Skip to main content
Log in

β-cyclodextrin based electrospun nanofibers for arginase immobilization and its application in the production of L-ornithine

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrospinning is the most effective and efficient method for nanofiber production. In this study, polyvinyl alcohol (PVA)/β-cyclodextrin (β-CD) and PVA/β-CD/Mn2+ electrospun nanofibers were synthesized for use in arginase immobilization. The structural and morphological analysis of the β-cyclodextrin based nanofibers were determined by FTIR, XRD, TGA and SEM. Arginase was immobilized on the β-CD based nanofibers by adsorption and cross-linking methods. After immobilization β-CD based nanofibers (especially PVA/β-CD/Mn2+) demonstrated remarkable improvement in stability properties. When the free arginase lost almost all of its activity after 60 min at 80 °C, both arginase immobilized β-cyclodextrin based nanofibers protected nearly 80–90% activity at the same time. Arginase immobilized β-CD based nanofibers retained 95% of their activity in the acidic region, free arginase maintained only 10–20% of its activity. Arginase immobilized PVA/β-CD and PVA/β-CD/Mn2+ nanofibers protected approximately 50% of their activity after 16 and 20 reuses, respectively. L-ornithine production performance of arginase immobilized PVA/β-CD/Mn2+ nanofiber was found to be 64% even after 5th cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Salvatore F, Cimino F, d’Ayello-Caracciolo M, Cittadini D (1964) Mechanism of the protection by L-ornithine-L-aspartate mixture and by L-arginine in ammonia intoxication. Arch Biochem Biophys 107:499–503. https://doi.org/10.1016/0003-9861(64)90307-8

    Article  CAS  PubMed  Google Scholar 

  2. Blonde-Cynober F, Aussel C, Cynober L (2003) Use of ornithine α-ketoglutarate in clinical nutrition of elderly patients. Nutrition 19(1):73–75. https://doi.org/10.1016/S0899-9007(02)00849-3

    Article  CAS  PubMed  Google Scholar 

  3. Jalan R, Wright G, Davies NA, Hodges SJ (2007) L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses 69(5):1064–1069. https://doi.org/10.1016/j.mehy.2006.12.061

    Article  CAS  PubMed  Google Scholar 

  4. Demura S, Yamada T, Yamaji S, Komatsu M, Morishita K (2010) The effect of L-ornithine hydrochloride ingestion on human growth hormone secretion after strength training. Biosci Biotechnol Biochem 1:7–11. https://doi.org/10.4236/abb.2010.11002

    Article  CAS  Google Scholar 

  5. Sugino T, Shirai T, Kajimoto Y, Kajimoto O (2008) L-Ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr Res 28(11):738–743. https://doi.org/10.1016/j.nutres.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Tokuyama E, Shibasaki T, Kawabe H, Mukai J, Okada S, Uchida T (2006) Bitterness suppression of BCAA solutions by L-ornithine. Chem Pharm Bull 54(9):1288–1292. https://doi.org/10.1248/cpb.54.1288

    Article  CAS  Google Scholar 

  7. Huang K, Zhang T, Jiang B, Mu W, Miao M (2016) A coupled system involving arginase and urease for L-ornithine production. J Mol Catal B Enzym 133:303–310. https://doi.org/10.1016/j.molcatb.2017.01.018

    Article  CAS  Google Scholar 

  8. Zhang X, Jin L, Xianhong Y, Fei W, Li Y, Zhezhe L, Yunyun L, Lixin M (2015) High-level expression of human arginase I in Pichia pastoris and its immobilization on chitosan to produce L-ornithine. BMC Biotechnol 15:66. https://doi.org/10.1186/s12896-015-0184-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee SY, Shin HS, Park JS, Kim YH, Min J (2010) Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:235–242. https://doi.org/10.1007/s00253-009-2264-5

    Article  CAS  PubMed  Google Scholar 

  10. El-Sayed AS, Shindia AA, Diab AA, Rady AM (2014) Purification and immobilization of L-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch Pharm Res 37(10):1–10. https://doi.org/10.1007/s12272-014-0498-y

    Article  CAS  Google Scholar 

  11. Strojny R, White H (1963) Preparation of ornithine from methyl 2,5-diazidovalerate. J Org Chem 28:1942–1943. https://doi.org/10.1021/jo01042a534

