
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10965-022-03121-3

REVIEW PAPER

Recent advances of chitosan‑based polymers in biomedical 
applications and environmental protection

Sevda Fatullayeva1  · Dilgam Tagiyev1 · Nizami Zeynalov1 · Samira Mammadova1 · Elmira Aliyeva1

Received: 31 January 2022 / Accepted: 1 June 2022 
© The Polymer Society, Taipei 2022

Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in 
various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiologi-
cal properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological 
activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and 
industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse 
applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, 
tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking 
into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vac-
cine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral 
DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application 
of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand 
application of chitosan-based polymers in many fields of science.
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Introduction

Biopolymers, having unique properties, ease of using and 
processing, variety in combination with economy and envi-
ronmental friendliness, differ from other classes of materi-
als. These are high molecular weight natural materials that 

constitute the structural basis of all living organisms and 
play a significant role in vital processes [1]. They can be 
obtained both from living organisms (plants, animals, bac-
teria, fungi) and by synthesis method. New developments 
in the production of biopolymers are aimed at using these 
biomaterials as medical materials, food additives, adsor-
bents, packaging, cosmetics, fabrics for clothes, chemicals 
for water purification, industrial plastics, biosensors, etc. [2].

Production of biodegradable carbohydrate biopolymers, 
which are both a structural material (cellulose, chitin), an 
energy reserve (starch, glycogen), and also perform numerous 
biological functions, shows a special interest [3, 4]. Thus, the 
role of biomaterials synthesized on the basis of carbohydrate 
biopolymers has been studied in intercellular interactions, 
cell differentiation, the formation of multicellular systems, 
the development of malignant neoplasms, etc. [5]. Cellulose-, 
chitin-, and chitosan-based materials in the form of fibers, 
membranes, hydrogels, sponges have been developed and 
implemented in such important areas as pharmaceuticals, 
biomedicine, the food industry, etc. [6–12]. The combination 
of properties such as solubility, viscosity, gelation, mechani-
cal, surface and interfacial properties, composition, degree of 
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polymerization, types of bonds and structure allows to create 
biomaterials that are promising compounds which meet the 
requirements of environmental friendliness and economic 
sustainability for a variety of applications [13].

The aim of some modern studies is to obtain highly effective 
drugs with sorption activity towards toxic metals, which are 
dangerous environmental pollutants that can be accumulated 
and negatively affect the vital functions of the human organ-
ism, leading to various pathologies. From the literature data it is 
known that enterosorbents (drugs of various structures that bind 
exo- and endogenous substances in the gastrointestinal tract by 
adsorption) based on polysaccharides and used for purification 
and binding of various toxins in the internal medium of the 
organism are very promising for these purposes [14]. In addi-
tion, these compounds possess a wide range of pharmacological 
properties. Removal of toxic metals from the organism is one 
of the important directions of modern science as well. In this 
regard, our research carried out on synthesis and application 
of enterosorbents obtained on the base of chitosan and poly-
N-vinylpyrrolidone, with the aim of removal of toxic metals 
from the human organism is very topical and practical; we are 
going to present the obtained results in our further publications.

The aim of this review is to present the recent scientific 
advances in properties and applications of various chitosan-
based polymers. Synthesis, study and practical application 
of chitosan-based polymers in many biomedical fields and as 
the important environmental treatment materials for removal 
of toxic metals from different media are one of the achieve-
ments of scientific progress in the search of new promising 
materials in recent years.

Production and structure of chitosan

Source and production of chitosan

Chitosan is produced from chitin, which is present in the 
bodies of crustacean, molluscs, insects, fungi, etc., by 
the chemical or enzymatic partial N-deacetylation pro-
cess [15, 16]. Production process of chitosan (Fig. 1) con-
sists of deproteinization (heat at 60–100 °C for 1–72 h in 
the presence of 0.125–2.5 M of NaOH,  Na2CO3, KOH, 
 K2CO3, Ca(OH)2,  Na2SO3); demineralization (HCl,  HNO3, 
 H2SO4,  CH3COOH and HCOOH at 100 °C for 1–48 h); 

Fig. 1  Scheme of chitosan production from chitin [21]
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decolouration (dissolve in organic solvents, bleach with 
 KMnO4, heat at 20–60 °C for 0.25–12 h); and deacetylation 
(30–50% solution of NaOH) [17–20].

Structure of chitosan

Chitosan is a natural linear polysaccharide composed of 
randomly distributed β-(1–4)-linked D-glucosamine and 
N-acetyl-D-glucosamine (Fig. 2a), namely it is consisted 
of two monosaccharide units: 2-amino-2-deoxy-β-D-
glucopyranose and 2-acetamido-2-deoxy-β-D-glucopyranose 
linked by β-(1–4) glycosidic bonds, in which about 50% of the 
acetyl groups will be removed from the chitin by a hydration 
process or enzyme hydrolysis [22, 23].When the deacetyla-
tion degree is higher than 50%, the polymer is called chitosan 
(in case of less than 50% it is called chitin) [24–26]. To avoid 
depolymerization and the formation of reactive particles under 
the influence of oxygen, sodium borohydride is added or the 
system is purged with nitrogen [27]. Jang et al. [28] found that 
chitosan has α, β and γ crystal structures (Fig. 2b).

α-Chitosan (main form) has a tight structure with strong 
intermolecular forces and is formed by two parallel and 
inversely arranged polysaccharide chains [29]. β-Chitosan 
is formed by two parallel and aligned polysaccharide chains 
with poor intermolecular hydrogen bonds [30]. γ-Chitosan 
is composed of three parallel polysaccharide chains, two 
of which were aligned in the same direction and the other 
was arranged in the opposite direction [31]. The sources of 
α-chitosan are crabs and shrimps, β-chitosan are squids, and 
γ-chitosan are loligos [32].

Properties and modifications of chitosan 
biopolymers

Properties of chitosan biopolymers

Chitosan is white odourless powder (or flakes) with dif-
ferent molecular weight (MW), degree of deacetylation 

(DD), insoluble in water and organic solvents, soluble in 
dilute hydrochloric, formic and acetic acids. Melting point 
is approximately 290 °C [33, 34]. Thus, the reason for 
the dissolution of chitosan in dilute hydrochloric acid is 
explained by the interaction of amino groups with hydro-
gen cations and converting it into a positively charged 
polyelectrolyte [35, 36].

