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Abstract
The complex and incompletely understood phenomenon of shear-induced crystallization of polymers may be nowadays 
analysed via the in situ POM-shear stage methodology. In this research, the two main issues were investigated with the use 
of the Linkam CCS450 shear stage connected with POM microscope. It was found that the secondary nucleation in the tree 
well-known temperature regimes plays the greater role in the overall crystallization kinetics than the shear induced primary 
nucleation. Furthermore, it was found that the tendency towards β-phase formation in shear conditions is dependent on the 
temperature value during shear treatment. It may be concluded that the temperature is the key parameter in the primary and 
secondary nucleation process and beta-phase formation in the iPP melts.
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Introduction

Since its discovery, the isotactic polypropylene (iPP) has 
been found to have many applications in various areas in 
view of its satisfactory properties and relative low material 
cost [1–3]. The discovery of stereospecific olefins polym-
erization catalysts enabled the efficient iPP synthesis on the 
industrial scale and its widespread use in man-made mate-
rial technology, especially in the production of composites 
[4–16].

The observations of formation of different crystalline 
morphologies (e.g., spherulites or fibrils) were carried 
out as well as the crystallization kinetics (e.g., the issue of 
crystallization regimes) [17]. The last one is based on the  
Hoffman-Lauritzen theory and includes the dependence 
between the crystallites growth rate (G) and several factors, 
which are presented in Fig. 1. It can be defined by two dif-
ferent steps of nucleation: deposition of a critical nucleus 

(i) and later the deposition of stems adjacent to nuclei (g) 
[18, 19]. The secondary nucleation process may occur in 
three different crystallization regimes: regime I – where the 
g > > i; regime II – where g ~ i and regime III – where g < < i 
(Fig. 1) [19, 20].

Moreover, with the use of determined crystallites growth 
rate (G), it may be possible to prepare a curve, showing the 
values of K(g) – describing the crystallites growth—in three 
different regimes, where the key is the temperature value 
during isothermal crystallization.

It is impossible to recall the iPP without evoking the 
polymorphism phenomenon, it can be identified by dif-
ferent crystallographic forms: α, β and γ (moreover, the 
smectic form) [3, 21–23]. Polymorphism in isotactic poly-
propylene is our long-term research topic [22, 24, 25]. The 
α form is the most commonly observed form of isotactic 
polypropylene. The γ form of iPP is formed during high 
pressure crystallization as well as for short chain polymers. 
The β form of isotactic polypropylene can be obtained by 
providing suitable conditions for crystallization, such as 
high temperature gradients, the presence of shear forces or 
by using appropriate nucleating agents. The value of the 
equilibrium melting point for the β form is estimated to be 
around 150 °C. During the crystallization of the β form, it 
is possible to produce two types of spherulites. Subjecting 
to deformation above the elastic limit may convert the β 
form to the α form of an isotactic polypropylene [3]. The 
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presence of the β form in the material may result in high 
impact strength and low stiffness of the material. So far, 
the mechanism of beta form formation has not been fully 
elucidated.

Several factors, e.g.: the undercooling ratio [26, 27], the 
effect of nucleating agents [28–31] and the shear forces 
influence [32–34] have a strong impact on creating the 
supermolecular structure in iPP, especially the β-form. In 
the processing of polypropylene with use of the most pop-
ular techniques, e.g., extrusion or injection molding, shear 
forces affect the polymer. It is related to direct contact 
between the polymer and the walls of mold or processing 
nozzle and between polymer matrix and the filler parti-
cles in composites (what may be called “local shearing”) 
[35–38].

Presently used techniques allow observation of a forma-
tion of the polymer ordered structures in situ, directly during 
the shear forces treatment. There have been many attempts to 
do the research on polypropylene [39–51] and its composites 
[29, 52, 53], and also the polymer blends [54, 55] with use 
of Linkam CSS450, also called Oxford shear stage. Despite 
many results presented in the literature, the application of 
the Linkam system still enables one to make unique and 
interesting observations.

