Skip to main content
Log in

Colloidal bioactive nanospheres prepared from natural biomolecules, catechin and L-lysine

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Recently, major attention has been devoted to exploring and increase biomedical applications of catechins by directly employing them as constituents of nano-vehicles. Here, (+)-catechin (CAT) was integrated with another benign biomolecule, L-Lysine (LYS) using formaldehyde (FA) via single-step Mannich condensation reaction and self-assembled supramolecular CAT-LYS networks were synthesized. By using various molar feed ratios of CAT, LYS, and FA (CAT:LYS:FA), different formulations of CAT-LYS particles were obtained as CAT-LYS-1(1:1:1), CAT-LYS-2(2:1:1), CAT-LYS-3(1:2:1), and CAT-LYS-4(1:1:2) particles. The CAT-LYS-4 particles with the highest gravimetric yield of 68.9 ± 6.0% and 783.6 ± 56.6 nm hydrodynamic diameter was chosen for bioactivity studies. The CAT-LYS-4 particles exhibited 190.4 ± 1.3 µg/mL CAT-equivalent antioxidant capacity at 1000 µg/mL concentration with TEAC value of 0.24 ± 0.01 µmole Trolox-equivalent/g antioxidant activity. They showed 16.81 ± 3.47% Fe(II) chelation capacity at 350 µg/mL and 185.8 ± 22.8 µmole Fe(III) reducing power at 500 µg/mL concentration. Moreover, the CAT-LYS-4 particles retained more than half of the α-glucosidase inhibition activity of CAT in particulate form. Besides, a 50-fold improvement was achieved on the hemolytic blood compatibility of CAT-LYS-4 particles upon integration of LYS into CAT backbone (4.7 ± 1.2% at 250 µg/mL) compared to hemolysis ratio of native CAT molecules. They did not show coagulation effects up to 500 µg/mL concentration with > 94% clotting indices. Hence, the CAT-LYS particles with enhanced blood compatibilities and well-retained inherent bioactivities of their precursors in 3D colloidal particulate structures can serve as natural biocolloids for drug/active molecule transport applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saka R, Chella N (2021) Nanotechnology for delivery of natural therapeutic substances: a review. Environ Chem Lett 19:1097–1106. https://doi.org/10.1007/s10311-020-01103-9

    Article  CAS  Google Scholar 

  2. Chang EH, Harford JB, Eaton MAW et al (2015) Nanomedicine: Past, present and future – a global perspective. Biochem Biophys Res Commun 468:511–517. https://doi.org/10.1016/j.bbrc.2015.10.136

    Article  CAS  PubMed  Google Scholar 

  3. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. Comptes Rendus Phys 12:620–636. https://doi.org/10.1016/j.crhy.2011.06.001

    Article  CAS  Google Scholar 

  4. Wang X-Q, Zhang Q (2012) pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur J Pharm Biopharm 82:219–229. https://doi.org/10.1016/j.ejpb.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  5. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  6. Dutta P, Dey J (2011) Drug solubilization by amino acid based polymeric nanoparticles: Characterization and biocompatibility studies. Int J Pharm 421:353–363. https://doi.org/10.1016/j.ijpharm.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  7. Sahiner N (2017) Single step poly( l -Lysine) microgel synthesis, characterization and biocompatibility tests. Polymer 121:46–54. https://doi.org/10.1016/j.polymer.2017.06.014

    Article  CAS  Google Scholar 

  8. Mukwaya V, Wang C, Dou H (2019) Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. Polym Int 68:306–319. https://doi.org/10.1002/pi.5702

    Article  CAS  Google Scholar 

  9. Buddolla AL, Kim S (2018) Recent insights into the development of nucleic acid-based nanoparticles for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 172:315–322. https://doi.org/10.1016/j.colsurfb.2018.08.057

    Article  CAS  PubMed  Google Scholar 

  10. Kundu A, Nandi S, Nandi AK (2017) Nucleic acid based polymer and nanoparticle conjugates: Synthesis, properties and applications. Prog Mater Sci 88:136–185. https://doi.org/10.1016/j.pmatsci.2017.04.001