Cations in the composition damage hydrogen bonds 
among the chitosan molecules, and it leads to dissolving 
them in water. The solubility of chitosan depends on MW 
and DD. The higher the DD of chitosan, the higher the 
degree of protonation of amino groups in the molecule, 
and the easier it dissolves. The larger MW of chitosan, 
the large number of hydrogen bonds formed in its polymer 
chain, and more difficult it dissolves [37, 38]. Solubility 
in water increases, biodegradability and biocompatibility 
enhance at partial removal of the acetyl groups [39]. DD 
and MW greatly determine many properties of chitosan, 
in particular, antimicrobial and anti-biofilm activities, DD 
determines chitosan solubility and viscosity [40]. There-
fore, at the application of chitosan biopolymers in practice 
(for example, as biomaterials, biopesticides, in drug deliv-
ery, immunology, etc.), it is necessary to have information 
about the main characteristics and control some param-
eters, such as the content of heavy metals, radionuclides, 
residual protein content, the presence of endotoxins, aller-
gens bacteria and yeast, and other impurities [41].

Unlike other representatives of polysaccharides (cellu-
lose, pectin, agar, dextran, etc.) chitosan possesses many 
important properties (Fig.  3), including non-toxicity, 
chelating activities, biocompatibility, biodegradability, 
adsorption capacities, film-forming ability, bacteriostatic 
action [42].

The antiviral, antibacterial activity of chitosan has 
been proven, the immunostimulating, adjuvant, adapto-
genic, antihypoxic, cholestric, radioprotective, hemostatic 
effects of chitosan and its derivatives have been confirmed 
[43–45]. The antibacterial effect of chitosan is explained 
by the interaction of its positively charged amino groups 

Fig. 2  Structure (a) and polymeric forms (b) of chitosan
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with negatively charged phosphoryl groups of phospholip-
ids of the bacterial cell wall, changes in metabolism, which 
leads to cell death [46].

It is known that chitosan is capable of interacting with 
nucleic acids, which, in turn, leads to the disturbance of syn-
thesis of vital proteins and enzymes, and damaging the struc-
ture and function of the bacterial cell [48]. The fungicidal 
properties of chitosan are described by identical mechanisms 
[49]. The analgesic effect of chitosan has been established 
due to its ability to absorb bradykinin [50]. Chitosan sulfate, 
the structural analogue of chitosan, is similar in structure 
to the heparin—natural blood anticoagulant [51, 52]; the 
possibility of a synergistic effect of chitosan allows to cre-
ate the drugs with anticoagulant and anti-sclerotic action 
[53]. Furthermore, sulfated chitosan is a natural antioxidant, 
which absorbs hydroxyl and superoxide anion radicals, and 
can be a substrate for creating drugs and biologically active 
additives as well [51, 54]. Chitosan can be used for treatment 
of diabetes because it increases insulin levels [55]. Possibil-
ity of using as a polymer matrix for the delivery and dosage 
release of drugs and anti-allergic properties of chitosan are 

proven [56]. Application of chitosan in immunotherapy is 
proposed as an antitumor agent that suppresses the growth 
of tumor cells, pathogens, stimulates humoral and cellular 
immunity, for gene therapy with the aim of targeted delivery 
of genetic material [45]. Chitosan has wound healing proper-
ties, stimulates the formation of granulation tissue and the 
activity of fibroblast proliferation [57, 58] and suppresses 
fibrosis [44]. Chitosan and its derivatives can be used to 
create biodegradable carriers of pharmaceuticals in the form 
of films, which provides the prolonging effect of their action 
[53, 59, 60].

Modifications of chitosan biopolymers

In order to improve the solubility, rheological properties, 
thermal stability, and oxidation resistance, chitosan is sub-
jected to chemical modifications (Fig. 4) [61].

Amino groups, hydroxyl groups at  C3 and  C6 positions 
are the active groups in the chemical structure of chitosan. 
As a rule, the  NH2-amino group is more reactive than the 
 C6-OH primary hydroxyl group (due to the free rotation), 

Fig. 3  Various physical and 
chemical properties of chitosan 
[47]

Fig. 4  Different modifications 
of chitosan biopolymers [62]. 
Modifications can be used 
to attach different functional 
groups and to regulate hydro-
phobic, cationic and anionic 
properties of the obtained 
derivatives of chitosan demon-
strating unlimited potential for 
application in various fields of 
science

259   Page 4 of 19 Journal of Polymer Research (2022) 29: 259



1 3

and the primary hydroxyl group is more reactive than the 
 C3-OH secondary hydroxyl group. Chemical modification 
of chitosan could be carried out on amino, hydroxyl, or both 
amino and hydroxyl groups to form N-, O- or N,O-modified 
chitosan derivatives [63, 64]. Etherification, esterification, 
crosslinking, graft copolymerization and O-acetylation are 
reactions carried out on hydroxyl groups, while acetylation, 
quaternization, Schiff's base reaction and grafting are carried 
out on amino groups [65].

Schiff bases formation reactions

Modifications of chitosan biopolymers via reactions of 
Schiff bases formation are well-known. Chitosan reacts read-
ily with most aliphatic and aromatic aldehydes to produce 
Schiff bases—imines. The Schiff base formed after the reac-
tion of aldehyde and chitosan could be reduced by sodium 
borohydride to synthesize N-derivatives of chitosan [66, 67]. 
They could chelate transition metal ions in aqueous solution 
to form insoluble metal chelates, which could be separated. 
This reaction is very useful for the application of chitosan 
for removal of toxic metals.

Quaternization reactions

Modifications of chitosan biopolymers via quaternization 
reaction are carried out by means of a free amino group on 
the chitosan. It includes introduction of quaternary ammo-
nium groups or small molecule quaternary ammonium salts 
on the amino group of chitosan. These groups have strong 
hydration ability and large steric hindrance. The quaternized 
chitosan has increased solubility in water and good antibac-
terial properties [68–70].