This study was focused on the polymorphism and crystal-
lization kinetics in the iPP in case of shear induced nuclea-
tion in three different crystallization regimes by using dif-
ferent crystallization temperatures.

Experimental

Materials

In the current research, the commercial isotactic polypro-
pylene Malen P S-702 (iPP) was used, with the MFR value 
13.0 g/10 min, manufactured by Bassel Orlen Polyolefins, 
Poland. The iPP granules were dried in the convection dryer 
in the temperature  80◦C for 12 h. Afterwards, with use of the 
hydraulic press (in the temperature  230◦C and with the 5 ton 
pressure), the 300 µm thick iPP foils were prepared. The iPP 
films were used in the: structural (WAXS), thermal (DSC) 
and microscopic (POM) investigations.

The structural and thermal investigations

For the analysis of iPP structure in thin films, the WAXS 
analyze (Wide Angle X-Ray Scattering) was carried out with 
the use of a horizontal diffractometer (CuKα radiation with 
use of nickel filtering, λ = 1.5418 Å). The following param-
eters were applied: voltage 30 kV, anodic current 25 mA, 
angle range 2Θ: 10–30°, counting step (2Θ): 0.04°, counting 
time: 3 s, with remaining standard parameters. Performed 
WAXS studies were used in determining the fundamental 
parameters, like: maxima intensities and amount of β-iPP 
in overall crystalline phase in the material.

In order to validate obtained WAXS results, the DSC 
studies were performed using a Netzsch Differential Scan-
ning Calorimeter, model DSC 200, in a nitrogen atmosphere. 
The samples were heated to 200 °C (at a heating rate of 
10 °C /min) and kept at this temperature for 2 min. Then, 
the samples were quenched to 40 °C at the rate of 5 °C /min 
(using nitrogen flow). The cycle was repeated twice and the 
data from the second cycle were interpreted.

Polarizing optical microscope—in situ observations 
of crystallization

In the POM investigations the polarized optical microscope 
Axio Lab A1 (Zeiss, Germany), the ToupView camera and 
Linkam CSS 450 shear-hot stage (Linkam Scientific Instru-
ments, UK) were used. The research was divided into three 
main parts:

I) observations of crystallization kinetics, II) the tem-
perature dependence of shear nucleating ability and III) the 
formation of β phase of iPP.

In the first part of the research, in order to analyze the 
morphology and crystallization kinetics, shearing protocol 
“A” was used (Fig. 2). Polypropylene films were heated 
with  30◦C/min gradient to  200◦C. The material was kept at 
the temperature 200 °C for 300 s, to reduce the “crystalline 

Fig. 1  The growth of crystalline structures in three different regimes
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memory” phenomenon. Afterwards, the melt was cooled 
with  30◦C/min gradient to the temperature  136◦C. Subse-
quently, after the regulation of the gap between plates to 
250 μm, the melt was treated with use of shear forces, which 
had specified shear rate  vs and shear time  ts (Table 1). The 
crystallization process was observed for 20 min with use of 
the POM technique.

In the second and third part of this study the shearing 
protocol “B” presented in Fig. 2 was used. After the melt-
ing in a temperature of  200◦C for 300 s, the material was 
cooled with  30◦C/min gradient to the temperature  T1. The 
used temperature  T1 values were: 154, 150, 145, 140, 138 
and  136◦C. Then the gap between plates was adjusted to 
250 μm and the shear treatment was carried out (Table 1). 
After shear treatment the melt was cooled to  138◦C and the 
isothermal crystallization of iPP was observed with the use 
of a POM microscope.

Furthermore, the observations of selective-melting of 
spherulites during heating have been carried out. The β 
phase of iPP melts in a temperature of about  150◦C, and 
the α iPP melts in a higher value of temperature, about 
160–170◦C. The samples have been sheared with values of 
shear rate and shear time presented in Table 1. The order of 
operation was analogue, like in “B” shearing protocol, but 
after melting of iPP samples the behavior of spherulites in 
increasing temperature was observed. The crystallization of 

iPP samples in quiescent conditions (without shear treat-
ment) was executed.

Interpretation of POM micrographs

Based on POM photographs, it was possible to set the very 
important parameter of crystalline structures growth. The 
spherulites growth rate (μm·s−1), which defines the spheru-
lites diameter increase during one second, was calculated on 
base of spherulites diameters measurements after 20 min of 
isothermal crystallization.

Results and discussion

The polymorphic structures of isotactic 
polypropylene

Figure 3 shows the WAXS curve prepared for iPP. It can be 
observed that there are a few significant differences in the 
supermolecular structure of examined polypropylenes. Only 
for the PP2 has the diffraction maximum at 2θ degree  16◦ 
been noticed, which suggests the β form of iPP presence in 
the material. It is an interesting phenomenon that the com-
pression molding of that polymer induces the pseudohex-
agonal form nucleation. In the research of Garbarczyk and 
Paukszta [56] the formation of β-phase in compressed iPP 
has been analyzed with a presence of β-nucleating agents. It 
has been proved that the high pressure undermines the abili-
ties of agents to nucleation. However, an intern slip between 
polymer layers (like in case of shearing model, when the 
fluid is divided into infinitely many and infinitely thin paral-
lel layers) can probably induce a small amount of β-crystalls.

The amount of β-phase (k) in the crystalline phase of 
polypropylene has been determined through use of the 

Fig. 2  The temperature and shearing protocols used: A -  for the analysis of differences in spherulites structures morphology and spherulites 
diameters, B - for the observation of crystallization regimes

Table 1  The shear and temperature parameters applied in current in-
situ, hot-shear stage POM investigations

Shearing pro-
tocol

Ts
[◦C]

vs
[s−1]

ts
[s]

A 138 1,5; 3,0; 4,5 10; 30
B 136, 138, 140, 145, 

150, 154
1,5; 4,5 10
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modified Turner-Jones equation [21], using performed 
WAXS results:

where:
Pβ1 – area of diffraction maxima coming from (300) 

β-form plane;
Pα1 – area of diffraction maxima coming from (110) 

α-form plane;
Pα2 – area of diffraction maxima coming from (040) 

α-form plane;
Pα3 – area of diffraction maxima coming from (130) 

α-form plane;
and the calculated value of k was about 0,015.
In Fig. 3 the results of the DSC analysis are presented. 

As can be seen, the low peak from β iPP phase melting in 
the temperature  152◦C in PP2 material can be observed, so 
the β-phase presence in the material has been confirmed.

k =
P�1

P�1 + P�1 + P�2 + P�3

Spherulites growth rate and crystallites morphology 
after shearing

Figure 4 shows values of the spherulites growth rate and 
density nucleation measured for iPP, crystallized in various 
shear conditions. It is known from the literature that the 
kinetics of spherulites growth closely depends on the shear 
rate. it can be observed that the higher the shear rate is, the 
higher the growth rate of spherulites.

As can be seen in Fig. 4, in the iPP sheared for 10 s, a high 
increase of G can be found, from about 0,036 to 0,055 μm/s. 
However, in the melt sheared for 30 s, the difference in the G 
parameter value between iPP samples crystallized in quies-
cent conditions and sheared samples was lower. Moreover, 
the sharp increase in growth rate was observed between melt 
crystallized in quiescent conditions and sheared with rate 
1.5  s−1, where the further growth of shear rate does not affect 
the crystallization kinetic significantly. The same correlation 
may be observed in case of nucleation density. Shear flow 
through preordering of iPP chains affects simultaneouslythe 
formation of stable nucleis (primary nucleation) as well as 
crystallization kinetics (secondary nucleation and crystal-
lites growth).

Considering the data shown in Fig. 4, it can be concluded 
that for iPP the increase of shear time decreases the influ-
ence of shear forces on crystallization kinetics as well as 
nucleation process. The shear stress affected too long, what 
perhaps over-extends the polymer chains, which impedes 
the re-arrangement after cessation of shear forces and stable 
nucleis formation. In the research of Somani et al. [57] it has 
been concluded that during the treatment of melt with low 
values of shear rate, only smart parts of chains are able to 
orientate and crystallize. In the short-time treatment with 
high shear rate, the segments of macromolecules are ori-
ented for too short a time for create a stable nucleis. The 
macromolecules orientation is induced more effectively in 
short-duration shear treatment at a high shear rate than that 
in long-time shear with low shear rate.

Except for the differences in crystallization kinetics, 
various morphology in shear-oriented crystallites may be 
observed. Figure 5a, b show the iPP samples, crystallized in 
quiescent conditions and after shear treatment.

As can be seen in Fig. 5, the iPP material shows a ten-
dency to the creation of fibril-liked structures, also called 
fibrils crystallites in the samples sheared during 10 s and 
30 s, with shear rates only 4,5  s−1. Pantani et al. [46, 58] 
considered the fibrilar morphology formation in sheared iPP 
melts. The conclusion was that above the concrete value of 
shear rate, the pre-formed crystallites can connect together 
into fibrilar structures as a result of flow. The critical  
shear rate value, presented in Pantani’s work, was ~ 0,46  s−1. 
Thus, in current research the critical value was exceeded  
and it may be concluded that the formation of fibrils depends 
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Fig. 3  The WAXS and DSC curves prepared for examined material
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not only on chains ordering through shear strain but also on 
the molecular weight of the polypropylene used as well as 
the chains length.

The temperature regimes in case of shear‑induced 
crystallization

The polymer chains, oriented by shear flow, after cessa-
tion of shear can return into the amorphous melt through 
the shear-stress relaxation phenomena or may create the 
energetically-stable nuclei. Figure 6 shows the spherulites 
growth rate as a function of the shearing temperature. As 
can be seen, there can be found an optimal, from the point 
of view of spherulites diameters growth, temperature value 
 (138◦C). It is connected with the occurrence of crystalliza-
tion process regimes.

In the research of Huo et al. [43] a conclusion was made 
that in the temperature  142◦C and higher, the abilities of 

shear forces for crystallization inducing decreases with the 
increase of shearing temperature. They are connected with 
the competition between shear-induced nucleation and fur-
ther growth of spherulites and relaxation of polymer chains. 
For iPP examined in this research, the temperature  138◦C 
can be called the “critical” value, above which the nucleat-
ing abilities of shear forces decrease with a further increase 
in temperature. Consequently, it can be concluded that the 
relaxation of macromolecules after cessation of shearing 
plays a significant role in shear-induced crystallization issue, 
in pure polymer melts and also in melts with an addition of 
nucleating agents [59]. However, the issue of temperature 
regimes should not be forgotten. Furthermore, a clear sepa-
ration between shear-induced nucleation and primary and 
secondary homonucleation process in the polymer should 
be ensured. Using the G data the plots log + ΔE(2.3 R(Tc-
T∞) versus 1/(TcΔT) (Fig. 7) were prepared. The ΔE is an 
activation energy (6270 J/mol, R = 8,31 J/mol·K, ΔT is an 

Fig. 4  The morphology of 
crystallized iPP: a the growth of 
spherulites and fibrils in sheared 
iPP, b the spherulites growth 
rate and nucleation density 
measured for different shear 
rates and shearing time 

Fig. 5  POM micrographs taken 
after 20 min. of isothermal 
crystallization at 138 °C: a in 
quiescent conditions; b after 
shearing   (vs = 4,5  s−1,  ts = 10 s)
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undercooling  (T0
m-Tc),  T∞ = 231,2 K and  T0

m = 458,2 K. It 
may be observed that the transition temperatures between 
various regimes are constant and depend only on the heat 
parameters and also do not depend on shear treatment. Thus, 
it may be concluded that the secondary nucleation process 
plays a greater role in overall crystallization kinetics than the 
primary, shear-induced nucleation.

The presence of α and β iPP phase in sheared 
samples

To verify what kind of the crystallographic form of spheru-
lites has been created through shear treatment, the method 
of selective-melting of iPP crystallites was carried out [60]. 
Observation of the melting of shear-induced spherulites in 
slow-increasing temperature allows to comment on the β 
and α form of iPP crystallites. After heating the crystallized 

iPP film to the lower temperature value of 150–158◦C, the 
disappearance of β-spherulites can be observed. Spherulites 
created form α iPP phase melts until at the higher tempera-
tures, between 160–170◦C. Figure 8a-c shows the spherulites 
behavior during heating of crystallized iPP films.

As can be seen in Fig. 8 and in Table 2, the melting of 
spherulites in the lower temperature of  158◦C has been 
noticed only in the case of the melting of iPP samples crys-
tallized after shear treatment.

Firstly, it should be emphasized that the shear forces 
induce a β phase of iPP formation [35, 38]. However, only 
for the samples sheared in the lower value of temperature  Ts, 
 138◦C, can the occurrence of β phase of iPP be noticed. In 
the research Huo et al. a conclusion can be found that above 
the concrete temperature value, the relaxation phenomena 
dominates over the shear-induced nucleation [43]. Thus, 
it can be said that the shear forces’ ability for nucleation 

Fig. 6  Spherulites growth rate 
(G) after shear treatment in 
different shear temperature  (Ts): 
a shear rate 1,5  s−1, b shear rate 
4,5  s−1

Fig. 7  The plots log + ΔE(2.3 
R(Tc-T∞) versus 1/(TcΔT) 
determined for iPP sheared with 
shear rate appropriate 1.5  s−1 
and 4.5  s−1

Fig. 8  The microscope images 
made during slow melting of 
shear-treated samples. Pictures 
a-c show iPP sheared in  138◦C 
 (vs = 4,5,  ts = 10 s)
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decreases with increase of temperature. However, in our 
research only the growth of α spherulites in melt sheared 
in temperature  154◦C can be observed. It should be high-
lighted why, in the higher temperature of shearing only, the 
α iPP form can be induced by shear forces. Moreover, the 
nucleis of β crystals created in the temperature higher than 
the value where the β-phase may occur, decompose imme-
diately back to an amorphous phase or they reorganize on 
the line of β → α transition. The next possible reason for 
the described phenomenon is that in higher temperatures, 
wherein the nucleating abilities of shear forces are weaker, 
only the more energy-stable, monoclinic α form can be cre-
ated. The shear forces in higher shear temperatures cannot 
make enough influence for chains, which is necessary for 
reorganization of them and creation of β crystals.

Conclusions

In this research, the shear-induced crystallization phenom-
enon was studied. It was focused on the kinetics crystal-
lization of iPP as well as crystallites morphology and the 
occurrence of β-iPP. The formation of row nucleis and, in 
consequence, the fibrillar crystallites may be noticed only 
after shear treatment with shear rate over concrete, critical 
value (in current study higher than in the literature data, 
presented earlier).

The key parameter determining the shear-induced crystal-
lization is a temperature value during shearing. It determines 
the crystallites morphology as well as crystallization kinet-
ics. The shear rate and shearing time should not be neglected 
but from the viewpoint of the three crystallization regimes, 
the secondary homonucleation process is more important 
than the primary, shear-induced nucleation.

The influence of shear forces on crystallization kinet-
ics and crystallites morphology (e.g., fibrils formation) is  
closely dependent on polypropylene type and processing  
characteristic. The shear forces may induce the β-iPP for-
mation only in the appropriate temperature range. For sam-
ples sheared in the temperature higher than the melting tem-
perature of β iPP value, the shear-induced β-crystallization  

cannot be observed in contrast to the samples sheared in 
the lower temperature (138 °C). In higher temperatures, the 
abilities of shear forces to induce crystallization are weaker, 
and their abilities to creation β iPP nucleis practically do  
not occur.
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