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasarkar, N.P., Yadav, M. & Mahanwar, P.A. A review on the micro-encapsulation of phase change materials: classification, study of synthesis technique and their applications. J Polym Res 30, 13 (2023). https://doi.org/10.1007/s10965-022-03380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03380-0

Keywords

Navigation