Skip to main content
Log in

Novel functional methacrylate copolymers with side chain tertiary amine and alkynes and their some properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New methacrylate monomers 2-{[4-(dimethylamino) phenyl] amino}-2-oxoethyl-2-methylacrylate (DMPAMA), and 1-[4-(prop-2-yn-1-yloxy) phenyl] ethanone-O-methacryloyloxime (POEMO) were synthesized first time. The free radical copolymerization of DMPAMA with POEMO has been carried out in 1, 4-dioxane solution at 65 °C ± 1 using 2,2′-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. 1H-NMR was used to determine the molar fractions of DMPAMA and POEMO in the copolymers. The monomer –reactivity ratios were calculated according to the general copolymerization equation using Kelen-Tüdõs and Finemann-Ross linearization methods. The polydispersity indices of the polymers determined with gel permeation chromatography. The thermal behaviors of copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The copolymer has been converted into a novel salts by reaction with the iodemethane (CH3I). The electrical conductivity dependence of temperature of the polymers were measured and the polymers exhibit the semiconducting behavior, confirming that the electrical conductivity increases with increasing temperature. All the products showed moderate activity against different strains of bacteria and fungi. In addition, photo-stability tests of the polymers under near-UV irradiation were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Erol I, Sarkaya S (2012) J Polym Res 19:9957

    Article  Google Scholar 

  2. Erol I, Yavuz F (2005) Polym Int 54(3):506

    Article  CAS  Google Scholar 

  3. Soykan C, Erol I (2003) Euro Polym J 9(12):2261

    Article  Google Scholar 

  4. Erol I, Soykan C, Ahmedzade M (2002) J Polym Scı Part A-Polym Chem 40(11):1756

    Article  CAS  Google Scholar 

  5. Demirelli K, Coskun M, Erol I (2000) Euro Polym J 36(1):83

    Article  CAS  Google Scholar 

  6. Vijayanand PS, Kato S, Satokawa S, Kojima T (2009) J Polym Res 16(3):301

    Article  CAS  Google Scholar 

  7. Johnson A, Wang L, Standeve A, Escobar M, Chandraratna R (1999) Bioorg Med Chem 7:1321

    Article  CAS  Google Scholar 

  8. Binks BP, Fletcher PD, Salama IE, Horsup DI, Moore JA (2011) Langmuir 27:469

    Article  CAS  Google Scholar 

  9. Singh S, Bhadani A, Kataria H, Kaur G, Kamboj R (2009) Ind End Chem Res 48:1673

    Article  CAS  Google Scholar 

  10. Zielinski R (ed) (2005) Zielinski. R Quaternary Ammonium Salts, ITD Press, Poznan

    Google Scholar 

  11. Rabea EI, Badawy MEN, Stevens CV, Smagghe G, Steurbaut W (2003) Biomacromolecules 4:1457

    Article  CAS  Google Scholar 

  12. Belalia R, Grelier S, Benaissa M, Coma V (2008) J Agric Food Chem 56:1582

    Article  CAS  Google Scholar 

  13. McDonnell JG, Russell AD (1999) Clin Microbiol Rev 12:147

    CAS  Google Scholar 

  14. Boethling RS (1984) Water Res 18:1061

    Article  CAS  Google Scholar 

  15. Levinson MI (1999) J Surfactants Deterg 2:223

    Article  CAS  Google Scholar 

  16. 22.Cross J, Singer E.J (1994) Marcel Dekker Inc New York .

  17. Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Naidu R (2010) J Colloid Interface Sci 350:295

    Article  CAS  Google Scholar 

  18. Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Naidu R (2010) J Hazard Mater 183:87

    Article  CAS  Google Scholar 

  19. Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Naidu R (2011) Appl Clay Sci 51:370

    Article  CAS  Google Scholar 

  20. Arshady R, Kenner GW, Ledwith A (1981) Macromol Chem Phy 182(1):41

    Article  CAS  Google Scholar 

  21. 27.Ham G (1964) High Polymers Interscience Vol 18 New York.