Alkylation and acylation reactions

Modifications of chitosan biopolymers via alkylation and 
acylation reactions are carried out with halogenated hydro-
carbons, anhydrides, acid halides as acylating agents in a 
certain reaction medium. Synthesized compounds destroy 
the hydrogen bonds among chitosan molecules, change the 
original crystal structure, greatly improving the solubility 
and widening application range of chitosan [71–74].

Carboxylation and carboxymethylation reactions

Modifications of chitosan biopolymers via carboxylation 
and carboxymethylation reactions involve the introduction 
of acid groups into the main chain of chitosan in order 
to improve the solubility, moisturizing and film-forming 
properties of the compound [75, 76]. Carboxymethyla-
tion can occur both at the hydroxyl and amino groups 
of chitosan with the formation of O-carboxymethyl and 

N-carboxymethyl derivatives, respectively. Carboxymethyl 
chitosan, a water-soluble anionic polymer was selectively 
modified to prepare antitumour drug conjugates [77, 78], 
also was reported as a potential vehicle for targeted drug 
delivery to the liver due to its preferentially located and 
long retainment in the liver and spleen after intravenous 
injection [79]. The modification of chitosan with sugars 
on amino groups allows to introduce cell-specific sugars 
recognized by cells, viruses and bacteria into carriers of 
specific drugs, DNA and antibodies [80, 81].

Graft copolymerization reactions

Modifications of chitosan biopolymers via graft copoly-
merization reaction improve the solubility and biological 
activity of the polymer [82] and are used for medical and 
pharmaceutical applications as orthopedic/periodontal, 
wound-dressing materials, tissue engineering and con-
trolled drug/gene delivery [83–86]. Based on this modi-
fication and a molecular imprinting technique, chitosan 
could be used for special absorption of template molecules 
mimicking natural recognition materials such as antibodies 
for diagnostics [87]. Recently composites of chitosan with 
various polymers (polyethylene glycol, polylactic acid, 
polypyrrole, collagen, starch) and with inorganic materials 
(bioactive glass, ceramics) have been intensively studied 
for drug delivery systems, tissue engineering, and other 
medical applications [88–91]. Hyaluronic acid, alginate, 
chondroitin sulfate, hydroxyapatite are used with chitosan 
for preparation of multilayer-structured biomaterials based 
on the layer-by-layer technique for applications in tissue 
engineering [92–96].

Cross‑linking reactions

Modifications of chitosan biopolymers via cross-linking 
allow to obtain chitosan derivatives with stable chemi-
cal properties, insoluble in acids and bases and which 
are used as a carrier for the adsorption of drugs, immo-
bilized enzymes, heavy metal adsorbents, etc. Research-
ers have compared the composition of metal complexes 
formed by the coordination of chitosan with some 
heavy metal ions before and after cross-linking. The 
ability of chitosan to adsorb metal ions was as follows: 
Hg > Cu > Pb > Zn > Cd > Mn [97].

Other chemical modifications of chitosan such as esteri-
fication, hydroxyalkylation, sulfonation, etc. are known 
and studied [98–101]. At present, chitosan is also physi-
cally modified through mechanical grinding, ionizing radi-
ation and ultrasonic treatment to prepare biomaterials for 
the various applications [102].
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Recent researches of chitosan biopolymers

The presence of amino and hydroxyl groups in chitosan 
opens the great opportunities for many industrial and bio-
medical applications. Use of chitosan biopolymers is unin-
terruptedly growing in such fields as medicine, pharmaceuti-
cal research, paper, textile, agriculture and food industries, 
cosmetology, tissue engineering, ecology, biotechnology, 
wastewater treatment (Fig. 5). Chitosan-based materials 
have also found application in veterinary medicine, medical 
nutrition, production of dietary supplements, biopesticides, 
biosensors, chromatographic materials [103–112]. The use 
of chitosan has been described in direct tablet compres-
sion, as tablet disintegrant, for the production of controlled 
release dosage form or for the improvement of drug dissolu-
tion [113].

Application of chitosan biopolymers in biomedical 
practice

Recent applications are in ophthalmic, nasal, sublingual, 
buccal, periodontal, gastrointestinal, colon-specific, vaginal, 
mucosal-vaccine and gene carrier fields. Chitosan, being an 
adsorbable and nontoxic polymer, is favored in drug delivery 
because of antiulcer and antacid properties, which help in 
preventing drug irritation [114, 115]. During the last years 
the use of chitosan composite-based scaffolds as a bioma-
terial has been reported for tissue engineering [116, 117] 
due to the cationic nature and ability to form interconnected 
porous structures. Chitosan with other biomaterials such as 
hydroxyapatite, bioactive glass ceramic are used for bone 
repair and reconstruction to form a carbonated apatite layer 
to enhance the mechanical properties [118–122]. Owing 

to unique properties (toughness, biocompatibility, oxygen 
permeability) chitosan-based biomaterials in the form of 
fibers, mats, sponges have been used for burn treatment and 
wound dressings [123]. Influence of chitosan biomaterials 
on the synthesis of collagen for wound healing was stud-
ied [124]. Chitosan has been modified by authors [125] for 
using as a dressing material for treatment of wounds and 
burns. It was found that dressing materials based on chitosan 
and its modified forms, having haemostatic and analgesic 
properties, and also possessing properties of high strength, 
non-toxicity, good water absorption capacity and biocom-
patibility, together with other polymers (both synthetic and 
natural) accelerate the process of wound contraction and 
healing [126].

Researches carried out in the field of infectious diseases 
show the effectiveness of the use of chitosan in this area. 
Systems developed on the base of chitosan with different 
properties have been proposed [127]. It has been shown that 
these systems reduce the side effects of drugs and increase 
the effectiveness of treatment. Taking account the current 
situation in the world with COVID-19 and other viruses, 
chitosan is also active in the form of a vaccine system, for 
example, it can deliver antibodies to the nasal mucosa and 
load gene drugs that prevent or disrupt the replication of 
viral DNA/RNA, and deliver them to infected cells. Further 
work on the development of systems is proposed that will be 
widely used in clinical practice, in particular, for the treat-
ment of infectious diseases (Fig. 6).

