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Abstract
Our scope is synthesis a new poly fluorobenzamide oxime ester and study its structural, optical, and dielectric properties. 
Consequently, ((E)-2-((acryloyloxy)imino)-N-(4-fluorophenyl) acetamide) (AIFPA) was as-synthesized via a condensation 
reaction of (E)-N-(4-fluorophenyl)-2-(hydroxyimino) acetamide with acrylic acid to polymerize it via free radical polym-
erization (PAIFPA). over and above, the synthesized PAIFPA was inserted in more polymerization action with polystyrene 
sulfonate through the grafting process (PAIFPA-co-PSS). The chemical structures and morphology of AIFPA, PAIFPA, and 
PAIFPA-co-PSS were characterized by 1H NMR, FTIR, and XRD. The crystallinity index of PAIFPA, and PAIFPA-co-PSS 
was studied, affording that PAIFPA-co-PSS has the highest crystallinity. Moreover, The optical bandgap that obtained from 
absorbance analysis was encountered to be in the range of 2.6 eV to 3.5 eV. Ultimately, the dielectric properties of PAIFPA, 
and PAIFPA-co-PSS showed that electric conductivity values ranged from 6.12 × 10–8 to 7.11 × 10–7 S.cm−1, and 5.48 × 10–10 
to 7.75 × 10–8 S.cm−1, respectively. It has a great deal of interest of PAIFPA-co-PSS which has wide band gap energy as 
short-wavelength light absorbers to be used in tandem polymer solar cells.

Keywords  Polyoxime Ester · Polystyrene · Optical · Dielectric

Introduction

MacDiarmid and coworkers discovered the significant fea-
tures of conjugated polyacetylene to be a conducting poly-
mer in the last century, notably in 1976, and how to enhance 
its ability over the full range from insulator to metal [1]. 

In general, conjugated polymers have been described as an 
alternating single (σ-bond) and double (π-bond) bonds along 
the carbon atoms on the alternating units[2] such as polyani-
line [3, 4], polyacetylene [5, 6], polyfuran [7], polystyrene 
[8, 9], and Poly(vinyl carbazole) [10]. The hybridization of 
the carbon atom in the π-bond is sp2pz which overlap over 
the polymer skeleton, allowing the electron mobilization and 
charge transfer. Okutan et al. [11] studied the Impedance 
spectroscopy of polyaniline as a conductive polymer coated 
hydrogel. Ahlatcıoğlu [10] investigated the electro-optical 
properties of nanoclay/ poly(N-vinyl carbazole) nanoclay 
composites. Wang et al. [12] prepared polyolefin (COC)/pol-
ystyrene vitrimers (PSVMs) to reduce e-waste environmen-
tal contamination by using recycled printed circuit boards.

The conjugated polymer's diverse applications in vari-
ous technologies have recently received a lot of attention 
due to their ability to combine the unique properties of 
conventional polymers such as low weight, good mechani-
cal and flexibility with those of conventional semiconduc-
tors such as light emission and absorption, and tunable 
conductivity.Conjugated polymers, for example, have 
been used in a variety of critical applications, including 
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electrods[13], solar cell [14, 15], optoelectronic devices 
[16–18], supercapacitor [19, 20], sensors [21, 22], smart 
fabrics [7, 23], transistors [24] and medical applications 
[25, 26].

Fluorination of the conjugated polymer skeleton has 
recently emerged as a promising method for improving the 
conjugated polymer's performance conductivity [27, 28]., 
fluorinated polymers are marked by high thermal resist-
ance, besides their reactivity to different chemicals and good 
mechanical properties, which qualify them to be applied in 
membranes, coatings, and other applications [29–31].

On the other hand, Oxime is an organic group that 
belongs to imine with a general formula RR’C = N–OH with 
an organic side chain with hydrogen (R and R’). It is usually 
generated from carbonyl compounds with hydroxylamines 
via condensation. Also, oxime bonds are more stable than 
the corresponding hydrazone or imine at physiological pH, 
which is useful in biomedical applications [32]. Further, 
oxime is integrated in many industrial applications, such 
as Nylon 6 via synthesis of Caprolactam [33], as antidotes 
for nerve agents to treat organophosphorus poisonous [34], 
and commercial fragrances such as buccoxime and Stemone 
[35]. Also, owing to the properties of oxime bond formation, 
oxime chemistry is used for bioconjugation with only water 
as a side product [36, 37], and perillaldehyde is an artificial 
sweetener in Japan [38]. Oxime ligation has been utilized to 
functionalize polymers with micro and macromolecules of 
interest such as polycaprolactone [39], polyketoester [40], 
methacrylate [41], glycoproteins [42], bovine serum albu-
min, [43] vinyl levulinate [44]. As a matter of fact, oxime 
ester is less used in polymer applications. However recently, 
polyoxime ester has been used to enhance the performance 
of thermoset polymers [45, 46].