    Article  CAS  Google Scholar 

  11. Civitelli R, Fedde KN, Harter J et al (1989) Effect of L-lysine on cytosolic calcium homeostasis in cultured human normal fibroblasts. Calcif Tissue Int 45:193–197. https://doi.org/10.1007/BF02556063

    Article  CAS  PubMed  Google Scholar 

  12. Civitelli R, Villareal DT, Agnusdei D et al (1992) Dietary L-lysine and calcium metabolism in humans. Nutrition 8:400–405

    CAS  PubMed  Google Scholar 

  13. Shimomura A, Matsui I, Hamano T et al (2014) Dietary l-lysine prevents arterial calcification in adenine-induced uremic rats. J Am Soc Nephrol 25:1954–1965. https://doi.org/10.1681/ASN.2013090967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wass C, Klamer D, Katsarogiannis E et al (2011) L-lysine as adjunctive treatment in patients with schizophrenia: a single-blinded, randomized, cross-over pilot study. BMC Med 9:40. https://doi.org/10.1186/1741-7015-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Durmus Z, Kavas H, Toprak MS et al (2009) l-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. J Alloys Compd 484:371–376. https://doi.org/10.1016/j.jallcom.2009.04.103

    Article  CAS  Google Scholar 

  16. Bonor J, Reddy V, Akkiraju H et al (2014) Synthesis and characterization of l-lysine conjugated silver nanoparticles smaller than 10 nM. Adv Sci Eng Med 6:942–947. https://doi.org/10.1166/asem.2014.1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sinha D (2019) Pharmacological importance of polyphenols: a review. Int Res J Pharm 10:13–23. https://doi.org/10.7897/2230-8407.1009255

    Article  CAS  Google Scholar 

  18. Losada-Barreiro S, Bravo-Díaz C (2017) Free radicals and polyphenols: the redox chemistry of neurodegenerative diseases. Eur J Med Chem 133:379–402. https://doi.org/10.1016/j.ejmech.2017.03.061

    Article  CAS  PubMed  Google Scholar 

  19. Mao X, Gu C, Chen D et al (2017) Oxidative stress-induced diseases and tea polyphenols. Oncotarget 8:81649–81661. https://doi.org/10.18632/oncotarget.20887

  20. Manikandan R, Beulaja M, Arulvasu C et al (2012) Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines. Microsc Res Tech 75:112–116. https://doi.org/10.1002/jemt.21032

    Article  CAS  PubMed  Google Scholar 

  21. Tan Q, Peng L, Huang Y et al (2019) Structure-activity relationship analysis on antioxidant and anticancer actions of theaflavins on human colon cancer cells. J Agric Food Chem 67:159–170. https://doi.org/10.1021/acs.jafc.8b05369

    Article  CAS  PubMed  Google Scholar 

  22. Kitada S, Leone M, Sareth S et al (2003) Discovery, characterization, and structure−activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 46:4259–4264. https://doi.org/10.1021/jm030190z

    Article  CAS  PubMed  Google Scholar 

  23. Abdal Dayem A, Choi H, Yang G-M et al (2016) The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients 8:581. https://doi.org/10.3390/nu8090581

    Article  CAS  PubMed Central  Google Scholar 

  24. Niedzwiecki A, Roomi M, Kalinovsky T, Rath M (2016) Anticancer efficacy of polyphenols and their combinations. Nutrients 8:552. https://doi.org/10.3390/nu8090552

    Article  CAS  PubMed Central  Google Scholar 

  25. Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042. https://doi.org/10.1021/np9904509

    Article  CAS  PubMed  Google Scholar 

  26. Hou XL, Tong Q, Wang WQ et al (2015) Suppression of inflammatory responses by dihydromyricetin, a flavonoid from ampelopsis grossedentata, via inhibiting the activation of NF-κB and MAPK signaling pathways. J Nat Prod 78:1689–1696. https://doi.org/10.1021/acs.jnatprod.5b00275

