Skip to main content
Log in

Effect of flame retardant on the physical and mechanical properties of natural rubber and sugarcane bagasse composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Sugarcane bagasse (SB) is waste from sugar industry. Many millions of tons of sugarcane bagasse are residues annually throughout Thailand each year. This research aimed to utilize SB mixed with the rubber compound to enhance the mechanical properties and improve flame-retardant properties. In addition, magnesium hydroxide (MH) and aluminum hydroxide (ATH) were added to study the effect of flammability of NR composites. From the results, we found that SB improved the mechanical properties and flame-retardant property, while the addition of both ATH and MH increased the efficiency of flame retardant. The cure time and scorch time of unfilled NR composites were found to be higher than that of NR filling with SB, ATH, and MH. The Mooney viscosities increased with the increase of SB, ATH, and MH. The tensile strength increased with addition of SB in composites, and when increased the content of ATH and MH tended to decrease the tensile strength of composites. The elongation at break decreased with increase in the contents of SB, ATH, and MH in composites. The microhardness, modulus at 100% and 300%, increased with the increase in SB and flame retardant. Moreover, the increase in microhardness was related to the modulus. From the horizontal burning rate analysis, it was observed that the NR composites with SB gave lower values of horizontal burning rate than the NR composites under same testing conditions. The addition of both ATH and MH enhanced to reduce the burning rate of NR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang J, Xingyu D, Wenli H, Xi G, Ding W (2013) Application properties of TCP/OMMT flame-retardant system in NR composites. J Elastom Plast 45:107–119

    CAS  Google Scholar 

  2. Kind DJ, Hull TR (2012) A review of candidate fire retardants for polyisoprene. Polym Degrad Stab 97:201–213

    CAS  Google Scholar 

  3. Menon ARR (1997) Flame-retardant characteristics of natural rubber modified with a bromo derivative of phosphorylated cashew nut shell liquid. J Fire Sci 15:3–13

    CAS  Google Scholar 

  4. Derouet D, Radhakrishnan N, Brosse JC, Boccaccio G (1994) Phosphorus modification of epoxidized liquid natural rubber to improve flame resistance of vulcanized rubbers. J Appl Polym Sci 52:1309–1316

    CAS  Google Scholar 

  5. Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS (2011) Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci 52:56–61

    CAS  Google Scholar 

  6. Huang G, Li Y, Han L, Gao J, Wang X (2011) A novel intumescent flame retardant-functionalized montmorillonite: preparation, characterization, and flammability properties. Appl Clay Sci 51:360–365

    CAS  Google Scholar 

  7. Wang DL, Liu Y, Wang DY, Zhao CX, Mou YR, Wang YZ (2007) A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol. Polym Degrad Stab 92:1555–1564

    CAS  Google Scholar 

  8. Pál G, Macskásy H (1991) Plastics their behaviour in fires. Elsevier, Amsterdam

    Google Scholar 

  9. Rigolo M, Woodhams RT (1992) Basic magnesium carbonate flame retardants for polypropylene. Polym Eng Sci 32:327–334

    CAS  Google Scholar 

  10. Katz HS, Milewski JV (1987) Handbook of fillers for plastics. Van Norstrand Reinhold, New York

    Google Scholar 

  11. Jang J, Lee E (2001) Improvement of flame retardancy of paper sludge/polypropylene composite. Polym Test 20:7–13

    CAS  Google Scholar 

  12. Zaileov GE, Lomakin SM (2002) Ecological issue of polymer flame retardancy. J Appl Polym Sci 86:2449–2462

    Google Scholar 

  13. Hornsby PR, Watson CL (1990) A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polym Degrad Stab 30:73–87

    CAS  Google Scholar 

  14. Miyata S, Imahashi T, Anabuki H (1980) Fire-retarding polypropylene with magnesium hydroxide. J Appl Polym Sci 25:415–425

    CAS  Google Scholar 

  15. Wang J, Yang S, Li G, Jiang J (2003) Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings. J Fire Sci 21:245–266

    CAS  Google Scholar 

  16. Wang J, Li G, Yang S, Jiang J (2004) New intumescent flame-retardant agent: application to polyurethane coatings. J Appl Polym Sci 91:1193–1206

    CAS  Google Scholar 

  17. Le Bras M, Bugajny M, Lefebvre JM, Bourbigot S (2000) Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polym Int 49:1115–1124

    Google Scholar 

  18. Levinṭa N, Vuluga Z, Teodorescu M, Corobea MC (2019) Halogen-free flame retardants for application in thermoplastics based on condensation polymers. SN Applied Sciences. https://doi.org/10.1007/s42452-019-0431-6

    Article  Google Scholar 

  19. Cross MS, Cusack PA, Hornsby PR (2003) Effects of tin additives on the flammability and smoke emission characteristic of halogen-free ethylene-vinyl acetate copolymer. Polym Degrad Stab 79:309–318

