Skip to main content
Log in

Novel interpenetrating polymeric network based microbeads for delivery of poorly water soluble drug

  • ORIGINAL MANUSCRIPT
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A well-designed drug delivery platform improves the pharmacological properties of therapeutics. Here, we report a biodegradable interpenetrating polymer network (IPN) microbeads delivery technology developed by crosslinking a polymer blend of poly(vinyl alcohol), xanthan gum, and sodium alginate to enhance the solubility of poorly soluble drugs. The microbeads effectively improve the solubility of a model BCS Class IV drug, norfloxacin, known for its low solubility and low permeability. Differential scanning calorimetry, powdered X-ray diffractometry, and FT-IR data showed that the IPN microbeads solubilised and encapsulated the drug within the network. We found over 83% encapsulation efficiency for norfloxacin and this efficiency increases with the concentration of polymer. Ex vivo experiments using caprine intestine revealed that the IPN microbeads adhered to the intestinal epithelium, a mucoadhesive behaviour that could be beneficial to the drug pharmacokinetics while in vitro experiments in phosphate buffer show that the IPN enables significant drug release. We believe that these IPN microbeadsare an excellent drug delivery system to solubilise norfloxacin, ensure adhesion to the intestinal wall, thereby localising the drug release to enhance bioavailability of poorly soluble drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Mehmood Y, Riaz H, Barkat K, Yousaf H, Malik AR, Raza SA (2019) Fabrication of HPMC and Hibiscus esculentus (okra) gum based microspheres loaded with sulfasalazine and dexamethasone. J Polym Res 26(6):130

    Google Scholar 

  3. Gao JG, Zhang Y, Yu YF, Han YC, Zhang BZ, Gao CH (2011) Preparation of chitosan microspheres loading of 3, 5-dihydroxy-4-i-propylstilbene and in vitro release. J Polym Res 18(6):1501–1508

    CAS  Google Scholar 

  4. Chu IM, Liu TH, Chen YR (2019) Preparation and characterization of sustained release system based on polyanhydride microspheres with core/shell-like structures. Journal of Polymer Research 26(1):1

    CAS  Google Scholar 

  5. Shin BY, Cha BG, Jeong JH, Kim J (2017) Injectable microporous ferrogel microbeads with a high structural stability for magnetically actuated drug delivery. ACS Appl Mater Interfaces 9:31372–31380

    PubMed  CAS  Google Scholar 

  6. Bannerman D, Wan W (2016) Multifunctional microbeads for drug delivery in TACE. Expert Opin Drug Deliv 13:1289–1300

    PubMed  CAS  Google Scholar 

  7. Shaji J, Chadawar V, Talwalkar P (2007) Multiparticulate drug delivery system. The Indian Pharmacist 6(60):21–28

    Google Scholar 

  8. Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE (2001) In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51(2):127–133

    PubMed  CAS  Google Scholar 

  9. Roy P, Shahiwala A (2009) Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J Control Release 134(2):74–80

    PubMed  CAS  Google Scholar 

  10. Sood A, Panchagnula R (2003) Design of controlled release delivery systems using a modified pharmacokinetic approach: a case study for drugs having a short elimination half-life and a narrow therapeutic index. Int J Pharm 261(1–2):27–41

    PubMed  CAS  Google Scholar 

  11. Laila FAA, Chandran S (2006) Multiparticulate formulation approach to colon specific drug delivery current perspectives. J Pharm Pharm Sci 9(3):327–338

    Google Scholar 

  12. Butler J, Cumming I, Brown J, Wilding I, Devane JG (1998) A novel multiunit controlled-release system. Pharm Technol 22:122–138

    CAS  Google Scholar 

  13. Yin ZC, Wang YL, Wang K (2018) A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. J Drug Deliv Sci Technol 43:12–18

    CAS  Google Scholar 

  14. Yang W, Fortunati E, Bertoglio F, Owczarek JS, Bruni G, Kozanecki M, Kenny JM, Torre L, Visai L, Puglia D (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284

