Skip to main content

Advertisement

Log in

Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An interpenetrating polymer network (IPN) containing gum acacia (GA), poly(methacrylic acid) (MAA), and poly(acrylic acid) (AA) was developed using a two-step aqueous polymerization method. Firstly, semi-IPNs were produced by radical polymerization of MAA chains onto GA in the presence of ammonium persulfate as a free radical initiator and N, N′-methylene-bisacrylamide (MBA) as a cross-linking agent using a microwave heating. To obtain a semi-IPN with a higher swelling percentage, several reaction parameters such as initiator, monomer, and crosslinker concentrations were varied. The percentage swelling (%S) was highly dependent upon the reaction conditions. The optimal reaction conditions for maximal %S were 2.55 × 10–2 mol/L initiator concentration, 12 mL solvent, 0.424 × 10–3 mol/L of monomer, and 2.16 × 10–2 mol/L cross-linker concentration, according to the findings. GA-g-poly(MAA) was the name to given to the semi-IPN. Second, IPN was created by grafting AA chains onto a GA-g-poly(MAA) matrix that had been optimized. The IPN was named as a GA-g-poly(MAA-IPN-AA). The reduction of silver ions to silver nanoparticles (AgNPs) was carried out by heating the mixture of flower extract of Koelreuteria apiculate under microwave radiation. Finally, the as-prepared semi-IPN and IPN samples were used as templates for the loading of AgNPs. XRD, FTIR, SEM, and TGA were used to characterize the synthesized semi-IPN, IPN, and their composites with AgNPs. GA, GA-g-poly(MAA), GA-g-poly(MAA-IPN-AA), and their composites with AgNPs are tested for antibacterial activity against five common bacteria strains: Escherichia coliMicrococcus luteusPseudomonas aeruginosaRhizobium species, and Staphylococcus aureus. All of the bacteria strains were shown to have a noticeable zone of inhibition when IPN and their composite with AgNPs were used. When compared to other bacteria strains, Pseudomonas aeruginosa was observed to be more vulnerable to the tested samples. The obtained results demonstrate that the synthesized systems are suitable for application as antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Abasalizadeh F, Moghaddam SV, Alizadeh E et al (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14:8

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121

    CAS  PubMed  Google Scholar 

  3. Zhu TX, Mao JJ, Cheng Y, Liu HR, Lv L, Ge MZ, Li SH, Huang JY, Chen Z, Li HQ, Yang L, Lai YK (2019) Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces 6:1900761

    Google Scholar 

  4. Kang G, Seong B, Gim Y, Lee H, Ko HS, Byun D (2019) Adv Mater Interfaces 6:1801885

    CAS  Google Scholar 

  5. Xiong R, Grant AM, Ma RL, Zhang SD, Tsukruk VV (2018) Mater Sci Eng R 125:1

  6. Duan JJ, Liang XC, Zhu KK, Guo JH, Zhang LN (2017) Soft Matter 13:345

    CAS  PubMed  Google Scholar 

  7. Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S (2020) Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polym 12:2702

    CAS  Google Scholar 

  8. Makhado E, Pandey S, Nomngongo PN et al (2018) Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J Colloid Interf Sci 513:700–714

    CAS  Google Scholar 

  9. Malatji N, Makhado E, Modibane KD et al (2021) Removal of methylene blue from wastewater using hydrogel nanocomposites: A review. Nanomater Nanotechnol. https://doi.org/10.1177/18479804211039425

    Article  Google Scholar 

  10. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zoratto N, Matricardi P (2018) Semi-IPN- and IPN-Based Hydrogels. In: Oliveira J, Pina S, Reis R, San Roman J (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_7

  12. Kaur S, Jindal R (2018) Synthesis of interpenetrating network hydrogel from (Gum Copal alcohols-collagen)-co-poly(acrylamide) and acrylic acid: Isotherms and Kinetics study for removal of methylene blue dye from aqueous solution. Mater Chem Phys 220:75–86