From year to year, the spread of dangerous pathogenic 
bacteria is very serious for all mankind and that requires 
the creation of new materials for the treatment of bacterial 
infections. Thus, antibacterial and antibiotic properties of 
the chitosan biomaterial with grafted ferulic acid (CFA) 
against Listeria monocytogenes (LM), Pseudomonas 

Fig. 5  Application potential of 
chitosan. Unique properties of 
chitosan and its derivatives find 
the application in various fields 
of human activity

259   Page 6 of 19 Journal of Polymer Research (2022) 29: 259



1 3

aeruginosa (PA), and Staphylococcus aureus (SA) were 
studied [128]. It was found that CFA exhibits bactericidal 
action against LM and SA and bacteriostatic action against 
PA within 24 h of incubation. In dependence on the con-
centration it suppresses the viability of pathogenic bac-
teria, which was associated with a change in membrane 
properties.

Silver nanoparticles functionalized with chitosan (CS-
AgNP) using ethanolic buds extract of Sygyzium aromat-
icum have been studied by authors of the given research 
[129]. Decrease in the level of fibrinogen was observed, 
platelet aggregation was decreased at relatively high con-
centrations of CS-AgNP. It has been shown, that due to the 
stable nature, antibacterial, anticoagulant, antiplatelet and 
thrombolytic activity, CS-AgNP can be used as effective 
antibacterial agents and anticoagulants with low toxicity in 
the biomedical field.

The antibacterial efficacy of chitosan has been confirmed 
as a drug for pulpectomy of infectious teeth [130]. Chitosan 
can play an important role in preventive dentistry as an agent 
to prevent dental diseases (caries, periodontitis), an ingredi-
ent in dentifrices (toothpaste, chewing gum) having antibac-
terial effects, increasing salivary secretion, dental adhesives, 
etc. [131]. Blend hydrogels based on poly(vinyl alcohol) and 
carboxymethylated chitosan were prepared by electron beam 
irradiation at room temperature. The antibacterial activity of 
the hydrogels was studied by optical density method. It was 
found that the hydrogels exhibited satisfying antibacterial 
activity against E.coli. and can be widely used in the field 
of biomedicine and pharmacy [132].

A new antifungal denture base material was proposed by 
modifying polymethyl methacrylate (PMMA) with chitosan 
salt (chitosan hydrochloride (CS-HCl) or chitosan glutamate 
(CS-G)) [133]. When studying its properties in vitro, the 
analyses carried out showed that, despite the antifungal 
effect of CS salts in solution, modification of the PMMA 
polymer with these CS salts does not improve the antifungal, 
antibiofilm and antiadhesive properties of the base material 
of PMMA dentures.

Possible applications of biomaterials based on chitosan, 
antibiotics and antifungal drugs, considering the factors 
and mechanisms of the antimicrobial and antifungal action 
of chitosan, and also clarifying the question of the genetic 
response of microorganisms to chitosan are described [134, 
135]. It was established that there are electrostatic interac-
tions between positively charged chitosan and negatively 
charged cell surface of the microorganism (teichoic acid in 
gram-positive bacteria, lipopolysaccharide (LPS) in gram-
negative bacteria and phosphorylated mannosyl in fungi). 
In addition, chitosan chelates environmental ions and nutri-
ents which are necessary for the survival of bacteria. It was 
found that low-molecular-weight chitosan and oligo-chitosan 
exhibit an extracellular antifungal action, inhibit mitochon-
drial activity and ATP production, and are also able to pene-
trate the cell wall, inhibiting DNA/RNA and protein synthe-
sis. The research indicates that despite the fact that chitosan 
exhibits a high antimicrobial effect, its use on a large scale 
is limited by some of its properties, such as low solubility in 
water, lack of a certain molecular weight and purity.

Nanoparticles based on chitosan and its modified forms 
are widely tested as drug carriers in ophthalmology for 
the treatment of bacterial and viral infections, glaucoma, 
age-related macular degeneration and diabetic retinopathy. 
Authors summarize recent advances in chitosan-based nano-
therapy for drug delivery to the eye and the problems that 
arise during this process [136]. It has been shown that a high 
degree of cross-linking in chitosan nanoparticles allows to 
increase drug retention and facilitates penetration into the 
eyes.

The following research describes in detail the recent 
developments of chitosan blends with an emphasis on elec-
trospun nanofibers, which represent a new class of biomate-
rials, in the field of biomedical applications (drug delivery, 
wound healing, tissue engineering, biosensing, regenerative 
medicine) (Fig. 7) [137].

A new method (electrospinning) for the production of 
chitosan nanofibers with a large surface area and porosity 
was considered [138]. Specialists working with this material 
can optimize the properties of these fibers and expand their 
range of applications. Thus, it is indicated that the develop-
ment of complex organ structures will be achieved by the 
method of electrospinning in combination with 3D printing 
technology, three-dimensional scaffolds will be designed, 

Fig. 6  Applications of chitosan-based biomaterials in infection dis-
eases [127]. Chitosan biomaterials having good biocompatibility, 
bioactivity and biosafety, demonstrate great potential in the field of 
infection control
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integrated with growth factors and cells with high viability. 
It is noted that despite the fact that specialists were able 
to simulate the structure and morphology of natural tissue, 
these studies need further clinical trials until they can be 
reliably applied in medical practice.

Chitosan-g-poly(acrylic acid)/attapulgite/sodium algi-
nate composites were synthesized as drug delivery matri-
ces [139]. It was found that the composite hydrogels dis-
played high pH-sensitivity. The cumulative release ratios of 
diclofenac sodium from the hydrogel were 3.76% at pH = 2.1 
and 100% at pH = 6.8 within 24 h, respectively. It has been 
noted that such pH-sensitive polymeric materials can be 
offered for the development of new controlled drug deliv-
ery systems.