    Article  CAS  PubMed  Google Scholar 

  27. Hanáková Z, Hošek J, Kutil Z et al (2017) Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J Nat Prod 80:999–1006. https://doi.org/10.1021/acs.jnatprod.6b01011

    Article  CAS  PubMed  Google Scholar 

  28. Escribano-Ferrer E, Queralt Regué J, Garcia-Sala X et al (2019) In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringenin chalcone, and quercetin in mice. J Nat Prod 82:177–182. https://doi.org/10.1021/acs.jnatprod.8b00366

    Article  CAS  PubMed  Google Scholar 

  29. Flores-Bocanegra L, González-Andrade M, Bye R et al (2017) α-glucosidase inhibitors from salvia circinata. J Nat Prod 80:1584–1593. https://doi.org/10.1021/acs.jnatprod.7b00155

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Kong Y, Miao J et al (2020) Spectroscopy and molecular docking analysis reveal structural specificity of flavonoids in the inhibition of α-glucosidase activity. Int J Biol Macromol 152:981–989. https://doi.org/10.1016/j.ijbiomac.2019.10.184

    Article  CAS  PubMed  Google Scholar 

  31. Wu T, Zang X, He M et al (2013) Structure-activity relationship of flavonoids on their anti-escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem 61:8185–8190. https://doi.org/10.1021/jf402222v

    Article  CAS  PubMed  Google Scholar 

  32. Miklasińska M, Kępa M, Wojtyczka R et al (2016) Catechin hydrate augments the antibacterial action of selected antibiotics against staphylococcus aureus clinical strains. Molecules 21:244. https://doi.org/10.3390/molecules21020244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wall ME, Wani MC, Manikumar G et al (1988) Plant antimutagenic agents, 2. Flavonoids. J Nat Prod 51:1084–1091. https://doi.org/10.1021/np50060a006

    Article  CAS  PubMed  Google Scholar 

  34. Shukla AS, Jha AK, Kumari R et al (2018) Role of catechins in chemosensitization. In: Role of nutraceuticals in chemoresistance to cancer. Elsevier, pp 169–198

  35. Farkhondeh T, Yazdi HS, Samarghandian S (2019) The protective effects of green tea catechins in the management of neurodegenerative diseases: a review. Curr Drug Discov Technol 16:57–65. https://doi.org/10.2174/1570163815666180219115453

    Article  CAS  PubMed  Google Scholar 

  36. Rani A, Jha I, Venkatesu P (2018) Undesirable impact on structure and stability of insulin on addition of (+)-catechin hydrate with sugar. Arch Biochem Biophys 646:64–71. https://doi.org/10.1016/j.abb.2018.03.032

    Article  CAS  PubMed  Google Scholar 

  37. Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of alpha-Glucosidase and alpha-Amylase by Flavonoids. J Nutr Sci Vitaminol (Tokyo) 52:149–153. https://doi.org/10.3177/jnsv.52.149

    Article  CAS  Google Scholar 

  38. Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta - Biomembr 1147:132–136. https://doi.org/10.1016/0005-2736(93)90323-R

    Article  CAS  Google Scholar 

  39. Yu M, Vajdy M (2011) A novel retinoic acid, catechin hydrate and mustard oil-based emulsion for enhanced cytokine and antibody responses against multiple strains of HIV-1 following mucosal and systemic vaccinations. Vaccine 29:2429–2436. https://doi.org/10.1016/j.vaccine.2011.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. dos Santos AN, de L Nascimento TR, Gondim BLC et al (2020) Catechins as model bioactive compounds for biomedical applications. Curr Pharm Des 26:4032–4047. https://doi.org/10.2174/1381612826666200603124418

    Article  CAS  PubMed  Google Scholar 

  41. Ai Z, Liu S, Qu F et al (2019) Effect of stereochemical configuration on the transport and metabolism of catechins from green tea across Caco-2 monolayers. Molecules 24:1185. https://doi.org/10.3390/molecules24061185

    Article  CAS  PubMed Central  Google Scholar 

  42. Zhang L, Zheng Y, Chow MSS, Zuo Z (2004) Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int J Pharm 287:1–12. https://doi.org/10.1016/j.ijpharm.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  43. Pool H, Quintanar D, Figueroa JDD et al (2012) Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 2012:1–12. https://doi.org/10.1155/2012/145380