    PubMed  CAS  Google Scholar 

  15. Park JS, Park JW, Ruckenstein E (2001) A dynamic mechanical and thermal analysis of unplasticized and plasticized poly (vinyl alcohol)/methylcellulose blends. A dynamic mechanicaland thermal analysis of unplasticized and plasticized poly (vinyl alcohol)/methylcellulose blends

  16. Traore YL, Fumakia M, Gu J, Ho EA (2018) Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J Biomater Appl 32(8):1119–1126

    PubMed  CAS  Google Scholar 

  17. Mendes AC, Strohmenger T, Goycoolea F, Chronakis IS (2017) Electrostatic self-assembly of polysaccharides into nanofibers. Colloids Surfaces A Physicochem Eng Asp 531:182–188

    CAS  Google Scholar 

  18. Shekarforoush E, Ajalloueian F, Zeng G, Mendes AC, Chronakis IS (2018) Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Mater Lett 228:322–326

    CAS  Google Scholar 

  19. Liu R (2008) Water-insoluble drug formulation. CRC Press

  20. Sintra TE, Shimizu K, Ventura SP, Shimizu S, Lopes JC, Coutinho JA (2018) Enhanced dissolution of ibuprofen using ionic liquids as catanionichydrotropes. Phys Chem Chem Phys 20(3):2094–2103

    PubMed  CAS  Google Scholar 

  21. Jain P, Goel A, Sharma S, Parmar M (2010) Solubility enhancement techniques with special emphasis on hydrotropy. J Pharma Prof Res 1:34–45

    Google Scholar 

  22. Sharma DK, Joshi SB (2007) Solubility enhancement strategies for poorly water-soluble drugs in solid dispersion: a review. Asian J Pharm 1:9–19

    Google Scholar 

  23. Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5:44–453

    Google Scholar 

  24. Brown SA (1996) Fluoroquinolones in animal health. J Vet Pharmacol Ther 19:1–14

    PubMed  CAS  Google Scholar 

  25. Preheim LC, Cuevas TA, Roccaforte JS, Mellencamp MA, Bittner MJ (1987) Oral use of ciprofloxacin in the treatment of elderly patients with complicated urinary tract infections due to trimethoprim sulfamethoxazole-resistant bacteria. Am J Med 82:295–297

    PubMed  CAS  Google Scholar 

  26. Bera H, Boddupalli S, Nayak AK (2015) Mucoadhesive-floating zinc-pectinate-sterculia gum interpenetrating polymer network beads encapsulating ziprasidoneHCl. Carbohydr Polym 131:108–118

    PubMed  CAS  Google Scholar 

  27. Lanzerstorfer C (2017) Dusts from dry off-gas cleaning: comparison of flowability determined by angle of repose and with shear cells. Granul Matter 19:1–7

    Google Scholar 

  28. Keely S, Rullay A, Wilson C, Carmichael A, Carrington S, Corfield A, Haddleton DM, Brayden DJ (2005) In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly(methacrylate) and N-trimethylated chitosan polymer. Pharm Res 22:38–49

    PubMed  CAS  Google Scholar 

  29. Nayak AK, Pal D, Santra K (2014) Development of calcium pectinate-tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydr Polym 101:220–230

    PubMed  CAS  Google Scholar 

  30. Nayak AK, Pal D, Santra K (2014) Development of pectinate-ispagula mucilage mucoadhesive beads of metformin HCl by central composite design. Int J Biol Macromol 66:203–211

    PubMed  CAS  Google Scholar 

  31. Nayak AK, Pal D, Das S (2013) Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym 96:349–357

    PubMed  CAS  Google Scholar 

  32. Kim CK, Lee EJ (1992) The controlled release of blue dextran fromalginate beads. Int J Pharm 79:11–19

    CAS  Google Scholar 

  33. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22(3):342–356

    CAS  Google Scholar 

  34. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM (2002) Polymeric sodium alginate interpenetrating network beads for the controlled release of chlorpyrifos. J Appl Polym Sci 85(5):911–918

    CAS  Google Scholar 

  35. Garoushi S, Vallittu PK, Watts DC, Lassila LV (2008) Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dental Materials 24(2):211–215

    PubMed  CAS  Google Scholar 

  36. Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS (2009) Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res 26(11):2523–2534

    PubMed  CAS  Google Scholar 

  37. Narkar M, Sher P, Pawar A (2010) Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSciTech 11(1):267–277

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Guo T, Zhang N, Huang J, Pei Y, Wang F, Tang K (2018) A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym Bull 1–16

  39. Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H (2018) Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int J Biol Macromol

  40. Gamboa JM, Leong KW (2013) In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev 65(6):800–810

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Viseras C, Cerezo P, Bedmar MC (2008) Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026

    CAS  Google Scholar 

  42. Silva BMA, Borges AF, Silva C, Coelho JFJ, Simoes S (2015) Mucoadhesive oral films: the potential for unmet needs. Int J Pharm 494:537–551

    PubMed  CAS  Google Scholar 

  43. Banerjee A, Mitragotri S (2017) Intestinal patch systems for oral drug delivery. Curr Opin Pharmacol 36:58–65

    PubMed  CAS  Google Scholar 

  44. Gombotz W, Wee S (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    PubMed  CAS  Google Scholar 

  45. Gaserod O, Jolliffe I, Hampson F, Dettmar P, Skjak-Bræk G (1998) The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. Int J Pharm 175(2):237–246

    CAS  Google Scholar 

  46. Barzegar-Jalali M, Hanaee J, Omidi Y, Ghanbarzadeh S, Ziaee S, Bairami-Atashgah R, Adibkia K (2013) Preparation and evaluation of sustained release calcium alginate beads and matrix tablets of acetazolamide. Drug Res 63(02):60–64

    CAS  Google Scholar 

  47. Martin A, Bustamante P, Chun AHC (1993) In: Martin A (ed) Physical pharmacy: physical chemical principles in the pharmaceutical sciences4th edn. Lea and Febiger, Philadelphia, pp 284–323

    Google Scholar 

  48. Ghosal K, Ranjan A, Bhowmik BB (2014) A novel vaginal drug delivery system: anti-HIV bioadhesive film containing abacavir. J Mater Sci Mater Med 25(7):1679–1689

    PubMed  CAS  Google Scholar 

  49. Ghosal K, Rajabalaya R, Maiti AK, Chowdhury B, Nanda A (2010) Evaluation of physicochemical properties and in-vitro release profile of glipizide-matrix patch. Braz J Pharm Sci 46(2):213–218

    CAS  Google Scholar 

  50. Ghosal K, Ray SD (2011) Alginate/hydrophobic HPMC (60M) particulate systems: new matrix for site-specific and controlled drug delivery. Braz J Pharm Sci 47(4):833–844

    CAS  Google Scholar 

  51. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2005) Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling. Aapspharmscitech 6(2):E209–E222

    Google Scholar 

  52. Salomon J-L, Doelker E (1980) Formulation des comprimes a liberation prolongee. Pharm Acta Helv 55:174–182

    CAS  Google Scholar 

  53. El-Arini SK, Leuenberger H (1995) Modeling of drug release frompolymer matrices: effect of drug loading. Int J Pharm 121:141–148

    CAS  Google Scholar 

  54. Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13(2):123–133

    PubMed  CAS  Google Scholar 

  55. Ghosal K, Chandra A, Rajabalaya R, Chakraborty S, Nanda A (2012) Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Die Pharmazie-An International Journal of Pharmaceutical Sciences 67(2):147–155

    CAS  Google Scholar 

  56. McDonald BF, Coulter IS, Marison IW (2015) Microbeads: a novel multiparticulate drug delivery technology for increasing the solubility and dissolution of celecoxib. Pharm Dev Technol 20(2):211–218

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

K.G. thanks the Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhan Nagar, Durgapur 713206, West Bengal, India for providing the infrastructural and research facilities. P.G thanks the postdoctoral fellowship under KSCSTE-PDF scheme, Government of Kerala. Award No: KSCSTE/5209/2017-PDF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kajal Ghosal or Christian Agatemor.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, K., Adak, S., Agatemor, C. et al. Novel interpenetrating polymeric network based microbeads for delivery of poorly water soluble drug. J Polym Res 27, 98 (2020). https://doi.org/10.1007/s10965-020-02077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02077-6

Keywords

Navigation