Hydrogels based on different ratios of chitosan and 
sodium alginate were synthesized by gamma irradiation in 
the presence of glutaraldehyde, as a cross-linking agent. It 
was found that these blend hydrogels exhibited high water 
swelling and showed high thermal stability. Also, pH respon-
sive release character of ketoprofen drug was studied in this 
research [140].

The recent developments in chitosan delivery systems 
for the treatment of brain tumors and neurodegenerative 
diseases are presented [141]. It has been found that chi-
tosan nanoparticles improve therapeutic efficacy in various 
brain diseases due to their biocompatibility, biodegradabil-
ity, low toxicity, controlled release, mucoadhesiveness and 
effective absorption by nasal mucosa and tumor cells. Chi-
tosan nanoparticles are also often used as carriers for the 
delivery of therapeutic agents, successfully increasing their 

concentration in the brain, and when administered intrana-
sally chitosan nanoparticles are commonly used to deliver 
drugs to the brain and can increase nasal residence time and 
absorption by the nasal mucosa.

It is known that chitosan composites are widely used 
in medical practice (treatment of burns, artificial kidneys, 
blood anticoagulation and bone, tendon or blood vessel engi-
neering), and also developed for use in biosensors, packag-
ing, separation processes, food or agricultural industries, 
and catalytic processes. It is planned to create modulated 
three-dimensional structures of chitosan using cross-linking 
processes that improve its use in various fields of medicine, 
as well as the development of porous catalysts based on chi-
tosan in order to increase the efficiency of catalytic processes 
by increasing the number of available active sites [142].

The presence of electron-donating amino and hydroxyl 
groups allows to use chitosan biopolymers in the separation 
and purification of biologically active compounds (nucleic 
acids and products of their hydrolysis, steroids, amino acids). 
Recent studies have indicated usage of chitosan-based com-
pounds as effective materials to inhibit biofilm formation 
and attenuate of virulence properties by various pathogenic 
bacteria [143].

Application of chitosan biopolymers 
in environmental protection

Environmental pollution with heavy toxic metals is dan-
gerous for all living organisms. Currently, methods (such 
as bioadsorption, solvent extraction, remediation by plants 

Fig. 7  Electrospun nanofibers 
[137] as a novel class of materi-
als that can be used in various 
biomedical applications

259   Page 8 of 19 Journal of Polymer Research (2022) 29: 259



1 3

and microbial communities, green separation by hydrogel 
polymers, immobilization, and others) are being developed 
for the extraction of heavy metals from soil and wastewa-
ter. Taking into account the ingestion of heavy metals by 
humans with food and to prevent serious risks to human 
health, development of effective methods for removal of 
heavy toxic metals and to eliminate the toxicity of these 
metals in air, soil, and water is of great importance. The 
food chain of the adsorption process of heavy toxic metals 
by humans is shown in Fig. 8 [144, 145].

In work [147] it was shown that chitosan hydrolysates 
obtained by hydrolysis of high-molecular-weight chitosan by 
the fenton reaction can be used as potent agents that block 
or form tight complexes with fine dust in the air, containing 
some solid particles and unknown species of microorgan-
isms. This data can be used in the future for the production 
of various dust-proof masks and filters for the purpose of 
human healthcare.

Nanomaterials prepared on the basis of chitosan and its 
modified forms together with carbon nanotubes have been used 
as bacterial disinfectors of various pollutants in the field of 
water purification [148]. The use of these materials compared 
to ozonation, chlorination and other disinfection methods has 
demonstrated the absence of treatment by-products. In the 
future, the authors plan to develop materials with increased sta-
bility and low toxicity, and pay special attention to the design 
of nanomaterials, which affects the properties and efficiency 
of the material, in order to eliminate undesired adsorption of 
biomolecules and increase antibacterial activity.

A promising direction for application of chitosan 
biopolymers is the sphere of environmental protection, 
for development of drugs with radioprotective properties, 
sorbents for the isolation of radionuclides [149]. Chitosan 
can also be used as a flocculant for water treatment, sur-
factants and membranes in ultrafiltration, reverse osmosis 
and evaporation, purification of industrial effluents con-
taining heavy metal ions [150–154]. Chitosan is capable of 

forming complexes with transition metals [155, 156]. The 
heavy metal complexes are formed as a result of donation 
of a nonbonding pair of nitrogen or oxygen electrons on 
the -NH2 and/or -OH groups, respectively, to a heavy metal 
ion. Chitosan granules obtained by cross-linking chitosan 
with tripolyphosphate have significant adsorption proper-
ties towards the metal ions and could be effectively used in 
wastewater treatment [157–159]. The nature of the cation is 
very important in the mechanism of interaction; the affinity 
of chitosan for cations absorbed on film shows selectivity in 
the following order [160]:

One of the important applications of chitosan biopolymers 
is connected with their ability to bind heavy and toxic metal 
ions. The adsorption capacity values of modified chitosans 
(MChs) for metal ions removal were reported by Zhang et al. 
[161]. It has been noted that adsorption process depends not 
only on adsorbent structure (modifications of chitosan) but 
also on conditions of the process (pH, temperature, adsor-
bent dosage, contact time, co-existing ions). The following 
results for Cu(II) ions adsorption were observed on various 
MChs (Table 1).

Authors of research [162] developed monodisperse 
microspheres of chitosan by the microfluidic method and 
carried out experiments to study the adsorption character-
istics to remove copper ions from waste water. The adsorp-
tion mechanism was developed based on various adsorption 
kinetics and isotherms models. The research results showed 
a high adsorption capacity (75.52 mg/g) and a readsorption 
efficiency of 74% after 5 cycles. The adsorption capacity in 
the presence of other competing ions was also studied by 
the density functional theory (DFT) analysis. It was shown 
that the most energetically favorable structure of the studied 
metal complexes is the central model, where metal ions are 
coordinatedly bound to several amino groups (Fig. 9).

Pb(II) imprinted magnetic biosorbent was prepared by 
means of lead ion imprinting technology and cross-linking 
reactions between chitosan,  Fe3O4 and Serratia marcescens 
in order to remove of  Pb2+ ions. The influence of solution pH, 
adsorbent dosage, selectivity of sorption and desorption pro-
cesses were studied on the adsorption of lead ion. Kinetics 
and thermodynamics of adsorption process were investigated 
and adsorbent was studied by XRD, VSM, SEM, EDS, FTIR, 
XPS and BET analyses. It has been established that nitrogen of 
amino group and oxygen of hydroxyl group in Pb(II) imprinted 
magnetic biosorbent were coordination atoms [163].