    Article  CAS  Google Scholar 

  12. Esch F, Lin KI, Hills A, Zaman K, Baraban JM, Chatterjee S, Ratan RR (1998) Purification of a multipotent antideath activity from bovine liver and its identification as arginase: nitric oxideindependent inhibition of neuronal apoptosis. J Neurosci 18(11):4083–4095. https://doi.org/10.1523/JNEUROSCI.18-11-04083.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ash DE, Cox JD, Christianson DW (1999) Arginase: a binuclear manganese metalloenzyme in manganese and its role in biological processes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, Boca Raton, New York, pp 407–428. https://doi.org/10.1201/9781482289893

  14. Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17. https://doi.org/10.1042/bj3360001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aghaei H, Yasinian A, Taghizadeh A (2021) Covalent immobilization of lipase from Candida rugosa on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel. Int J Biol Macromol 178:569–579. https://doi.org/10.1016/j.ijbiomac.2021.02.146

    Article  CAS  PubMed  Google Scholar 

  16. Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1:956–968. https://doi.org/10.1021/cs200124a

    Article  CAS  Google Scholar 

  17. Mortazavi S, Aghaei H (2020) Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol 164:1–12. https://doi.org/10.1016/j.ijbiomac.2020.07.103

    Article  CAS  PubMed  Google Scholar 

  18. Işık C, Arabaci G, Ispirli Doğaç Y, Deveci I, Teke M (2019) Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Mater Sci Eng C 99:1226–1235. https://doi.org/10.1016/j.msec.2019.02.031

    Article  CAS  Google Scholar 

  19. Nezhad MK, Aghaei H (2021) Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil. Renew Energy 164:876–888. https://doi.org/10.1016/j.renene.2020.09.117

    Article  CAS  Google Scholar 

  20. Góra A, Sahay R, Thavasi V, Ramakrishna S (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51(3):265–287. https://doi.org/10.1080/15583724.2011.594196

    Article  CAS  Google Scholar 

  21. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 119:5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  23. Matthew DB, Dmitry L, Deepak T, Michel D (2007) Nano fiber based drug delivery; nanoparticulate drug delivery systems. Informa Healthcare 166:64–65

    Google Scholar 

  24. Verrect G, Chun I, Rosenblatt J, Peeters J, Dijck A (2003) Incorporation of drugs in an amorphous state in electrospun nanofibers composed of as water insoluble, non biodegradable polymer. J Control Release 92(3):349–360. https://doi.org/10.1016/S0168-3659(03)00342-0

    Article  CAS  Google Scholar 

  25. Işık C, Ispirli Doğaç Y, Deveci I, Teke M (2020) Zn2+-Doped PVA Composite Electrospun Nanofiber for Upgrading of Enzymatic Properties of Acetylcholinesterase. ChemistrySelect 5(45):14380–14386. https://doi.org/10.1002/slct.202004006

    Article  CAS  Google Scholar 

  26. Uyar T, Kingshott P, Besenbacher F (2008) Electrospinning of cyclodextrin-pseudopolyrotaxane nanofibers, Angew. Chemie 47:9108–9111. https://doi.org/10.1002/anie.200803352

    Article  CAS  Google Scholar 

  27. Celebioglu A, Uyar T (2013) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Interface Sci 404:1–7. https://doi.org/10.1016/j.jcis.2013.04.034

    Article  CAS  PubMed  Google Scholar 

  28. Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. https://doi.org/10.1021/cr500081p

    Article  CAS  PubMed  Google Scholar 

  29. Xiao P, Weibel N, Dudal Y, Corvini PFX, Shahgaldian P (2015) A cyclodextrin-based polymer for sensing diclofenac in water. J Hazard Mater 299:412–416. https://doi.org/10.1016/j.jhazmat.2015.06.047

    Article  CAS  PubMed  Google Scholar 

  30. Saallah S, Naim MN, Lenggoro IW, Mokhtar MN, Bakar NFA, Gen M (2016) Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnol Rep 10:44–48. https://doi.org/10.1016/j.btre.2016.03.003

    Article  Google Scholar 

  31. Amri C, Mudasir M, Siswanta D, Roto R (2016) In vitro hemocompatibility of PVA alginate ester as a candidate for hemodialysis membrane. Int J Biol Macromol 82:48–53. https://doi.org/10.1016/j.ijbiomac.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  32. Bordage S, Pham TN, Zedet A, Gugglielmetti AS, Nappey M, Demougeot C, Girard-Thernier C (2017) Investigation of mammal arginase inhibitory properties of natural ubiquitous polyphenols by using an optimized colorimetric microplate assay. Planta Med 83:647–653. https://doi.org/10.1055/s-0042-118711

    Article  CAS  PubMed  Google Scholar 

  33. Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: A micromethod. J Immunol Methods 174:231–235. https://doi.org/10.1016/0022-1759(94)90027-2