    Article  CAS  Google Scholar 

  44. Yaneva Z, Ivanova D (2020) Catechins within the biopolymer matrix—design concepts and bioactivity prospects. Antioxidants 9:1180. https://doi.org/10.3390/antiox9121180

    Article  CAS  PubMed Central  Google Scholar 

  45. Tang D-W, Yu S-H, Ho Y-C et al (2013) Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll 30:33–41. https://doi.org/10.1016/j.foodhyd.2012.04.014

    Article  CAS  Google Scholar 

  46. Ye J-H, Augustin MA (2019) Nano- and micro-particles for delivery of catechins: Physical and biological performance. Crit Rev Food Sci Nutr 59:1563–1579. https://doi.org/10.1080/10408398.2017.1422110

    Article  CAS  PubMed  Google Scholar 

  47. Suner SS, Sahiner M, Sengel SB et al (2018) Responsive biopolymer-based microgels/nanogels for drug delivery applications. In: Stimuli responsive polymeric nanocarriers for drug delivery applications, vol. 1. Elsevier, pp 453–500

  48. Sahiner M, Sahiner N, Sagbas S et al (2018) Fabrication of biodegradable poly(naringin) particles with antioxidant activity and low toxicity. ACS Omega 3:17359–17367. https://doi.org/10.1021/acsomega.8b02292

    Article  CAS  Google Scholar 

  49. Sahiner M, Blake DA, Fullerton ML et al (2019) Enhancement of biocompatibility and carbohydrate absorption control potential of rosmarinic acid through crosslinking into microparticles. Int J Biol Macromol 137:836–843. https://doi.org/10.1016/j.ijbiomac.2019.07.032

    Article  CAS  PubMed  Google Scholar 

  50. Suner SS, Mohapatra S, Ayyala RS et al (2021) A polyphenolic biomacromolecule prepared from a flavonoid: Catechin as degradable microparticles. J Appl Polym Sci 50576. https://doi.org/10.1002/app.50576

  51. Oliver S, Hook JM, Boyer C (2017) Versatile oligomers and polymers from flavonoids – a new approach to synthesis. Polym Chem 8:2317–2326. https://doi.org/10.1039/C7PY00325K

    Article  CAS  Google Scholar 

  52. Kim Y-J, Chung JE, Kurisawa M et al (2003) Regioselective synthesis and structures of(+)-catechin-aldehyde polycondensates. Macromol Chem Phys 204:1863–1868. https://doi.org/10.1002/macp.200350041

    Article  CAS  Google Scholar 

  53. Kozlovskaya V, Kharlampieva E, Drachuk I et al (2010) Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter 6:3596. https://doi.org/10.1039/b927369g

    Article  CAS  Google Scholar 

  54. Ejima H, Richardson JJ, Caruso F (2017) Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today 12:136–148. https://doi.org/10.1016/j.nantod.2016.12.012

    Article  CAS  Google Scholar 

  55. Hlushko R, Ankner JF, Sukhishvili SA (2020) Layer-by-layer hydrogen-bonded antioxidant films of linear synthetic polyphenols. Macromolecules 53:1033–1042. https://doi.org/10.1021/acs.macromol.9b02512

    Article  CAS  Google Scholar 

  56. Wu H, Lei Y, Zhu R et al (2019) Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocoll 90:41–49. https://doi.org/10.1016/j.foodhyd.2018.12.016

    Article  CAS  Google Scholar 

  57. Guo J, Suma T, Richardson JJ, Ejima H (2019) Modular assembly of biomaterials using polyphenols as building blocks. ACS Biomater Sci Eng 5:5578–5596. https://doi.org/10.1021/acsbiomaterials.8b01507

    Article  CAS  PubMed  Google Scholar 

  58. Chen Z, Wang C, Chen J, Li X (2013) Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J Am Chem Soc 135:4179–4182. https://doi.org/10.1021/ja311374b