A method of heavy metal ions removal by bioadsorption 
with hybrid 3D printing technology was proposed [164]. For 
this purpose, 3D chitosan composite of a monolithic struc-
ture of reusable application was prepared, which showed 
high efficiency in contrast to conventional biosorbents. The 

Cu+2 >> Hg+2 > Zn+2 > Cd+2 > Ni+2 > Co+2 ∼ Ca+2

Fig. 8  Adsorption process of heavy metals from water, soil, air to food 
chain and finally to human [146]

Page 9 of 19    259Journal of Polymer Research (2022) 29: 259



1 3

adsorption capacity of this material was about 13.7 mg/g at 
T = 25 °C and pH = 5.5. The analyses performed showed that 
the –NH2 and –OH functional groups of chitosan are actively 

involved in the adsorption process, which indicates the pos-
sibility of this sorbent using to remove numerous metal ions 
from different solutions.

Fig. 9  Structures of investigated divalent metal-CS complexes [162]

Table 1  Experimental conditions and adsorption capacities of MChs for the removal of Cu(II) ions from aqueous solutions [161]

Modified chitosan Characterization methods Amount of Cu(II)
mg/g

Optimum conditions

pH T(K) contact 
time(min)

Chitosan/sulfydryl-functionalized grapheme oxide composite FTIR, TG, SEM, XRD 425.00 2.0 293 30
Carbonaceous sulfur-containing chitosan–Fe(III) FTIR, SEM, NEXAFS 413.20 6.0 298 15
Chitosan/poly(vinyl amine) composite beads FTIR 192.57 4.5 298 500
Epichlorohydrin o-crosslinked maleic acyl chitosan adsorbent FTIR, XRD 132.50 5.0 303 90
Chitosan–epichlorohydrin–triphosphate adsorbent FTIR, EDS, TGA, DSC 130.72 6.0 298 1800
Grafted chitosan beads FTIR, SEM 126.00 6.0 303 300
Cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's 

base resin
SEM, FTIR, TGA, XRD 124.00 5.0 303 120

8-Hydroxyquinioline-2-carboxaldehyde chitosan FTIR, 13C-NMR, DSC, SEM 88.07 5.0 303 360
Chitosan-modified  MnFe2O4 nanoparticles XRD, TEM, FTIR, zeta potential 65.10 6.5 298 500
Epichlorohydrin cross-linked xanthate chitosan FTIR, 13C-NMR, XPS 43.47 5.0 323 1440
Chitosan/poly(vinyl) alcohol thin adsorptive membranes modified 

with amino functionalized multiwalled carbon nanotubes
FTIR, SEM, permeability 20.10 5.5 313 240

Chitosan/sporopollenin microcapsules SEM, FTIR, TGA 1.34 5.5 298 120
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In work [165, 166] recent data on removal of lead (Pb), 
cadmium (Cd), mercury (Hg) and arsenic (As) by chitosan-
based magnetic adsorbents from various aqueous solutions 
are presented. It has been shown that these adsorbents have 
a high adsorptive capacity towards toxic metals and can 
be reused in consecutive adsorption–desorption cycles. 
Langmuir isotherm model confirms good monolayer capac-
ity values of 341.7 mg/g for lead, 152 mg/g for mercury, 
321.9 mg/g for cadmium and 65.5 mg/g for arsenic (Fig. 10).

Removal of cadmium ions from waste water was studied 
using polypropylene/sisal fiber/banana fiber (PP/SF/BF) 
and chitosan/sisal fiber/banana fiber (CS/SF/BF) composite 
materials as adsorbents. It has been established that sorption 
capacity of CS/SF/BF composite (419 mg/g) is higher than 
PP/SF/BF composite (304 mg/g), and permits multilayer 
adsorption. The carried out tests have shown that adsorp-
tion process was best satisfied with the Freundlich isotherm 
[167].

Modified chitosan-based nanocomposites (MCS/GO-
PEI) were prepared for removal toxic heavy metals and 
organic compounds from environmental water. The results 
of research showed that sorption process was characterized 
by pseudo-second-order kinetic and Langmuir isotherm 
model. High adsorptive capacities of these samples for 
arsenic, mercury ions, congo red, amaranth (220.26, 124.84, 
162.07, 93.81 mg/g, respectively) were presented and the 
possibility of re-using these nanocomposites as promising 
adsorbents was shown [168]. Preparation of graphene oxide/
chitosan (GO/CS) composites as new promising sorbent 
materials for removal of heavy metal ions, dyes and other 
organic molecules from aquatic environment is presented 
in paper [169, 170]. Sorption of copper (II), cobalt (II) and 
iron (III) ions, using chitosan composite sponges prepared 

by ice-segregation procedure, was studied for purification 
of waste water [171]. It has been determined that iron (III) 
ions were mainly adsorbed from two-component mixtures 
with cobalt (II) ions at pH = 4, whereas copper (II) ions were 
removed from two-component mixtures with cobalt (II) ions 
at pH = 6. Carried out experiments showed high chemi-
cal stability and reusability of these sponges in sorption– 
desorption processes.

Nitrogen-enriched chitosan-based activated carbon 
biosorbent was prepared for separation of Cr(VI) and Pb(II) 
ions from contaminated water. Thermodynamic parameters 
have been studied, and kinetics of adsorption of these metal 
ions is well-fitted by a pseudo-second-order model. High 
efficiency, availability, recyclability, and cost effectiveness 
make it possible to use this biosorbent for wastewater treat-
ment [172, 173].

Magnetic phosphorylated chitosan composite (P-MCS) as 
an adsorbent for Co(II) ions was prepared by authors [174]. 
Adsorption capacity for Co(II) was equal to 46.1 mg/g. 
Adsorption isotherms and kinetic models of these ions well 
fitted the Langmuir model and the pseudo-second-order 
model, respectively. The carried out experiments have 
shown dependence of Co(II) adsorption process on surface 
chelation between functional groups and metal ions, and 
possibility of use P-MCS for treatment of wastewater.