    CAS  Google Scholar 

  13. Sukriti KBS, Jindal R (2017) Controlled biofertilizer release kinetics and moisture retention in gum xanthan-based IPN. Iran Polym J 26:563–577

    CAS  Google Scholar 

  14. Dai Z, Yang X, Feilun Wu, Wang L, Xiang K, Li P, Lv Q, Tang J, Dohlman A, Dai L, Shen X, You L (2021) Living fabrication of functional semi-interpenetrating polymeric materials. Nat Commun 12:3422

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pérez-Álvarez L, Ruiz-Rubio L, Lizundia E, Vilas-Vilela JL (2019) Polysaccharide-based superabsorbents: synthesis, properties, and applications. In: Mondal M (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_46

  16. Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S (2020) Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. Iran Polym J 29:351–360

    CAS  Google Scholar 

  17. Sharma V, Arora N, Kumar R, Singh S, Verma S (2021) Effect of polyvinyl alcohol on electrical, spectroscopic and thermal properties of gum acacia-based gel electrolytes containing NaOH. Polym Bull. https://doi.org/10.1007/s00289-021-03915-3

    Article  Google Scholar 

  18. Aderibigbe BA, Ray SS (2017) Gum acacia polysaccharide-based pH sensitive gels for targeted delivery of neridronate. Polym Bull 74:2641–2655

    CAS  Google Scholar 

  19. Ali BH, Ziada A, Blunden G (2009) Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol 47:1–8

    CAS  PubMed  Google Scholar 

  20. Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohyd Polym 89:906–913

    CAS  Google Scholar 

  21. Patel S, Goyal A (2015) Applications of natural polymer gum arabic: a review. Int J Food Propert 18:986–998

    CAS  Google Scholar 

  22. Behravesh A, Shahrousvand M, Goudarzi A (2021) Poly(acrylic acid)/gum arabic/ZnO semi-IPN hydrogels: synthesis, characterization and their optimizations by response surface methodology. Iran Polym J 30:655–674

    CAS  Google Scholar 

  23. Abdel-Bary EM, Elbedwehy AM (2018) Graft copolymerization of polyacrylic acid onto Acacia gum using erythrosine–thiourea as a visible light photoinitiator: application for dye removal. Polym Bull 75:3325–3340

    CAS  Google Scholar 

  24. Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Ejikeme PM, Botha S, Ahmad I, Maaza M, Ezema FI (2019) Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Mater Chem Phys 237:121859

    CAS  Google Scholar 

  25. Ren Y-Y, Yang H, Wang T, Wang C (2019) Bio-synthesis of silver nanoparticles with antibacterial activity. Mater Chem Phys 235:121746

    CAS  Google Scholar 

  26. Spasojevic J, Radosavljevic A, Krstic J, Jovanovic D, Spasojevic V, Kalagasidis-Krušic M, Kacarevic-Popovic Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185

    CAS  Google Scholar 

  27. Krstic J, Spasojevic J, Radosavljevic A, Peric-Grujic A, Djuric M, Kacarevic-Popovic Z, Popovic S (2014) In vitro silver ion release kinetics from nanosilver/ poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131:40321

    Google Scholar 

  28. Inbaneson S, Ravikumar S, Manikandan N (2011) Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens. Appl Nanosci 1:231–236

    Google Scholar 

  29. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohyd Polym 75:463–471

    CAS  Google Scholar 

  30. Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohyd Polym 82:670–679

    CAS  Google Scholar 

  31. Zakia M, Koo JM, Kim D, Ji K, Huh PilHo, Yoon J, Yoo SI (2020) Development of silver nanoparticle-based hydrogel composites for antimicrobial activity. Green Chem Lett Rev 13(1):34–40. https://doi.org/10.1080/17518253.2020.1725149

    Article  CAS  Google Scholar 

  32. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82

    Google Scholar 

  33. Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) Hydrogel–silver nanoparticle composites: A new generation of antimicrobials. J Appl Polym Sci 115:1199–1207

