Skip to main content
Log in

Synthesis, molecular structure and photovoltaic performance for polythiophenes with β-carboxylate side chains

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To lower the HOMO energy level of polythiophenes, carboxylate groups were introduced to the β-position of the thiophene unit, by which two polythiophenes with tetrathiophene (poly[5,5′′-(bis-3,3′′-((2-butyloctyl)-carboxylate)-2,2′:2′,2′′-terthiophene)-alt-5-thiophene], P-4T-2COOR) or pentathiophene (poly[5,5′′-(bis-3,3′′-((2-butyloctyl)-carboxylate)-2,2′:2′,2′′-terthiophene)-alt-5,5′-(2,2′-bithiophene)], P-5T-2COOR) repeating unit were synthesized. Absorption spectroscopy and cyclic voltammetry measurements revealed that the β-carboxylate substitution red-shifts the maximum absorption wavelength (λmaxabs) in solution owing to the electron accepting nature of the carboxylate group. In addition, the introduction of β-carboxylate reduces the HOMO level from -5.09 eV for P3HT to -5.34 eV and -5.18 eV for P-4T-2COOR and P-5T-2COOR, respectively, which is in good agreement with quantum chemisty calculation results. However, the β-carboxylate side chain showed different orientation to that of P3HT, which leads to weaker intermolecular π-π interaction as confirmed by less red-shited absorption in thin solid film and the quantum calculation results. Polymer solar cells using P-4T-2COOR and P-5T-2COOR as the electron donor, 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno‐[1,2‐b:5,6-b′]di‐thiophene (ITIC) as the electron acceptor were fabricated and tested. The P-4T-2COOR and P-5T-2COOR based cells showed high open circuit (VOC) of 0.73–0.99 V, significantly higher than that of P3HT based cell (VOC of 0.52 V), which can be ascribed to the lower HOMO energy levels and less condensed molecular packing of these two polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References:

  1. Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor-acceptor conjugated polymer based on naphtho [1,2-c:5,6-c] bis [1,2,5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133:9638–9641

    Article  CAS  Google Scholar 

  2. Li Y, Zou Y (2008) Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Adv. Mater. 20:2952–2958

    Article  CAS  Google Scholar 

  3. Stuart AC, Tumbleston JR, Zhou H, Li W, Liu S, Ade H, You W (2013) Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 135:1806–1815

    Article  CAS  Google Scholar 

  4. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 115:12666–12731

    Article  CAS  Google Scholar 

  5. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% Efficiency organic solar cells. Sci.. Bull. 65:272–275

    Article  CAS  Google Scholar 

  6. Li G, Li W, Guo X, Guo B, Su W, Xu Z, Zhang M (2019) A new narrow bandgap polymer as donor material for high performance non-fullerene polymer solar cells. Org. Electron. 64:241–246

    Article  CAS  Google Scholar 

  7. Kim H, Lee H, Seo D, Jeong Y, Cho K, Lee J, Lee Y (2015) Regioregular Low Bandgap Polymer with Controlled Thieno[3,4-b]thiophene Orientation for High-Efficiency Polymer Solar Cells. Chem. Mater. 27:3102–3107

    Article  CAS  Google Scholar 

  8. Lee J, Sin DH, Moon B, Shin J, Kim HG, Kim M, Cho K (2017) Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy Environ. Sci. 10:247–257

    Article  CAS  Google Scholar 

  9. Li N, McCulloch I, Brabec CJ (2018) Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11:1355–1361

    Article  CAS  Google Scholar 

  10. Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ. Sci. 5:7943–7949

    Article  CAS  Google Scholar 

  11. Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z, Hou J (2013) Molecular design toward efficient polymer solar cells with high polymer content. J. Am. Chem. Soc 135:8464–8467

    Article  CAS  Google Scholar 

  12. Fan Q, Su W, Guo X, Guo B, Li W, Zhang Y, Wang K, Zhang M, Li Y (2016) A new polythiophene derivative for high efficiency polymer solar cells with PCE over 9%. Adv. Energy Mater. 6

  13. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23:3597–3602

    Article  CAS  Google Scholar 

  14. Khlyabich PP, Burkhart B, Thompson BC (2011) Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133:14534–14537

    Article  CAS  Google Scholar 

  15. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21:1323–1338

    Article  CAS  Google Scholar 

  16. Zhang M, Guo X, Ma W, Ade H, Hou J (2014) A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv. Mater. 26:5880–5885

    Article  CAS  Google Scholar 

  17. Zhang H, Ye L, Hou J (2015) Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Poly. Intern. 64:957–962

    Article  CAS  Google Scholar 

  18. Hou J, Fan B, Huo L, He C, Yang C, Li Y (2006) Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties. J. Poly. Sci. A. Polym. Chem. 44:1279–1290

  19. Huo L, Zhou Y, Li Y (2009) Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid. Commun. 30:925–931

    Article  CAS  Google Scholar 

  20. Hou J, Chen TL, Zhang S, Huo L, Sista S, Yang Y (2009) An easy and effective method to modulate molecular energy level of Poly(3-alkylthiophene) for high-voc polymer solar cells. Macromolecules 42:9217–9219

    Article  CAS  Google Scholar 

  21. Kranthiraja K, Long DX, Sree VG, Cho W, Cho Y-R, Zaheer A, Lee J-C, Noh Y-Y, Jin S-H (2018) Sequential fluorination on napthaleneamide-based conjugated polymers and their impact on charge transport properties. Macromolecules 51:5530–5536

    Article  CAS  Google Scholar 

  22. Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer−fullerene solar cells. J. Am. Chem. Soc. 133:4625–4631

    Article  CAS  Google Scholar 

  23. Peng Q, Liu X, Su D, Fu G, Xu J, Dai L (2011) Novel Benzo[1,2-b:4,5-b′]dithiophene-Benzothiadiazole derivatives with variable side chains for high-performance solar cells. Adv. Mater. 23:4554–4558

    Article  CAS  Google Scholar 

  24. Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell TP, Yip H-L, Huang F, Cao Y (2014) Effect of fluorine content in Thienothiophene-Benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chem. Mater. 26:3009–3017

    Article  Google Scholar 

  25. Wang Q, Li M, Zhang X, Qin Y, Wang J, Zhang J, Hou J, Janssen RAJ, Geng Y (2019) Carboxylate-Substituted Polythiophenes for Efficient Fullerene-Free Polymer Solar Cells: The Effect of Chlorination on Their Properties. Macromolecules 52:4464–4474

    Article  CAS  Google Scholar 

  26. Park CG, Park GE, Lee JH, Kim A, Kim YU, Park SY, Park SH, Cho MJ, Choi DH (2018) Regioisomeric π-conjugated terpolymers bearing carboxylate substituted thienothiophenyl quarterthiophene and their application to fullerene-free polymer solar cells. Polymer 146:142–150

    Article  CAS  Google Scholar 

  27. Wang Q, Dong X, He M, Li M, Tian H, Liu J, Geng Y (2018) Polythiophenes with carboxylate side chains and vinylene linkers in main chain for polymer solar cells. Polymer 140:89–95

    Article  CAS  Google Scholar 

  28. Chen J, Wang L, Yang J, Yang K, Uddin MA, Tang Y, Zhou X, Liao Q, Yu J, Liu B, Woo HY, Guo X (2018) Backbone Conformation Tuning of Carboxylate-Functionalized Wide Band Gap Polymers for Efficient Non-Fullerene Organic Solar Cells. Macromolecules 52:341–353

    Article  CAS  Google Scholar 

  29. Zhang M, Guo X, Yang Y, Zhang J, Zhang Z-G, Li Y (2011) Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polym Chem 2:2900–2906

    Article  CAS  Google Scholar 

  30. Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J (2016) Highly Efficient Fullerene-Free Polymer Solar Cells Fabricated with Polythiophene Derivative. Adv. Mater 28:9416–9422

    Article  CAS  Google Scholar 

  31. Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model 13:1173–1213

    Article  CAS  Google Scholar 

  32. Garcia A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerda JI, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, Garcia-Fernandez P, Garcia-Suarez VM, Garcia S, Huhs G, Illera S, Korytar R, Koval P, Lebedeva I, Lin L, Lopez-Tarifa P, Mayo SG, Mohr S, Ordejon P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sanchez-Portal D, Soler JM, Ullah R, Yu VW, Junquera J (2020) Siesta: Recent developments and applications. J. Chem. Phys. 152:204108

    Article  CAS  Google Scholar 

  33. Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger A (2017) Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99:243–248

    Article  Google Scholar 

  34. Cardona CM, Mccarley TD, Kaifer AE (2000) Synthesis, electrochemistry, and interactions with β-cyclodextrin of dendrimers containing a single ferrocene subunit located “off-center”. J. Org. Chem. 65:1857–1864

  35. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M (1993) Self-orienting head-to-tail poly(3-alkylthiopbenes): New insights on structure-property relationships in conducting polymers. J. Am. Chem. Soc. 115:4910–4911

    Article  CAS  Google Scholar 

  36. Eastham ND, Logsdon JL, Manley EF, Aldrich TJ, Leonardi MJ, Wang G, Powers-Riggs NE, Young RM, Chen LX, Wasielewski MR, Melkonyan FS, Chang RPH, Marks TJ (2018) Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. Adv. Mater. 30:1704263

    Article  Google Scholar 

  37. Liang Q, Han J, Song C, Yu X, Smilgies D-M, Zhao K, Liu J, Han Y (2018) Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6:15610–15620

    Article  CAS  Google Scholar 

  38. Bartesaghi D, Perez IDC, Kniepert J, Roland S, Turbiez M, Neher D, Koster LJA (2015) Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6:7083

  39. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the Bright Future - Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater. 22:E135-E138

  40. Ren G, Ahmed E, Jenekhe SA (2011) Non-Fullerene Acceptor-Based Bulk Heterojunction Polymer Solar Cells: Engineering the Nanomorphology via Processing Additives. Adv. Energy Mater. 1:946–953

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Xi’an Jiaotong-Liverpool University Research Development Fund (RDF-14-02-46), and the National Natural Science Foundation of China (22075315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Tan or Chang-Qi Ma.

Ethics declarations

Conflict of interest

There is no conflict of interest involved in the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 678 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yan, L., Tan, H. et al. Synthesis, molecular structure and photovoltaic performance for polythiophenes with β-carboxylate side chains. J Polym Res 28, 187 (2021). https://doi.org/10.1007/s10965-021-02546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02546-6

Keywords

Navigation