In order to eliminate the limitations in the use of chitosan 
as an adsorbent for the removal of heavy metals, such modi-
fications as cross-linking, grafting, and the use of magnetic 
chitosan (modified with  Fe3O4) were carried out [175]. It 
was suggested in further studies to focus attention on: issues 
of regeneration and desorption; replacing glutaraldehyde and 
epichlorohydrin as crosslinking agents with less toxic ones; 
the use of an adsorbent that does not depend on pH; the use 
of various optimization tools (for example, the response sur-
face methodology) and other issues in order to use chitosan 
on an industrial scale.

New class of crystalline porous composite consisting of 
metal ions and multidentate organic ligands is metal organic 
framework (MOF), which showed an appreciable capabil-
ity in wastewater treatment for the removal of heavy metal 
ions. Functionalization of chitosan with ionic liquids (new 
class of salts with combination of organic and inorganic 
ions and with very unique and novel properties) was found 
to have increased adsorption capacity. They are immobi-
lized on a solid support or they chemically react due to their 
high reactivity in adsorption process. Analyses carried out 
in work [176] showed that introduction of ionic liquids in 
chitosan improves thermal stability and heavy metal uptake 
properties.

Chitosan conjugated magnetite nanoparticle (CH-MNP) 
as an effective adsorbent was synthesized for the removal of 
Pb(II) ions by means of controlled co-precipitation technique 
and studied by response surface methodology (RSM) for 

Fig. 10  Mechanism of monolayer chemical adsorption of toxic metal 
ions on the surface of chitosan-based magnetic adsorbent [165]. 
Metal ions, marked by red circles, are gradually adsorbed on the sur-
face of the magnetic adsorbent
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optimization of process parameters [177]. Optimum value of 
pH, adsorbent concentration and contact time were obtained 
as 5.1, 1.04 g/L, and 59.9 min, respectively. Adsorption iso-
therm data were correlated well with the Langmuir adsorp-
tion isotherm model, and the equilibrium data followed the 
pseudo-second-order kinetics and intraparticle diffusion 
kinetic model.

New EDTA modified γ-MnO2/chitosan/Fe3O4 nanocom-
posite was produced for the removal of heavy ions from 
aqueous solutions. Experiments data have been shown 
high adsorption capacities for Pb(II) and Zn(II) (310.4 and 
136 mg/g, respectively). Results of thermodynamic tests 
(ΔG° < 0, ΔH° > 0, and ΔS° > 0) showed that the nature of 
adsorption by this nanocomposite for Pb(II) and Zn(II) ions 
is spontaneous and endothermic, and is favored at higher 
temperatures [178].

Adsorption and removal of chromium (VI) ions from 
aqueous solutions, using chitosan hydrogel cross-linked 
with polyacrylic acid and N, N'-methylenebisacrylamide, 
has been studied in paper [173]. Evaluation of adsorp-
tion mechanism was carried out using Langmuir, Freun-
dlich, Redlich-Peterson, and Sips nonlinear isotherms. The 
removal of chromium (VI) at pH 4.5 and an initial metal 
concentration of 100 mg/L was 94.72%. It was proposed to 
use chitosan hydrogel as an economical and environmentally 
friendly adsorbent of heavy metal ions for water and waste-
water treatment.

A new efficient method of adsorption and removal of 
heavy metal ions with electric field-driven from wastewater 
has been proposed [179]. A composite adsorbent based on 
chitosan (CS) and sodium phytate (SP) deposited on a poly-
ethylene glycol terephthalate (PET) material was used and 
placed near the cathode in a pair of titanium plate electrodes. 
Experiments have shown that the rate of copper ions removal 
adsorbed on the CS-SP/PET adsorbent increased from 56 to 
88% for 10 mg Cu (II) solution per liter when the applied 
voltage was from 0 to 1.2 V (energy consumption was eco-
nomical). The adsorption mechanism was correlated to the 
Langmuir isotherm model and the kinetic equation of the 
pseudo-second order.

Chitosan and silica gel-based composite was prepared 
with the purpose to study the adsorption of heavy metal ions 
in various solutions [180]. This composite was studied by 
FTIR and SEM–EDS methods in order to obtain information 
about the presence of active sites and surface morphology. 
The study of the adsorption process by this material showed 
the maximum percentage of removal of Cu (89.78%), Pb 
(96.9%) and Ni (69.33%) at pH = 5, Hg (92.78%) at pH = 6 
with adsorbent mass of 1.5  g, temperature 30 °C and 
120 min contact time. Adsorption of Pb is best satisfied to 
pseudo-first order, whereas pseudo-second order is best fit-
ted to the adsorption of Cu, Ni and Hg. Obtained values of 

change in enthalpy testify to the effect that both physical and 
chemical adsorption occur in this process.

A highly adsorptive cross-linked carboxymethyl chitosan 
(CMC)/2,3-dimethoxybenzaldehyde Schiff base complex 
was synthesized for removal of heavy metals such as lead 
(II) and cadmium (II) ions from aqueous solutions and char-
acterized using FTIR, XRD and SEM analysis [181]. It was 
confirmed that adsorption follows the Freundlich model and 
the pseudo-second order kinetic model. The cross-linked 
Schiff base has been found to be an effective, environmen-
tally friendly and inexpensive adsorbent.

Development of a new economical and environmentally 
friendly chitosan nanoadsorbent has been proposed for water 
purification [182]. Use of inorganic nanomaterials, agricul-
tural waste, adsorbents based on polymer nanocomposites 
for removing of heavy metal ions such as Hg (II), Cu (II), 
Cr (VI), Zn (II), Co (II), Cd (II), Pb (II) from wastewater has 
been studied. Experiments have shown that polymer-based 
materials have a strong chelating ability towards heavy metal 
ions, fast adsorption kinetics, and are well regenerated due 
to the synergistic effect of polymers and various nanofillers 
present in nanocomposites.