    CAS  Google Scholar 

  34. Dai L, Nadeau B, An X, Cheng D, Long Z, Ni Y (2016) Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system. Sci Rep 6:36497. https://doi.org/10.1038/srep36497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh B, Dhiman A (2016) Design of Acacia gum–carbopol–cross-linked-polyvinylimidazole hydrogel wound dressings for antibiotic/anesthetic drug delivery. Ind Eng Chem Res 55:9176–9188

    CAS  Google Scholar 

  36. Li M, Li H, Li X, Zhu H, Xu Z, Liu L, Ma J, Zhang M (2017) A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl Mater Interfaces 9:22160–22175

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh B, Sharma S, Dhiman A (2017) Acacia gum polysaccharide based hydrogel wound dressings: Synthesis, characterization, drug delivery and biomedical properties. Carbohyd Polym 165:294–303

    CAS  Google Scholar 

  38. Bhatnagar M, Parwani L, Sharma V, Ganguli J, Bhatnagar A (2013) Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials. Ind J Exp Bio 51:804–810

    Google Scholar 

  39. Sharma S, Virk K, Sharma K, Bose SK, Kumar V, Sharma V, Focarete ML, Kalia S (2020) Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J Mol Str 1215:128298

    CAS  Google Scholar 

  40. Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella MT, Olaizola C, Ontiveros Y (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45

    CAS  PubMed  Google Scholar 

  41. Valgas C, Souza SM, Smânia EF, Smânia A Jr (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380

    Google Scholar 

  42. Rani P, Sen G, Mishra S, Jha U (2012) Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohyd Polym 89:275–281

    CAS  Google Scholar 

  43. Kaith BS, Ranjta S (2010) Synthesis of pH – Thermosensitive gum arabic based hydrogel and study of its salt-resistant swelling behavior for saline water treatment. Desalin Water Treat 24:28–37

    CAS  Google Scholar 

  44. He D, Susanto H, Ulbricht M (2009) Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Prog Polym Sci 34:62–98

    CAS  Google Scholar 

  45. Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A (2005) New super‐absorbing hydrogel hybrids from gum arabic and acrylic monomers. J Macromol Sci Part A: Pure Appl Chem 42:1655–1666

    Google Scholar 

  46. Kabiri K, Zohuriaan-Mehr MJ (2004) Superabsorbent hydrogels from concentrated solution terpolymerization. Iran Polym J 13:423–430

    CAS  Google Scholar 

  47. Sharma K, Kaith BS, Kumar V, Kumar V, Som S, Kalia S, Swart HC (2013) Synthesis and properties of poly(acrylamide-aniline)-grafted Gum ghatti based nanospikes. RSC Adv 3:25830–25839

    CAS  Google Scholar 

  48. Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction–saline emulsions. J Appl Polym Sci 124:2037–2047

    CAS  Google Scholar 

  49. Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turkish J Chem 30:595–608

    CAS  Google Scholar 

  50. Cheng Z, Li J, Yan J, Kang L, Ru X, Liu M (2013) Synthesis and properties of a novel superabsorbent polymer composite from microwave irradiated waste material cultured Auricularia auricula and poly (acrylic acid-co-acrylamide). J Appl Polym Sci 130:3674–3681

    CAS  Google Scholar 

  51. Fasiku VO, Aderibigbe BA, Sadiku ER, Lemmer Y, Owonubi SJ, Ray SS, Mukwevho E (2019) Polyethylene glycol–gum acacia-based multidrug delivery system for controlled delivery of anticancer drugs. Polym Bull 76:5011–5037

    CAS  Google Scholar 

  52. Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver–polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    CAS  Google Scholar 

  53. Li Y, Sun ZZ, Rong JC, Xie B-B (2021) Comparative genomics reveals broad genetic diversity, extensive recombination and nascent ecological adaptation in Micrococcus luteus. BMC Genomics 22:124

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang S, Sugawara S, Monodane T, Nishijima M, Adachi Y, Akashi S, Miyake K, Hase S, Takada H (2001) Micrococcus luteus Teichuronic Acids Activate Human and Murine Monocytic Cells in a CD14- and Toll-Like Receptor 4-Dependent Manner. Infect Immun 69:2025–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng Y, Mannion A, Madden CM, Swennes AG, Townes C, Byrd C, Marini RP, Fox JG (2017) Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 9:71