Styrene is a vital raw material in different industrial appli-
cations. Polystyrene sulfonate (PSS) has been widely used in 
a variety of applications over the last few decades, including 
electric devices as a hole transport material in polymer solar 
cells (PSCs) [15, 47], dye removal [48], polymer- stabilizer 
[49] and medical applications [50–52].

In this study, a new f luoro oxime ester ((E)-2-
((acryloyloxy)imino)-N-(4-f luorophenyl) acetamide) 
(AIFPA) was synthesized by combining (E)-N-(4-
fluorophenyl)-2-(hydroxyimino) acetamide with acrylic 
acid and polymerizing it via free radical polymerization 
(PAIFPA). Furthermore, the as-synthesized polymer has 
been incorporated into the grafting process with styrene 
sulfonate (PAIFPA-co-PSS). The chemical structures of 
fluoro oxime ester, PAIFPA, and PAIFPA-co-PSS were 
approved with FTIR and 1H NMR analysis. The molecu-
lar weight of both PAIFPA and PAIFPA-co-PSS was stud-
ied using 1H NMR analysis. Eventually, dielectric studies 
and optical properties have been explored for PAIFPA and 
PAIFPA-co-PSS.

Experimental and methods

Materials

4-fluoroaniline and chloral hydrate (Oxford Laboratory), 
sodium sulfate and hydroxylamine (Merc), benzoyl perox-
ide and polystyrene sod.sulfonate (Modern Lab chemicals, 
Egypt), chloroform (Sigma), HCl (Elnasr Co., Egypt).

Measurement techniques:

The 1H NMR spectra were performed using a Bruker Advance 
II 400 MHz spectrometer using deuterated dimethylsulfoxide 
as the solvent. The XRD has been performed via PANalytical 
X’Pert Pro with Cu-Kα radiation (λ = 0.154060 nm) at 30 kV 
and 30 mA. The patterns have been collected within the Bragg’s 
angle (2θ) ranging between 10° and 80°. FTIR-ATR spectral 
data was collected in the range of 4000–400 cm−1 using the 
spectrometer VERTEX 80 (Bruker Corporation, Germany). 
Ultraviolet–visible absorption spectra were measured using 
Jasco V-630 UV–VIS (Japan) in the wave length region of 
200–1000 nm. Investigations on the samples dielectric proper-
ties were carried out at room temperature utilizing a Novocon-
trol high-resolution alpha analyzer over the frequency range of 
10–1–107 Hz. In order to create a parallel-plate capacitor cell, 
the studied samples, each having a thickness that ranged from 
1 to 2 mm, were sandwiched between two freshly polished 
brass electrodes that had a top electrode diameter of 10 mm like 
(Scheme 1). The complex permittivity, denoted by the equation 
ε* = ε′-iε′′, was determined by applying a sinusoidal voltage with 
an amplitude of 1 V to a frequency range covering 10–1–107 Hz. 
The examined composites can be characterized for complex die-
lectric spectroscopy by any of the complex parameters that are 
connected to each other by the equation that is presented below.

where M* is the complex dielectric modulus, σ* is the com-
plex electric conductivity, ω is the angular frequency and εo 
is the vacuum permittivity (see Scheme 2).

Methods

(E)‑N‑(4‑fluorophenyl)‑2‑(hydroxyimino)acetamide 
synthesis

At 50 °C, 4-fluoroaniline (74 mmol, 4 mL) was dissolved drop-
wise (using a 1 mL syringe for addition) in 250 mL of 0.1 M 
HCl solution. Then hydroxylamine HCl (259 mmol, 9.5 g) fol-
lowed by sodium sulfate (600 mmol, 42 g) were added. Chloral 
hydrate (88.8 mmol, 7.6 g) was dissolved in the solution, which 
was then stirred overnight at 50 ± 5 °C. The suspension was 
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filtered and the filtrate discarded. The solid was washed with 
water and allowed to air dry for at least 24 h [53].