Hydrogels based on different ratios of carboxymethyl 
cellulose (CMC) and carboxymethyl chitosan (CMCh) and 
prepared by γ-irradiation showed high adsorption capacities 
for Pb and Au ions. It has been established that the effective 
sorption of these metal ions occurred with amino groups of 
the hydrogel with (CMC/CMCh) composition of 75/25 or 
50/50. Properties of the obtained hydrogels (gel fraction, 
swelling ratio, gel strength) were also studied [183].

Carboxymethylated chitosan hydrogels were obtained 
by γ-ray irradiation crosslinking method. Kinetic studies of 
sorption process were carried out with a purpose to deter-
mine favourable conditions for the adsorption of Fe(III) 
ions on these hydrogels and showed that maximum uptake 
of Fe(III) ions was equal to 18.5 mg/g at pH = 4.7 [184]. 
Favorable adsorption behavior was explained due to the 
coordination of Fe(III) ions with amino, hydroxyl and car-
boxyl groups in the structures of the proposed hydrogels.

Application of chitosan biopolymers in other 
spheres

Chitosan is widely used in cosmetology as a moisturizer, 
emulsifier, antistatic, emollient for hair and skin care. Chi-
tosan biopolymers are polycation hydrocolloids that become 
viscous at interaction with acid and can act as abrasive film 
formers interacting with integuments and hair. Its use as an 
antioxidant agent and gelling agent in the food industry has 
also been proven [185, 186]. This biopolymer is used as a 
food wrap owing to its ability to form semipermeable tough, 
long-lasting, flexible films, thus extending the shelf life of 
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food [187, 188], inhibiting microbial growth [189, 190]. 
Chitosan has been used in agriculture as antifungal agents 
and also to accelerate the growth of plant and decelerate root 
knot worm infestations [191].

In the paper and textile industry, chitosan is applied to cel-
lulose fiber during the formation of paper, while the strength 
of the paper sheet is significantly increased, the resistance 
to bursting, tearing, and image stability are improved. Chi-
tosan is used to improve the dyeing quality of fabrics made 
from various fibers. There are known data on the use of this 
biopolymer for the preparation of antistatic, stain-resistant, 
printing and finishing materials, for the removal of dyes and 
the manufacture of textile seams, threads and fibers as well 
[192].

Commercial chitosan products

Chitosan can be produced from different sources and the 
most traditional source of chitosan is from waste crusta-
ceans’ shells from the seafood processing industry, such as 
crab or shrimp shells. While research has indicated the avail-
ability of other sources, these are currently the most sources 
actively explored on a commercial scale. Chitosan market 
volume is expected to reach 2.55 ×  109 US dollar by 2022. 
Although many articles have been published during the last 
twenty years, chitosan applications in the biomedical field 
are still limited, mainly due to the difficulty of obtaining of 
the biopolymer with high purity and reliability at its source. 
Furthermore, production of new chitosan-based materials is 
quite limited, mainly due to their cost, which remains higher 
than that of petroleum-based polymers with similar proper-
ties [131]. It is required to develop more economical and 
environmentally friendly methods in order to obtain chitosan 
and convert it into useful products. On the other hand, the 
production cost of crustaceans based chitosan is cheap com-
pared with fungal based chitosan. Crustaceans raw materials 
are readily available and cheap whereas the cost of raw mate-
rials is the main bottleneck for fungal chitosan production. 
Crustaceans chitosan can be found from 10 US dollar per kg 
to 1000 US dollar per kg. It also depends on product quality 
and application [193].

It should be noted that some commercial products of chi-
tosan are known in the world market. Different forms of 
chitosan-based materials are used as wound dressing (Hem-
Con® Bandage, ChitoGauze® PRO, ChitoFlex® PRO, Chi-
toSam™, Syvek-Patch®, Chitopack C® and Chitopack S®, 
Chitodine®, ChitosanSkin®, TraumaStat®, TraumaDEX®, 
Celox™), as hemostatic sealants (ChitoSeat™) in biomedi-
cal practice. Reaxon® (Medovent, Germany) is a chitosan-
based nerve conduit which is resistant to destruction, pre-
vents irritation, inflammation and infection, inhibits scar 
tissue and neuroma formation. Chitosan-based nutritional 
supplements (Epakitin™, Nutri + Gen®) are commercially 

available for use in chronic kidney disease in pets. Vari-
ous chitosan-based products (ChitoClear®, Chitoseen™-F, 
MicroChitosan NutriCology®, etc.) are for sale as safe 
weight loss supplement, cholesterol-reducing agents, and 
also as antioxidant agents.

Many chitosan-containing products (Curasan™, 
Hydamer™, Zenvivo™, Ritachitosan®, Chitosan MM222, 
Chitoseen™-K, ChitoCure®, ChitoClear®, etc.) are also 
commercially available for cosmetic and hygienic usage. 
[131].

Conclusion

At present, chitosan due to the availability, renewability 
of raw material and the unique properties is a subject of 
researches and is widely used in various fields of biotechnol-
ogy, medicine, pharmacy and industry.

In the coming years, demand for polymer-based bioma-
terials with better performance will be unquestionably the 
highest. Distribution of chitosan-based biomaterials at the 
larger scale can contribute as a sustainable and renewable 
material for the scientific developments in future. Further-
more, in the past decade in various fields of researches sig-
nificant advancement has submitted but is still incomplete 
and applications of chitosan in the biomedical area are still 
limited. There are still many unresolved issues and chal-
lenges. Bioactivity of chitosan-based polymers has been 
studied for many years, however, the structure activity rela-
tionship and the mechanism of activity needs further inves-
tigation. This might be connected with poor bioavailability, 
and lacked of human clinical trials, and all these factors 
required further analysis.

At present time, there is not enough literature informa-
tion on the application of polymer-based enterosorbents in 
medical practice, which is considered as one of the promis-
ing directions in the treatment and prevention of diseases 
of various etiologies [194, 195]. Preparation and applica-
tion of enterosorbents reduces the intensity of antibiotic 
and hormone therapy. The development of this direction 
depends on both technological possibilities and the state of 
the environment.
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