    Article  CAS  PubMed  Google Scholar 

  34. Bradford NM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biolchem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  35. Gilmanl JW, VanderHart DL, Kashiwagi T (1995) In: Nelson GL (ed) Fire and Polymers II, 1st edn. ACS, Washington. https://doi.org/10.1021/bk-1995-0599.ch011

  36. Tǎmǎşan M, Simon V (2012) Thermal and structural characterization of montmorillonite poly(vinyl alcohol) nanocomposites. J Optoelectron Adv Mater 14:1053–1058

    Google Scholar 

  37. Giordano F, Novak C, Moyano JR (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta 380:123–151. https://doi.org/10.1016/S0040-6031(01)00665-7

    Article  CAS  Google Scholar 

  38. Shown I, Banerjee S, Ramchandran AV, Geckeler KE, Murthy CN (2010) Synthesis of cyclodextrin and sugar-based oligomers for the efavirenz drug delivery. Macromol Symp 287:51–59. https://doi.org/10.1002/masy.201050108

    Article  CAS  Google Scholar 

  39. Abarca RL, Francisco JR, Guarda A, Galotto MJ, Bruna JE (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975. https://doi.org/10.1016/j.foodchem.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  40. Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431. https://doi.org/10.1016/j.foodres.2014.03.033

    Article  CAS  Google Scholar 

  41. Zhang X, Liu J, Yu X, Wang F, Yi L, Li Z, Ma L (2015) High-level expression of human arginase I in Pichia pastoris and its immobilization on chitosan to produce L-ornithine. BMC Biotechnol 15:66. https://doi.org/10.1186/s12896-015-0184-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li M, Yang J, Qu H, Zhang Q, Bai F, Bai G (2014) Novel immobilization of arginase ı via cellulose–binding domain and its application in producing of L-ornitine. Appl Biochem Microbiol 50(1):43–48. https://doi.org/10.1134/S0003683813060112

    Article  CAS  Google Scholar 

  43. Dala E, Szajani B (1994) Immobilization, characterization and laboratory-scale application of bovine liver arginase. Appl Biochem Biotechnol 49:203–215. https://doi.org/10.1007/BF02783058

    Article  CAS  PubMed  Google Scholar 

  44. Unissa R, Sudhakari M, Reddy ASK (2015) In vitro anticancer activity of L-arginase produced from Idiomarina sediminum; H1695. J Chem Pharm Res 7(9):764–770

    CAS  Google Scholar 

  45. Stasyuk N, Serkiz R, Mudry S, Gayda G, Zakalskiy A, Kovalchuk Y, Nisnevitch M (2011) Recombinant human arginase I immobilized on gold and silver nanoparticles: preparation and properties. Nanotechnol Dev 1(3e):11–15. https://doi.org/10.4081/nd.2011.e3

    Article  CAS  Google Scholar 

  46. Ghiaci M, Aghaei H, Soleimanian S, Sedaghat ME (2009) Enzyme immobilization: Part 2: Immobilization of alkaline phosphatase on Na-bentonite and modified bentonite. Appl Clay Sci 43:308–316. https://doi.org/10.1016/j.clay.2008.09.011

    Article  CAS  Google Scholar 

  47. Sedaghat ME, Ghiaci M, Aghaei H, Zad SS (2009) Enzyme immobilization. Part 3: Immobilization of α-amylase on Na-bentonite and modified bentonite. Appl Clay Sci 46:125–130. https://doi.org/10.1016/j.clay.2009.07.023

    Article  CAS  Google Scholar 

  48. Pathak M, Devi A, Bhattacharyya KG, Sarma HK, Subudhid S, Lald B (2015) Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Adv 5:66037–66046. https://doi.org/10.1039/C5RA08636A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of Ceyhun Işık’s PhD thesis and was supported by The Scientific and Technological Research Council of Turkey (Project no: TUBITAK‐218Z092) and Mugla Sitki Kocman University Research Fund (Project no: MUBAP 19/076/04/1).

Funding

The authors would like to thank the The Scientific and Technological Research Council of Turkey (Project no: TUBITAK‐218Z092) and Mugla Sitki Kocman University Research Fund (Project no: MUBAP 19/076/04/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyhun Işik.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işik, C., Teke, M. β-cyclodextrin based electrospun nanofibers for arginase immobilization and its application in the production of L-ornithine. J Polym Res 29, 121 (2022). https://doi.org/10.1007/s10965-022-02968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02968-w

Keywords

Navigation