  22. Erol I, Ahmedzade M (2005) J Polym Res 12(4):247

    Article  CAS  Google Scholar 

  23. Bednarski R, Braun D (1990) Makromol Chem 191(4):773

    Article  CAS  Google Scholar 

  24. Chang TC, Shen WY, Chiu YS, Chen HB, Ho SY (1996) J Polym Sci Part A: Polym Chem 34(16):3337

    Article  CAS  Google Scholar 

  25. Chang TC, Shen WY, Chiu YS, Chen HB, Ho SY (1997) Polym Degrad Stab 57(1):7

    Article  CAS  Google Scholar 

  26. 32.Vogel A (1989) Vogels Textbook of Pratical Organic Chemistry Longman p.813

  27. Erol I, Kolu S (2011) J App Polym Sci 120(1):279

    Article  CAS  Google Scholar 

  28. Erol I, Dedelioglu A (2008) Journal of Polymer Scıence Part. A-Polymer Chemstry 46(2):530

    Article  CAS  Google Scholar 

  29. Fineman M, Ross SD (1950) J Polym Sci 5(2):259

    Article  CAS  Google Scholar 

  30. Kelen T, Tudos F (1975) J Mac Sci Pure Appl Chem 9:1

    Google Scholar 

  31. 37.Connerton I.F, In Analysis of Membrane Proteins, Ed by Gould G.W., Portland, London, 177(1994).

  32. Chan ECZ, Pelczar MJ, Krieg NR (1993) Mc-Graw-Hill. New York p 225

  33. Desai JA, Dayal U, Parsania PH (1996) J Macromol Sci Pure Appl Chem 33(8):1113

    Article  Google Scholar 

  34. Yang YF, Hu HQ, Li Y, Wan LS, Xu ZK (2011) J Membr Sci 376:132

    Article  CAS  Google Scholar 

  35. Melville HW, Noble B, Watson WF (1649) J Polym Sci 4((5):629

    Google Scholar 

  36. Gibbs JH, Di Marzio EA (1963) J Polym Sci 1:1417

    Google Scholar 

  37. Fox TG, Flory PJ (1950) J Appl Phys 21:581

    Article  CAS  Google Scholar 

  38. Erol I, Soykan C, Ilter Z, Ahmedzade M (2003) Polym Degrad Sta 81:287

    Article  CAS  Google Scholar 

  39. Coskun M, Erol I, Coskun MF, Demirelli K (2002) Polym Degrad Stab 78:49

    Article  CAS  Google Scholar 

  40. Erol I (2008) J Fluorine Chem 129(7):613

    Article  CAS  Google Scholar 

  41. Munoz-Bonilla A, Fernandez-Garcia M (2012) Progress Polym Scı 37(2):281

    Article  CAS  Google Scholar 

  42. Guillet JE, Rendall WA (1986) Macromolecules 19:224

    Article  CAS  Google Scholar 

  43. Morishima Y, Itoh Y, Nozakura S (1981) Makromol Chem 82:3135

    Article  Google Scholar 

  44. Morishima Y, Kobayash T, Nozakura S (1989) Polym J 21:267

    Article  CAS  Google Scholar 

  45. Weir NA, Arct J (1990) Whiting K. Eur Poly J 26:341

    Article  CAS  Google Scholar 

  46. Ghogare A, Kumar S (1989) J Chem Soc Chem Com 5:1533

    Article  Google Scholar 

  47. Ghogare A, Kumar S (1989) J Chem Soc Chem Com 5:134

    Google Scholar 

  48. Moris F, Gotor V (1993) J Org Chem 58:653

    Article  CAS  Google Scholar 

  49. Athawale V, Manjrekar NJ (2000) Mol Catal B Enzymatic 10:551

    Article  CAS  Google Scholar 

  50. Bohlmann F, . Burkhart F.T, Zero C (1973) London New York.NY.

  51. Hunstman V.D, Patai S (1978) Wiley Interscience London 553

Download references

Acknowledgments

Author wish to thank the financial support provided by the Afyon Kocatepe University Research Fund (Project No:11-FENBİL-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Erol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erol, I., Özcakir, R. & Gürler, Z. Novel functional methacrylate copolymers with side chain tertiary amine and alkynes and their some properties. J Polym Res 22, 635 (2015). https://doi.org/10.1007/s10965-014-0635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0635-9

Keywords

Navigation