(E)‑2‑((acryloyloxy)imino)‑N‑(4‑fluorophenyl)acetamide 
synthesis (AIFPA)

1 mol of (E)-N-(4-fluorophenyl)-2-(hydroxyimino) aceta-
mide was condensed with 1 mol of acrylic acid at 60 5 C for 
2 h while stirring. Brownish sticky amidoester was obtained 
and confirmed using TLC, then measured qualitatively.

Poly((E)‑2‑((acryloyloxy)imino)‑N‑(4‑fluorophenyl)
acetamide) synthesis (PAIFPA)

PAIFPA was synthesized via free radical polymerization. Where, 
0.2 g of benzoyl peroxide was added to a preweighed amount of 
AIFPA dissolved in 20 mL of DMF and refluxed at 80 ± 5 ◦C, 
stirring for 5 h. Eventually, the net product was washed several 
times with chloroform and dried in a vacuum furnace at 100 ◦C 
for 24 h.

Poly((E)‑2‑((acryloyloxy)imino)‑N‑(4‑fluorophenyl)
acetamide)‑co‑polystyrene sulfonate synthesis 
(PAIFPA‑co‑PSS)

In a round flask; 0.2 g of benzoyl peroxide (BPO) was added 
to a preweighed amount of PAIFPA dissolved in DMF, then 
2 g of polystyrene sulfonate was added. The reaction vessel 
was allowed to reflux at 70 ± 5 ◦C for 5 h with stirring. The 
net product was washed several times with chloroform and 
dried in a vacuum furnace at 100 ◦C for 24 h (see Fig. 1).

Results and discussion

Synthesis of AIFPA

Herein, AIFPA was synthesized by reacting (E)-N-(4-
fluorophenyl)-2-(hydroxyimino)acetamide with acryloyl 
group as shown in Scheme 3. Acryloyl groups are an enaone 
form with acrylic groups as α,β–unsaturated carbonyl moiety 
with a C = C double bond at which electrophilic addition 

Scheme 1   Schematic illustra-
tion of electrical measurement

Scheme 2   (E)-N-(4-
fluorophenyl)-2-(hydroxyimino)
acetamide synthesis
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occurs, at C = O; nucleophilic addition and substitution 
occur. The carboxylic group reacts with alcohol, oxime, 
ammonia,..…etc. and it has a conjugated double bond [54]. 
Acrylic polymer is also used in nail polish [55], as capping 
agents [56], and as polymer electrolyte in dye-sensitized 
solar cells (DSSCs).

Scheme 3 represents AIFPA synthesis, where its chemi-
cal structure is recogenized by 1H NMR (Fig. 2a), which 
shows (DMSO-d6) δ/ppm: 7.98 (s, NH amide), 7.90 (s, CH 
aldimine), 7.18–7.51 (m, 4H benzene), 6.43 (s, H 1-ethylene 
trans), 6.62 (s, H 1-ethylene cis), 6.49 (s, H 1-ethylene gem); 
IR cm−1 (Fig. 2) shows ν: 3133 (C = CH alkene, stretch for 
sp2 carbon), 3013 (NH, stretch), 1764 (C = O, stretch), 1656 
(-C = C- alkene, stretch), 1554 (NO, stretch), 1218 (C-O, 
ester, stretch), 989 (-CH bending R-CH = CH2), 805 (p-subst. 
benzene). The fragmentation pattern of AIFPA is illustrated 
in Scheme 5 where, MS m/z: 236 (50%).

Synthesis of PAIFPA and PAIFPA‑co‑PSS

Scheme 4 demonstrates the predictable polymerization route 
of PAIFPA and PAIFPA-co-PSS via free radical generation 
using BPO.

1HNMR assured the chemical structure of the result-
ing PAIFPA and PAIFPA-co-PSS. Where, Fig. 2b repre-
sents 1HNMR of PAIFPA (DMSO-d6) δ/ppm: 7.91 (s, NH 
amide), 7.66 (m, CH aldimine), 6.98–7.22 (m, 4H ben-
zene), 6.78 (d, H 1-CC = O gem), 6.14 (d, H 1-CC = O cis), 
2.95 (s, CH methine, 1 alpha –C = C), 2.82(s, CH methine, 
1 alpha C), 2.42 (m, CH methine, 1 beta –C), 1.69 (m, 
CH2 methylene), 1.06 (s, CH3 methyl). On the other hand, 
Fig. 2c shows 1HNMR of PAIFPA-co-PSS (DMSO-d6) δ/
ppm: 7.98 (s, NH amide), 7.81–7.95 (m, 4H benzene of 
PSS), 7.56(m, CH aldimine), 7.41–7.49 (m, 4H benzene 
of PAIFPA), 7.18 (m, 1 -NC(= O)), 5.82 (m, H 1-CC = O 
cis), 3.3 (m, CH methine, 1 beta -C), 3.09 (m, CH methine, 
1 beta -C), 2.83 (d, CH methine, 1 alpha –C = C), 2.57 (m, 
CH methine, 1 alpha C), 2.69 (m, CH methine, 1 alpha 
–C(= O)), 1.94 (td, CH2 methylene), 1.23 (s, CH3 methyl) 
(see Fig. 2).

Moreover, 1HNMR is a promising application for identi-
fying molecular weight as the areas under resonance peaks 
match with the molar concentration of the moieties in the 
analyzed sample [57]. Josephat U. Izunobi and Clement L. 
Higginbotham conducted a comparative study of the poly-
mer number-average molecular weight (Mn) for (MPEG-
NH2) and (MPEG-b-PLL(Z)) as model homopolymer and 
block copolymer, respectively using 1HNMR, GPC, and 
MALDI-TOFMS [58]. Mary L. Harrell and David E. Berg-
breiter analyzed the number-average molecular weight of 
MPEG and its acetate derivative using 1HNMR.

The number of repeating unite (n) in each of PAIFPA, 
and PAIFPA-co-PSS has been calculated according to the 
following equation [58]

where ax is the area or intensity of the 1HNMR peak of 
moiety x; mx is the number of protons of moiety x; ay is the 
area or intensity of the 1HNMR peak of moiety y; ny is the 
number of repeating units of moiety y; and my is the number 
of protons of moiety y.

where aCH is the sum of CH integerals

Hence; Mn of PAIFPA = 235.19 + (29 × 274) + 237.21 =

8418.4 ≈ 8418

(2)n
x=

axmyny

aymx

(3)nPAIFPA= aCHmCH3nCH3

aCH3mCH

=
(314.05 + 11.69) × 3 × 1

55.02 × 1
= 28.5 ≈ 29

nPAIFPA−co−PSS= aCHmCH3nCH3

aCH3mCH

Fig. 1   ketoxime and aldoxime esters

Scheme 3   (E)-2-((acryloyloxy)
imino)-N-(4-fluorophenyl)
acetamide synthesis
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Fig. 2   1H NMR of: a AIFPA, 
b PAIFPA, and c PAIFPA-co-
PSS

b

c

a
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Where aCH is the sum of CH integerals in PSS moiety

H e n c e ;  Mn of PAIFPA − co − PSS = 235.19 + (29×

274) + (179 × 193.18) + 207.2 = 42967.1 ≈ 42968

Figure  3  shows the ATR-FTIR of PAIFPA, and 
PAIFPA-co-PSS. For PAIFPA, the weak band at 
3084 cm−1 is assigned to C = CH stretching vibration, 
while the band at 2985 cm−1 is refered to N–H stretch-
ing vibration. Tt 2960 cm−1 and 2935 cm−1, respectively 
asymmetric and symmetric stretching of CH2 is observed 
[59]. The band at 1409  cm−1 for the C-H bending 
alkane methyle group. The strong band at 1160 for C-O 
ester stretching vibration. The band at 1714 cm−1 and 
1602 cm−1 is attributed to C = O and C = N, respectively 
[60, 61]. The stretching vibration of C = C–C aromatic 
ring is assigned at 1508 cm−1 [62]. A band of amide II 
is seen at 1546 cm−1 [63]. The weak band at 1438 cm−1 
corresponds to aromatic C–C bonds and C-H wagging 
[62, 64]. The bending vibration of aliphatic CH in meth-
ylene group is shown at 1397  cm−1 [65]. The stretch-
ing vibration of C-F is observed at 1324 cm−1 [66]. The 
stretching vibration of C-O is seen at 1166  cm−1. The 
bending vibration of the monosubstituted alkene is pre-
sented at 989 cm−1.The band at 836 cm−1 is assigned to 

=
(546.17 + 35.3) × 3 × 1

8.84 × 1
= 179.3 ≈ 179

= 42967.1 ≈ 42968

the plane of aromatic C-H. C-H and C-F out of plane 
bending vibration is related to bands at 519 cm−1 and 
499 cm−1 [66].

Bands at 1034  cm−1 and 1007  cm−1 correspond to 
asymmetric and symmetric stretching of S = O. A band at 
670 cm−1, which was attributed to the SO−3 group, con-
firmed the presence of PSS in the complex [67, 68]. These 
data indicate that the polymer consists of the SO−3 group 
and the complexation between fluorobenzene and sulpho-
nated polystyrene.

ketoxime and aldoxime esters were synthesized in 
a very simple method by Kumar  et al. [69] at which 
oxime reacted with acid in presence of a catalyst at room 
temperature.OHN
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X‑ray Diffraction (XRD)

Figure 4 represents the XRD of PAIFPA, and PAIFPA-
co-PSS. In contrast to the reality of fluorine atoms being 
macromolecule chain polarity booster leading to enhanc-
ing the crystallite regions by increasing the intermolecu-
lar forces, causing a higher crystallinity, PAIFPA has a 
broad single diffraction peak at 2θ = 19.2° and virtually 
no crystal diffraction was witnessed. The observed amor-
phous diffraction may be induced because of the bulky 
fluorinated phenyl groups attached to the polymer skel-
eton, which generate looser chain packing and decrease 
the well-organized arrangement of the chain as well [70]. 
On the other hand, grafting PAIFPA with PSS enhances 
the crystallinity due to the existence of sulpher where a 
small peak is detected at 2θ = 7.1° [48, 49]. Moreover, the 

presence of sulfonate ions increases intermolecular forces 
as the peak at 2θ = 19.2°becomes less broad and their 
intensity increases, and there are additional peaks appear-
ing at 2θ = 44.6° and 64.9° due to the electrostatic attrac-
tion between the negative charge of sulfonate ions and 
the positive charge generated on fluorine due to resonance 
as shown in Scheme 7. This means that the crystallinity 
increases and the interaction between PAIFPA and PSS.

The crystainaty indexs of both PAIFPA, and PAIFPA-
co-PSS were calculated according to Eq. (1) [71]:

where, the crystallinity indexs of PAIFPA, and PAIFPA-co-
PSS were 36.23 and 77.99%, respectevily.

(4)

crystallinityindex% =
Intergratedareaofcrystainepeaks

Totaintegeratedarea
× 100

O

NH N
O

F

O

(E)-2-((acryloyloxy)imino)-N-(4-
fluorophenyl)acetamide

DMF, BPO

80oC

ONH

N
O

F

CH2CH

O

ONH

N
O

F

CH2
CH

O

ONH

N
O

F

CH2CH

O

ONH

N
O

F

CH2CH

O

(poly((E)-2-((acryloyloxy)imino)-N-(4-fluorophenyl)acetamide)

SO3Na DMF,BPO,70 oC

(poly((E)-2-((acryloyloxy)imino)-N-(4-fluorophenyl)acetamide)-co-
polystyrene soduim sulphonate

PAIFPA -co- PSS

AIFPA

PSS

PAIFPA

m

CH

ONH

N
O

F

O

ONH

N

O

F

O

ONH

N
O

F

CH
O

ONH

N
O

F

CH2CH
O

ONH

N
O

F

O

SO3Na SO3Na

CH
n

SO3Na

m

CH3

CH3

Scheme 4   Poly((E)-2-((acryloyloxy)imino)-N-(4-fluorophenyl)acetamide)-co-polystyrene sulfonate synthesis

Page 7 of 15    304Journal of Polymer Research (2022) 29: 304



1 3

Optical properties

Figure 5 shows the UV–Vis of PAIFPA, and PAIFPA-co-
PSS. As seen in Fig. 5a, the two peaks, 208 nm and 232 nm, 
are assigned to n-π* and π-π* due to the presence of C = O, 
C = N, and C = C [72]. After the addition of PSS, the peaks 
at 208 nm and 232 nm are shifted to 204 nm and 226 nm 
(blue shift) ( Fig. 5b) [68], which is matched with the fact 
of the electrostatic interaction between both fluorobenzene 
and sulfonated polystyrene.

The value of information obtained from the absorption 
coefficient (α), such as the optical band gap energy and the 
electronic band structure, is important for investigating the 
optical properties of a material. The absorption coefficient 

(α) is related to absorbance (A) and thickness of sample 
(d) according to the following [73]:

Figure 6 illustrates the relation between absorption 
coefficient (α) and photon energy (hʋ). The extrapola-
tion of the linear portion of the curve with zero values 
of photon energy gives the values of the absorption edge. 
As seen, the value of the absorption edge of PAIFPA-co-
PSS is lower than its value in PAIFPA. This means that 
the reaction between PAIFPA and PSS reorders the atoms 
of the PAIFPA-co-PSS and increases its crystallinity, as 
confirmed by XRD.

(5)�(λ) =
2.303

d
A

Scheme 5   fragmentation pattrern of AIFPA
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The optical transitions caused by photons of energy 
hʋ > Eg can be investigated using the following relationship 
for near edge optical absorption [73].

where B is constant, Eg is the band gap energy between 
valence and conduction band and n is called the power fac-
tor that characterize the optical transition. The power n takes 
value ½ for direct transition and 2 for indirect one.

The relation between (αhʋ)2 and (αhʋ)0.5 and hʋ for 
PAIFPA, and PAIFPA-co-PSS is depicted in Fig. 7. As 
seen, the values of direct and indirect band gap energy for 
PAIFPA are lower than those for copolymer. This means 

(6)�h� = B(h� − Eg)
n

that the addition of PSS to PAIFPA changes their electronic 
structure. The reaction between PSS and PAIFPA increases 
the gap that separates the two localized states in PAIFPA-
co-PSS and increase the potential barrier between them. As 
a result, the transfer of charge carriers between the localized 
states becomes difficult.

When photon energy hʋ < Eg, the absorption of photons 
is associated to the existence of localized tail states in the 
forbidden gap that related to the amorphous nature of mate-
rial. The width of this tail is known as the Urbach tail that 
indicates the defect levels in the forbidden band gap and 
calculated using the following formula [74].

where α0 is a constant and Eu is the Urbach energy. Figure 8 
illustrates the relation between ln α against hʋ. The relation 
give straight line whose the reciprocal of this slope give 
the value of Eu. Values of band tail energy for PAIFPA is 
greater than that for PAIFPA-co-PSS which affirmed that the 
crystallinity is increasing by interacting PAIFPA with PSS.

Dielectric properties

The electronic structure of π-conjugated polymers is gener-
ated from the hybridized wavefunction (sp2pz) of the carbon 
atom of the repeat unite. Semiconducting polymers are rec-
ognized to possess energy bands generated from the σ-band 
and σ*-band energy levels related to the σ-bonds between 
adjacent carbon atoms (sp2) which tighten the structure 

(7)� = �
0
exp

(

h�

Eu

)
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(b)
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θ

Fig. 4   XRD of (a) PAIFPA, and (b) PAIFPA-co-PSS
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together and the pz wavefunctions associated with π-bond 
which endow unique properties of the conjugated polymers 
as semiconductors [75]. The obtained results show electrical 
conductivity values for PAIFPA ranging from 6.12 × 10–8 to 
7.11 × 10–7 S.cm−1 at low and high frequency, respectively. 
Scheme 6 illustrates the possible charge mobilization among 
the PAIFPA macromolecule structure under an electric field. 
The expected electron conjugation occurs across fluoroben-
zene to the amide moiety. And as is well known, fluorine is 

an electron-donating group by resonance (+ M) creating a 
free electron radical cloud inside the benzene ring allowing 
reciprocal resonance in the benzene ring passing through the 
amide group which qualifies PAIFPA to be a p-type semi-
conducting polymer. On the other hand, contrary to expec-
tations, electrical conductivity values of PAIFPA-co-PSS 
range from 5.48 × 10–10 to 7.75 × 10–8 S.cm−1 at low and 
high frequency, respectively, and this may back to the gener-
ated electrostatic attraction between fluorine and sulfonate 
ion leading to atom rearrangement and crystallinity increase 
as shown in XRD. In general and as is clear in Scheme 7, 
the sulfonate group is an electron- withdrawal group by reso-
nance (–M) forming a hole (n-type) represented by a positive 
charge inside the benzene ring.