    Article  CAS  PubMed  Google Scholar 

  59. Bartzoka ED, Lange H, Mosesso P, Crestini C (2017) Synthesis of nano- and microstructures from proanthocyanidins, tannic acid and epigallocatechin-3-O-gallate for active delivery. Green Chem 19:5074–5091. https://doi.org/10.1039/C7GC02009K

    Article  CAS  Google Scholar 

  60. Vittorio O, Voliani V, Faraci P et al (2014) Magnetic catechin–dextran conjugate as targeted therapeutic for pancreatic tumour cells. J Drug Target 22:408–415. https://doi.org/10.3109/1061186X.2013.878941

    Article  CAS  PubMed  Google Scholar 

  61. Chung JE, Tan S, Gao SJ et al (2014) Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat Nanotechnol 9:907–912. https://doi.org/10.1038/nnano.2014.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cirillo G, Vittorio O, Hampel S et al (2013) Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity. Eur J Pharm Sci 49:359–365. https://doi.org/10.1016/j.ejps.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  63. Yi Z, Chen G, Chen X et al (2020) Preparation of strong antioxidative, therapeutic nanoparticles based on amino acid-induced ultrafast assembly of tea polyphenols. ACS Appl Mater Interfaces 12:33550–33563. https://doi.org/10.1021/acsami.0c10282

    Article  CAS  PubMed  Google Scholar 

  64. Chen X, Yi Z, Chen G et al (2019) DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. J Mater Chem B 7:4066–4078. https://doi.org/10.1039/C9TB00751B

    Article  CAS  Google Scholar 

  65. Yi Z, Chen G, Chen X et al (2020) Modular assembly of versatile nanoparticles with epigallocatechin gallate. ACS Sustain Chem Eng 8:9833–9845. https://doi.org/10.1021/acssuschemeng.0c02538

    Article  CAS  Google Scholar 

  66. Tadapaneni RK, Banaszewski K, Patazca E et al (2012) Effect of high-pressure processing and milk on the anthocyanin composition and antioxidant capacity of strawberry-based beverages. J Agric Food Chem 60:5795–5802. https://doi.org/10.1021/jf2035059

    Article  CAS  PubMed  Google Scholar 

  67. Sudan R, Bhagat M, Gupta S et al (2014) Iron (feII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). Biomed Res Int 2014:1–7. https://doi.org/10.1155/2014/179865

    Article  Google Scholar 

  68. Oliver S, Vittorio O, Cirillo G, Boyer C (2016) Enhancing the therapeutic effects of polyphenols with macromolecules. Polym Chem 7:1529–1544. https://doi.org/10.1039/C5PY01912E

    Article  CAS  Google Scholar 

  69. Kiatgrajai P, Wellons JD, Gollob L, White JD (1982) Kinetics of polymerization of (+)-catechin with formaldehyde. J Org Chem 47:2913–2917. https://doi.org/10.1021/jo00136a022

    Article  CAS  Google Scholar 

  70. Takagaki A, Fukai K, Nanjo F, Hara Y (2000) Reactivity of green tea catechins with formaldehyde. J Wood Sci 46:334–338. https://doi.org/10.1007/BF00766227

    Article  CAS  Google Scholar 

  71. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Trop J Pharm Res 12. https://doi.org/10.4314/tjpr.v12i2.19

  72. Can M, Ayyala RS, Sahiner N (2019) Crosslinked poly(Lactose) microgels and nanogels for biomedical applications. J Colloid Interface Sci 553:805–812. https://doi.org/10.1016/j.jcis.2019.06.078

    Article  CAS  PubMed  Google Scholar 

  73. Soares MCP, Gomes MK, Schenkel EA et al (2019) Evaluation of silica nanoparticle colloidal stability with a fiber optic quasi-elastic light scattering sensor. Brazilian J Chem Eng 36:1519–1534. https://doi.org/10.1590/0104-6632.20190364s20190042