    PubMed  PubMed Central  Google Scholar 

  56. Lindström K, Mousavi SA (2019) Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 13:1314–1335

    PubMed  PubMed Central  Google Scholar 

  57. Wu M, Li X (2015) Chapter 87 - Klebsiella pneumoniae and Pseudomonas aeruginosa. In: Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J (eds) Molecular Medical Microbiology, (Second Edition), vol 3, Academic Press, pp 1547–1564. https://doi.org/10.1016/B978-0-12-397169-2.00087-1

  58. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu B, Owh C, Chee PL, Leow WR, Liu X, Wu Y-L, Guo P, Loh XJ, Chen X (2018) Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev 47:6917

    CAS  PubMed  Google Scholar 

  60. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci 5:1700527

    Google Scholar 

  61. Drlica K, Malik M, Kerns RJ, Zhao X (2008) Quinolone-mediated bacterial death. Antimicrob Agents Chemother 52:385–392

    CAS  PubMed  Google Scholar 

  62. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohan YM, Vimal K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82

    Google Scholar 

  64. Yan B, Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–7781

    PubMed  PubMed Central  Google Scholar 

  65. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotech 16:2346–2353

    CAS  Google Scholar 

  66. Sharma AK, Kaith BS, Shanker U, Gupta B (2020) γ-radiation induced synthesis of antibacterial silver nanocomposite scaffolds derived from natural gum Boswellia serrata. J Drug Deliv Sci Tech 56:101550

    CAS  Google Scholar 

  67. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrob Agents Chemother 46:2668–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shukla AK, Alam J, Ansari MA, Alhoshan M, Alam M, Kaushik A (2019) Selective ion removal and antibacterial activity of silver-doped multi-walled carbon nanotube/ polyphenylsulfone nanocomposite membranes. Mater Chem Phy 233:102–112

    CAS  Google Scholar 

  69. Vellora Thekkae Padil V, Nguyen NH, Ševců A, Černík M (2015) Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater 2015:10. Article ID 750726

  70. Talodthaisong C, Boonta W, Thammawithan S, Patramanon R, Kamonsutthipaijit N, Hutchison JA, Kulchat S (2020) Composite guar gum-silver nanoparticle hydrogels as self-healing, injectable, and antibacterial biomaterials. Mater Today Commun 24:100992

    CAS  Google Scholar 

  71. Deka R, Sarma S, Patar P, Gogoi P, Sarmah JK (2020) Highly stable silver nanoparticles containing guar gum modified dual network hydrogel for catalytic and biomedical applications. Carbohydr Polym 248:116786

    CAS  PubMed  Google Scholar 

  72. Yavari Maroufi L, Ghorbani M (2022) Development of a novel antibacterial hydrogel Scaffold based on guar gum/ooly (methylvinylether-alt-maleic Acid) containing cinnamaldehyde-loaded Chitosan nanoparticles. J Polym Environ 30:431–442

    CAS  Google Scholar 

  73. Ghaffari-Moghaddam M, Eslahi H (2014) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7:846–855

    CAS  Google Scholar 

  74. Fadakar Sarkandi A, Montazer M, Harifi T, Mahmoudi Rad M (2021) Innovative preparation of bacterial cellulose/silver nanocomposite hydrogels: In situ green synthesis, characterization, and antibacterial properties. J Appl Polym Sci 138:e49824

    Google Scholar 

Download references

Acknowledgements

One of the authors Kashma Sharma is thankful to the University Grant Commission (UGC), New Delhi, India, for support through Post-Doctoral Fellowship for Women [F.15-1/2017/PDFWM-2017-18-HIM-51703(SA-II).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Vishal Sharma, Sadanand Pandey or Vijay Kumar.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virk, K., Sharma, K., Kapil, S. et al. Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity. J Polym Res 29, 118 (2022). https://doi.org/10.1007/s10965-022-02978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02978-8

Keywords

Navigation