It is possible to determine a material's ability to store 
electrical charges by evaluating their dielectric measure-
ment. Figure 9 represents the relation between the logarithm 
of dielectric constant (ε') and dielectric loss (ε") against the 
logarithm of frequency (log f) for PAIFPA, and PAIFPA-
co-PSS. This is due to the ability of dipoles in samples to 
align themselves in the field direction, as well as charge 
accumulation between electrodes.By increasing the fre-
quency, the charge is unable to follow the rapid change in 
the electric field and " decreases. At higher frequencies than 
100 kHz, however, the dielectric constant remains constant 
and is frequency independent. However, when the frequency 
decreases, the dielectric constant ε'rises. Because of inter-
facial space-charging polarization, it can be concluded that 
using thin insulation barriers does not completely prevent 
the accumulation of ionic charge at metallic electrodes/
insulating barriers/ionic sample interfaces, as shown by 
the increase in ε' observed on low frequency plateaus. A 

Fig. 7   Relation between (αhʋ)1/2 
and (αhʋ).2 versus hʋ for a 
PAIFPA, and b PAIFPA-co-PSS
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permanent dipole's alignment with the field and contribution 
to total polarization is complete at low frequencies [76]. As 
seen in Fig. 9, values of ε' and ε" for PAIFPA is higher than 
those for PAIFPA-co-PSS due to the addition of PSS restrict-
ing the motion of PAIFPA, so its values decrease [77].

The frequency dependence of conductivity is the sum-
mation of the amount of DC conductivity due to free 
charge movements and polarization conductivity due to 
bound charge movements. The increase in conductivity 
with frequency is popular for polymer and semiconduc-
tor materials. The first behaviour takes place when the 
frequency is independent of conductivity,which is con-
tributed to by the free charges found in the material, and 
the second behaviour takes place when the frequency 

depends on the conductivity because of the trapped 
charge and it is only active in the high frequency region 
[78].

Figure 10 depicts the relationship between the loga-
rithm of conductivity (log σ) as a function of the loga-
rithm of frequency (log f). The increase in conductivity 
of all samples at high frequency because of the mobil-
ity of charge carriers is high in the high frequency field. 
As the frequency drops, more charge accumulates at the 
electrode–electrolyte interface, resulting in a reduction 
in the number of mobile ions and, finally, a decrease in 
conductivity at low frequencies [79].

The total conductivity, σ (ω) is the sum of dc and ac 
conductivity and is described using the following equation

Scheme 6   Conjugation mecha-
nism of PAIFPA
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Scheme 7   Conjugation mecha-
nism of PAIFPA-co-PSS
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As seen the conductivity of PAIFPA-co-PSS is lower than 
that for PAIFPA, and this attributed the decreasing of the 
mobility of free charge carrier and increasing the crystal-
linity of PAIFPA-co-PSS and this agreed with the results of 
XRD data and optical parameters.

Conclusion

The goal of this study is to create a novel poly((E)-2-
((acryloyloxy)imino)-N-(4-f luorophenyl) acetamide) 
(PAIFPA) and its grafted structure with styrene sulfonate 
(PAIFPA-co-PSS). The chemical structure of the syn-
thesized polymers was investigated by 1H NMR, FTIR, 
and XRD. The molecular weight of both PAIFPA, and 
PAIFPA-co-PSS was evaluated via 1H NMR analysis and 
found to be 8418, and 42,968, respectively. Further, the 
optical properties of PAIFPA, and PAIFPA-co-PSS was 
investigated where the absorbance was found to be in the 
blue shift and the bandgap was ranged from 2.6 eV to 3.5 
Ev. and there is an increase in the band gap for PAIFPA-
co-PSS is a short-wavelength light absorbers which can 
be used in tandem polymer solar cells. Eventually, the 
dielectric properties of PAIFPA and PAIFPA-co-PSS 
were performed, where PAIFPA-co-PSS shows electric 
conductivity values less than PAIFPA. This regarded to 
the generated electrostatic attraction between fluorine 
and sulfonate ion which leads to atoms rearrangement 
which results to increased crystallinity and this agreed 
to XRD.

(8)�(�) = �
dc(�) + �ac(�)
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