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Abstract
Wellbeing is protective against the emergence of psychopathology. Neurobiological markers associated with mental
wellbeing during adolescence are important to understand. Limited research has examined neural networks (white matter
tracts) and mental wellbeing in early adolescence specifically. A cross-sectional diffusion tensor imaging analysis approach
was conducted, from the Longitudinal Adolescent Brain study, First Hundred Brains cohort (N= 99; 46.5% female;
Mage= 13.01, SD= 0.55). Participants completed self-report measures including wellbeing, quality-of-life, and
psychological distress. Potential neurobiological profiles using fractional anisotropy, axial, and radial diffusivity were
determined via a whole brain voxel-wise approach, and hierarchical cluster analysis of fractional anisotropy values, obtained
from 21 major white matter tracts. Three cluster groups with significantly different neurobiological profiles were
distinguished. No significant differences were found between the three cluster groups and measures of wellbeing, but two
left lateralized significant associations between white matter tracts and wellbeing measures were found. These results provide
preliminary evidence for potential neurobiological markers of mental health and wellbeing in early adolescence and should
be tracked longitudinally to provide more detailed and robust findings.
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Introduction

Wellbeing is not merely an absence of mental ill health
(Ryan & Deci, 2001), with evidence demonstrating that
environmental, genetic, and biological markers that
delineate mental health, are distinct from those that relate to
mental ill health (Gatt et al., 2014; Winefield et al., 2012).
For adolescents, wellbeing has been found to be a protective
factor against the onset of psychopathology (Campbell &
Osborn, 2021), which is important, as 50% of mental dis-
orders occur before the age of 14 and 75% before 24 years
old (Kessler et al., 2005). Adolescence; defined as the

transition between childhood and adulthood (Sawyer et al.,
2018), is also a time for significant neurodevelopment, with
such changes occurring in combination with psychological,
cognitive and behavioral maturation (Lebel et al., 2019).
From a neurodevelopmental perspective, adolescence is
marked by a period of heightened neuroplasticity, but also
vulnerability, and can be affected by experiences and
environmental factors (Fuhrmann et al., 2015). Such factors
can potentially affect short and long-term mental health and
wellbeing either positively or negatively (Aoki et al., 2017).
Studies have highlighted the associations between adoles-
cent neurodevelopment and psychopathology, or mental ill
health (e.g., (Fuhrmann et al., 2015)), yet only recently has
there been a shift in focus to understand the neural corre-
lates of wellbeing in “general” adolescent populations.
Thus, elucidating the neural indicators of mental wellbeing
as young people commence adolescence may be as
important as understanding the neural markers of mental ill
health. More specifically, it has been suggested that there is
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a need to clarify if, and which, neural networks may be
altered with the presence, or absence of, wellbeing and
resilience (Gatt et al., 2018). The current study addresses
these gaps by using an exploratory data-driven approach,
aiming to characterize potential neurobiological profiles in
early adolescence, which may be associated with mental
health and wellbeing.

Wellbeing

Wellbeing has been described as a multidimensional phe-
nomenon comprising of hedonic (subjective), and eude-
monic (psychological) wellbeing (Ryan & Deci, 2001).
Subjective wellbeing reflects the momentary experience of
pleasure, with specific regard to experiencing positive
affect, a lack of negative affect, and current life satisfaction
(Ryff & Keyes, 1995). Psychological wellbeing relates to
human potential, specifically autonomy, life purpose, mas-
tery, personal growth, positive relatedness, and self-
acceptance (Ryff & Keyes, 1995). Although early
research suggested that across the lifespan, pursuing plea-
surable activities and maintaining relationships was central
to wellbeing (Ryff, 1989), recent research suggested that
younger adults and adolescents place more emphasis on
subjective wellbeing, such as experience expansion, social
networks, knowledge and success, and novelty seeking
(thrill and happiness “for me”), than other ages (Karwetzky
et al., 2021). In a study of almost 10,000 early adolescents
(aged 11–14 years old), the unstable nature of subjective
wellbeing (life-satisfaction) over time was reported, with
females reported to be more prone to reductions in well-
being (Patalay & Fitzsimons, 2018). Alternatively, sub-
jective wellbeing (health related quality of life) in
adolescents (aged 12–15 years old at baseline) was found to
remain largely stable over time, but sex differences were
reported, with females reporting lower wellbeing overall
(Meade & Dowswell, 2016). