Skip to main content

Advertisement

Log in

Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N-isopropylacrylamide-co-acrylic acid)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Gelatin has many superior biological properties and can absorb a large volume of water to form hydrogels, making it a promising material for skin wound care. In this study, gel membranes were prepared based on gelatin and added with different amounts of the synthesized carboxymethyl chitosan (CMCS) and poly(N-isopropylacrylamide-co-acrylic acid) (P(NI-co-AA)) copolymer for providing antibacterial and thermo-responsive properties, respectively. The synthesized CMCS had a degree of carboxymethyl substitution at 0.77 and the P(NI-co-AA) had an AA content of 5.7 mol %. Both CMCS and P(NI-co-AA) had carboxylate groups that could further provide ionic-crosslinking sites for the membranes. Though the P(NI-co-AA) copolymer had a higher phase transition temperature than poly(N-isopropylacrylamide) (PNIPAAm) owing to its hydrophilic carboxylate groups, the prepared gelatin/CMCS/P(NI-co-AA) membranes had similar phase transition temperatures to the PNIPAAm at around 30.5 − 32.4 °C because of ionic crosslinking. Moreover, the equilibrium swelling ratio and water vapor transmission rate of the gel membranes were in the range of 769 − 1226% and 1678 − 2496 g/m2- day, respectively. These membranes could promote cell proliferation of human keratinocytes (HaCaT) and mouse fibroblasts (L-929), indicating they were non-toxic to the cells. They also had antimicrobial properties against S. aureus and E. coli, where the antibacterial efficacy increased with increasing the CMCS content. These hydrogel membranes had good biocompatibility, suitable swelling ratio and water vapor transmission rate, antibacterial and thermo-responsive properties. Therefore, they have potential to be applied as functional wound dressing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rahman MM, Pervez S, Nesa B, Khan MA (2013) Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int 62:79–86

    Article  CAS  Google Scholar 

  2. Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D (2020) In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 148:501–509

    Article  CAS  PubMed  Google Scholar 

  3. Park SN, Kim JK, Suh H (2004) Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25:3689–3698

    Article  CAS  PubMed  Google Scholar 

  4. Ward AG, Courts A (1977) The science and technology of gelatin. Academic press, New York

    Google Scholar 

  5. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater 52:246–255

    Article  CAS  Google Scholar 

  6. Djagny KB, Wang Z, Xu S (2010) Gelatin: a valuable protein for food and pharmaceutical industries.vReview. Crit Rev Food Sci Nutr 41:481–492

    Article  Google Scholar 

  7. Postlethwaite AE, Seyer JM, Kang AH (1978) Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci 75:871–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O (2015) Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polym Int 64:275–283

    Article  CAS  Google Scholar 

  9. Muzzarelli RA, El Mehtedi M, Bottegoni C, Gigante A (2016) Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. Int J Biol Macromol 93:1366–1381

    Article  CAS  PubMed  Google Scholar 

  10. Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353

    Article  CAS  PubMed  Google Scholar 

  11. Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  12. Wu SJ, Don TM, Lin CW, Mi FL (2014) Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 12:5677–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog in Mater Sci 5:675–709

    Article  Google Scholar 

  14. Shariatinia Z (2018) Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 120:1406–1419

    Article  CAS  PubMed  Google Scholar 

  15. Zhang C, Yang X, Hu W, Han X, Fan L, Tao S (2020) Preparation and characterization of carboxymethyl chitosan/collagen peptide/oxidized konjac composite hydrogel. Int J Biol Macromol 149:31–40

    Article  CAS  PubMed  Google Scholar 

  16. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S et al (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng 33:4816–4824

    Article  CAS  Google Scholar 

  17. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications, hydrogels for medical and related applications, in ACS Symposium Series, Vol 31, Chapter 1, ACS Publications, 1–36

  18. Lee KY, Mooney DJ (2001) Hydrogels for tissue engeneering. Chem Rev 101:1869–1880

    Article  CAS  PubMed  Google Scholar 

  19. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  PubMed  Google Scholar 

  20. Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–5916

    Article  CAS  Google Scholar 

  22. Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q et al (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25:169

    Article  Google Scholar 

  23. Don TM, Lu KY, Lin LJ, Hsu CH, Wu JY, Mi FL (2017) Temperature/pH/Enzyme triple-responsive cationic protein/PAA-b-PNIPAAm nanogels for controlled anticancer drug and photosensitizer delivery against multidrug resistant breast cancer cells. Mol Pharm 14:4648–4660

    Article  CAS  PubMed  Google Scholar 

  24. Chee C, Rimmer S, Soutar I, Swanson L (2001) Fluorescence investigations of the thermally induced conformational transition of poly (N-isopropylacrylamide). Polymer 42:5079–5087

    Article  CAS  Google Scholar 

  25. Li H, Williams GR, Wu J, Wang H, Sun X, Zhu LM et al (2017) Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater Sci Eng 79:245–254

    Article  CAS  Google Scholar 

  26. Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119

    Article  PubMed Central  Google Scholar 

  27. Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly (N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 100:668–676

    Article  PubMed  Google Scholar 

  28. Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2009) Synthesis and characterization of semi-interpenetrating polymer networks based on polyurethane and N-isopropylacrylamide for wound dressing. J Biomed Mater Res B Appl Biomater 88:32–40

    Article  PubMed  Google Scholar 

  29. Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2008) Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control. Biomacromol 9:1313–1321

    Article  CAS  Google Scholar 

  30. Lin SY, Chen KS, Liang RC (2001) Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 22:2999–3004

    Article  CAS  PubMed  Google Scholar 

  31. Kuo CY, Don TM, Hsu SC, Lee CF, Chiu WY, Huang CY (2016) Thermo- and pH-induced self-assembly of P (AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J Polym Sci Polym Chem 54:1109–1118

    Article  CAS  Google Scholar 

  32. Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34:8819–8834

    Article  CAS  PubMed  Google Scholar 

  33. Gao Y, Ahiabu A, Serpe MJ (2014) Controlled drug release from the aggregation–disaggregation behavior of pH-responsive microgels. ACS Appl Mater Interfaces 6:13749–13756

    Article  CAS  PubMed  Google Scholar 

  34. Lin YJ, Lee GH, Chou CW, Chen YP, Wu TH, Lin HR (2015) Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2. J Mater Chem 3:1931–1941

    CAS  Google Scholar 

  35. Choudhary M, Chhabra P, Tyagi A, Singh H (2021) Scar free healing of full thickness diabetic wounds: A unique combination of silver nanoparticles as antimicrobial agent, calcium alginate nanoparticles as hemostatic agent, fresh blood as nutrient/growth factor supplier and chitosan as base matrix. Inter J Biol Macromol 178:41–52

    Article  CAS  Google Scholar 

  36. Tao G, Cai R, Wang Y, Zuo H, He H (2021) Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater Sci Eng C 119:111597

    Article  CAS  Google Scholar 

  37. Sadeghi D, Solouk A, Samadikuchaksaraei A, Seifalian AM (2021) Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr Polym 255:117336

    Article  CAS  PubMed  Google Scholar 

  38. Masood R, Anam Khubaib M, Hussain T, Raza ZA (2021) Silver-containing polysaccharide-based tricomponent antibacterial fibres for wound care applications. J Wound Care 30(1):81–88

    Article  PubMed  Google Scholar 

  39. Nokhodchi A, Tailor A (2004) In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Il Farmaco 59:999–1004

    Article  CAS  PubMed  Google Scholar 

  40. Tarighi P, Khoroushi M (2014) A review on common chemical hemostatic agents in restorative dentistry. Dent Res J 11(4):423–428

    Google Scholar 

  41. Palm MD, Altman JS (2008) Topical hemostatic agents: a review. Dermatol Surg 34(4):431–445

    CAS  PubMed  Google Scholar 

  42. Henley J, Brewer JD (2013) Newer hemostatic agents used in the practice of dermatologic surgery. Dermatol Res Pract 2013:279289

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shen YH, Dempsey BA (1998) Synthesis and speciation of polyaluminum chloride for water treatment. Environ Int 24(8):899–910

    Article  CAS  Google Scholar 

  44. Nouri S, Sharif MR, Panahi Y, Ghanei M, Jamali B (2015) Efficacy and safety of aluminum chloride in controlling external hemorrhage: an animal model study. Iran Red Crescent Med J 17:e19714

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tai HY, Chou SH, Cheng LP, Yu HT, Don TM (2012) Asymmetric composite membranes from chitosan and tricalcium phosphate useful for guided bone regeneration. J Biomater Sci Polym Ed 23:1153–1170

    CAS  PubMed  Google Scholar 

  46. Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromol 9:1731–1738

    Article  CAS  Google Scholar 

  47. Rinaudo M, Le Dung P, Gey C, Milas M (1992) Substituent distribution on O, N-carboxymethylchitosans by 1H and 13C NMR. Int J Biol Macromol 14:122–128

    Article  CAS  PubMed  Google Scholar 

  48. Philippova OE, Hourdet D, Audebert R, Khokhlov AR (1997) pH-responsive gels of hydrophobically modified poly (acrylic acid). Macromolecules 30:8278–8285

    Article  CAS  Google Scholar 

  49. Nagahama H, Maeda H, Kashiki T, Jayakuma R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260

    Article  CAS  Google Scholar 

  50. Lamke LO, Nilsson GE, Reithner HL (1977) The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 3:159

    Article  Google Scholar 

  51. Kim I, Yoo M, Seo J, Park S, Na H, Lee H et al (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341:35–43

    Article  CAS  PubMed  Google Scholar 

  52. Gupta VB, Anitha S, Hegde M, Zecca L, Garruto R, Ravid R et al (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62:143–158

    Article  CAS  PubMed  Google Scholar 

  53. Goullé J-P, Grangeot-Keros L (2020) Aluminum and vaccines: current state of knowledge. Med Mal Infect 50:16–21

    Article  PubMed  Google Scholar 

  54. Sudarshan N, Hoover D, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  55. Helander I, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Ministry of Science and Technology (MOST) in Taiwan, under grant number 108-2221-E-032-015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trong-Ming Don.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Supplementary file2 (DOCX 155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Lee, CT. & Don, TM. Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N-isopropylacrylamide-co-acrylic acid). J Polym Res 28, 173 (2021). https://doi.org/10.1007/s10965-021-02534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02534-w

Keywords

Navigation