    Article  CAS  Google Scholar 

  74. Geng S, Shan S, Ma H, Liu B (2016) Antioxidant activity and α-glucosidase inhibitory activities of the polycondensate of catechin with glyoxylic acid. PLoS One 11:e0150412. https://doi.org/10.1371/journal.pone.0150412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mandel SA, Avramovich-Tirosh Y, Reznichenko L et al (2005) Multifunctional activities of green tea catechins in neuroprotection. Neurosignals 14:46–60. https://doi.org/10.1159/000085385

    Article  CAS  PubMed  Google Scholar 

  76. Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  77. Vauzour D, Rodriguez-Mateos A, Corona G et al (2010) Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2:1106–1131. https://doi.org/10.3390/nu2111106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu J-L, Fan Y-G, Yang Z-S et al (2018) Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00632

  79. Kose T, Vera-Aviles M, Sharp PA, Latunde-Dada GO (2019) Curcumin and (−)- epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals 12:26. https://doi.org/10.3390/ph12010026

    Article  CAS  PubMed Central  Google Scholar 

  80. Xu L, Tu S, Chen C et al (2016) Effect of EGCG On Fe(III)-induced conformational transition of silk fibroin, a model of protein related to neurodegenerative diseases. Biopolymers 105:100–107. https://doi.org/10.1002/bip.22752

    Article  CAS  PubMed  Google Scholar 

  81. Liu J, Lu J, Kan J et al (2014) Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. Int J Biol Macromol 64:76–83. https://doi.org/10.1016/j.ijbiomac.2013.11.028

    Article  CAS  PubMed  Google Scholar 

  82. Kamalesh M (2007) Heart failure in diabetes and related conditions. J Card Fail 13:861–873. https://doi.org/10.1016/j.cardfail.2007.07.007

    Article  PubMed  Google Scholar 

  83. Al-Ishaq RK, Abotaleb M, Kubatka P et al (2019) Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 9:430. https://doi.org/10.3390/biom9090430

    Article  CAS  PubMed Central  Google Scholar 

  84. Li YQ, Zhou FC, Gao F et al (2009) Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J Agric Food Chem 57:11463–11468. https://doi.org/10.1021/jf903083h

    Article  CAS  PubMed  Google Scholar 

  85. Lambert JD, Sang S, Yang CS (2007) Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Pharm 4:819–825. https://doi.org/10.1021/mp700075m

    Article  CAS  PubMed  Google Scholar 

  86. Cai Z-Y, Li X-M, Liang J-P et al (2018) Bioavailability of tea catechins and its improvement. Molecules 23:2346. https://doi.org/10.3390/molecules23092346

    Article  CAS  PubMed Central  Google Scholar 

  87. Del Rio D, Calani L, Cordero C et al (2010) Bioavailability and catabolism of green tea flavan-3-ols in humans. Nutrition 26:1110–1116. https://doi.org/10.1016/j.nut.2009.09.021

    Article  CAS  PubMed  Google Scholar 

  88. Leslie E (2001) Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 167:3–23. https://doi.org/10.1016/S0300-483X(01)00454-1

    Article  CAS  PubMed  Google Scholar 

  89. Lam WH, Kazi A, Kuhn DJ et al (2004) A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (−)-epigallocatechin gallate [(−)-EGCG]. Bioorg Med Chem 12:5587–5593. https://doi.org/10.1016/j.bmc.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  90. Deng L, Qi Y, Liu Z et al (2019) Effect of tannic acid on blood components and functions. Colloids Surf B Biointerfaces 184:110505. https://doi.org/10.1016/j.colsurfb.2019.110505

    Article  CAS  PubMed  Google Scholar 

  91. Lang K, Lang P, Bauer C et al (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202. https://doi.org/10.1159/000086406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided for this study by the Scientific Research Commission of Canakkale Onsekiz Mart University (COMU FHD-2020-3310).

Funding

This study was financially supported by Scientific Research Commission of Canakkale Onsekiz Mart University (COMU FHD-2020-3310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1518 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, M., Sahiner, M. & Sahiner, N. Colloidal bioactive nanospheres prepared from natural biomolecules, catechin and L-lysine. J Polym Res 29, 88 (2022). https://doi.org/10.1007/s10965-022-02941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02941-7

Keywords

Navigation