    CAS  Google Scholar 

  20. Hornsby PR (2001) Fire retardant fillers for polymers. Int Mater Rev 46:199–210

    CAS  Google Scholar 

  21. Ismawi DHA, Harper JF, Ansarifar A (2008) Influence of flame retardant additives on the flammability behaviour of natural rubber (NR). J Rubber Res 11:223–236

    CAS  Google Scholar 

  22. Liang J, Zhang Y (2010) A study of the flame-retardant properties of polypropylene/Al(OH)3/Mg(OH)2 composites. Polym Int 59:539–542

    CAS  Google Scholar 

  23. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A 42:579–588

    Google Scholar 

  24. Bhattacharyya D, Subasinghe A, Kim NK (2015) In: Friedrich K, Breuer U (ed) Multifunctionality of polymer composites. William Andrew, New York

  25. Suwanruji P, Tuechart T, Smitthipong W, Chollakup R (2017) Modification of pineapple leaf fiber for reinforcement thermoplastic composites by silane and isocyanate surface treatments. J Thermoplast Compos Mater 30:1344–1360

    CAS  Google Scholar 

  26. Chollakup R, Askanian H, Delor-Jestin F (2015) Initial properties and ageing behavior of pineapple leaf and palm fibre as reinforcement for polypropylene. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705715598356

    Article  Google Scholar 

  27. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639

    CAS  Google Scholar 

  28. Georgopoulos STH, Tarantili PA, Avgerinos E, Andreopoulos AG, Koukios EG (2005) Thermoplastic polymers reinforced with fibrous agricultural residues. Polym Degrad Stab 90:303–312

    CAS  Google Scholar 

  29. El-Fattah AA, El Demerdash AGM, Sadik WA, Bedir A (2015) The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene. J Compos Mater 49:3251–3262

    Google Scholar 

  30. Shaikh HM, Pandare KV, Nair G, Varma AJ (2009) Utilization of sugarcane bagasse cellulose for producing cellulose acetates: novel use of residual hemicellulose as plasticizer. Carbohyd Polym 76:23–29

    CAS  Google Scholar 

  31. Thailand: Sugar Annual (2021) USDA Foreign Agricultural Service. https://www.fas.usda.gov/data/thailand-sugar-annual-5. Accessed 04 June 2021

  32. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    CAS  Google Scholar 

  33. Monshi A, Foroughi MR, Monshi MR (2021) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. WJNSE 2:154–160

    Google Scholar 

  34. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918:98–100

    Google Scholar 

  35. El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 86:1221–1229

    Google Scholar 

  36. Bilba K, Ouensanga A (1996) Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J Anal Appl Pyrolysis 38:61–73

    CAS  Google Scholar 

  37. Xia L, Huang Z, Zhong L, Xie F, Tang CY, Tsui CP (2018) Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr(VI) from aqueous solution. Polymers 10:1–15

    Google Scholar 

  38. Wang H, Chen W, Zhang X, Wei Y, Zhang A, Liu S, Wang X, Liu C (2018) Structural changes of bagasse during the homogeneous esterification with maleic anhydride in ionic liquid 1-allyl-3-methylimidazolium chloride. Polymers. https://doi.org/10.3390/polym10040433

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sukyai P, Anongjanya P, Bunyahwuthakul N, Kongsin K, Harnkarnsujarit N, Sukatta U, Sothornvit R, Chollakup R (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Inter 107:528–535

    CAS  Google Scholar 

  40. Dos Santos RJ, Da Silva Agostini DL, Cabrera FC, Dos Reis EAP, Ruiz MR, Budemberg ER, Teixeira SR, Job AE (2014) Sugarcane bagasse ash: new filler to natural rubber composites. Polímeros 24:646–653

    Google Scholar 

  41. Mohamad N, Muchtar A, Ghazali M, Mohd DH, Azhari CH (2008) The effect of filler on epoxidised natural rubber-alumina nanoparticles composites. EJSR 24:538–547

    Google Scholar 

  42. Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US (2004) Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber–organoclay nanocomposites. Eur Polym J 40:2513–2521

    CAS  Google Scholar 

  43. Oh J, Yoo YH, Yoo IS, Huh YI, Chaki TK, Hah C (2014) Effect of plasticizer and curing system on freezing resistance of rubbers. J Appl Polym Sci 131:39795

    Google Scholar 

  44. Zirnstein B, Schulze D, Schartel B (2019) Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials 12:1932

    CAS  PubMed Central  Google Scholar 

  45. Torres GB, Dognani G, Da Silva Agostini DL, Dos Santos RJ, Cabrera FC, Aguilar CMG, De Paiva FFG, Teixeira SR, Job AE (2021) Potential eco-friendly application of sugarcane bagasse ash in the rubber industry. Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01309-6

    Article  Google Scholar 

  46. Escócio VA, Martins AF, Visconte LL, Nunes RC, Costa DM (2003) Influência da mica nas propriedades mecânicas e dinâmico-mecânicas de composições de borracha natural. Polímeros 13:130–134

    Google Scholar 

  47. Nair AB, Vijayan D, Ayswarya EP, Joseph R, Nah C (2017) Effect of aluminium hydroxide on thermal, dynamic mechanical and dielectric properties of hexafluoropropylene-vinylidinefluoride elastomeric composites. JAN 2:83–96

  48. Wagner M (1976) Reinforcing silicas and silicates. Rubber Chem Technol 49:703–774

    CAS  Google Scholar 

  49. Ishak ZAM, Bakar AA (1995) An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR). Eur Polym J 31:259–269

    CAS  Google Scholar 

  50. Okele IA, Otoikhian SK, Johnson O, Marut AJ (2013) Effect of sugar cane bagasse particle size on natural rubber compound for the production of floor mat. CTAIJ 8:144–147

    Google Scholar 

  51. Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573

    CAS  Google Scholar 

  52. Ismai H, Chia HH (1998) The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds. Euro Polym J 34:1857–1863

    Google Scholar 

  53. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos A 38:1664–1674

    Google Scholar 

  54. Rokbi M, Hocine O, Abdellatif I, Benseddiq N (2011) Effect of chemical treatment on flexure properties of natural fiberreinforced polyester composite. Procedia Eng 10:2092–2097

    CAS  Google Scholar 

  55. Nourbakhsh A, Ashori A (2009) Preparation and properties of wood plastic composites made of recycled HDPE. Compos Mater 43:877–883

    CAS  Google Scholar 

  56. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposite. Ind Crops Prod 32:627–633

    CAS  Google Scholar 

  57. Nachtigall SMB, Miotto M, Schneider EE, Mauler RS, Forte MMC (2006) Macromolecular coupling agents for flame retardant materials. Euro Polym J 42:990–999

    CAS  Google Scholar 

  58. Ramazani SAA, Rahimi A, Frounchi M, Radman S (2008) Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites. Mater Des 29:1051–1056

    Google Scholar 

  59. Beltrán-Ramírez FI, Ramos-deValle LF, Ramírez-Vargas E, Sánchez-Valdes S, Espinoza-Martínez AB, Martínez-Colunga JG, Rodríguez-Fernandez OS, Cabrera-Alvarez EN, López-Quintanilla ML (2014) Effect of nanometric metallic hydroxides on the flame retardant properties of HDPE composites. J Nanometer. https://doi.org/10.1155/2014/969184

    Article  Google Scholar 

  60. Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyaia P (2017) Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech 19:539–552

    CAS  Google Scholar 

  61. Kim NK, Dutta S, Bhattacharyya D (2018) A review of flammability of natural fibre reinforced polymeric composites. Compos Sci Technol 162:64–78

    CAS  Google Scholar 

  62. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplastic Compos Mater. https://doi.org/10.1177/0892705709356338

    Article  Google Scholar 

  63. Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part A Appl Sci Manuf 42:1710–1718

    Google Scholar 

  64. Kozłowski R, Władyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19:446–453

    Google Scholar 

  65. Hull TR, Witkowski A, Hollingbery L (2011) Fire retardant action of mineral fillers. Polym Degrad Stab 96:1462–1469

    CAS  Google Scholar 

  66. Wan L, Deng C, Zhao ZY, Chen H, Wang YZ (2020) Flame retardation of natural rubber: strategy and recent progress. Polymers. https://doi.org/10.3390/polym12020429

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhou R, Ming Z, He J, Ding Y, Jiang J (2020) Effect of magnesium hydroxide and aluminum hydroxide on the thermal stability, latent heat and flammability properties of Paraffin/HDPE phase change blends. Polym 12:180

    CAS  Google Scholar 

  68. Yeh JT, Yang HM, Huang SS (1995) Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene. Polym Degrad Stab 50:229–234

    CAS  Google Scholar 

  69. Zhang Q, Tian M, Wu Y, Lin G, Zhang L (2004) Effect of particle size on the properties of Mg(OH)2-filled rubber composites. J Appl Polym Sci 94:2341–2346

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Graduate Program Scholarship from the graduate School, Kasetsart University. The author would like to thank Siam United Rubber Company Limited for supporting all the materials in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirikanjana Thongmee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yotkuna, K., Chollakup, R., Imboon, T. et al. Effect of flame retardant on the physical and mechanical properties of natural rubber and sugarcane bagasse composites. J Polym Res 28, 455 (2021). https://doi.org/10.1007/s10965-021-02805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02805-6

Keywords

Navigation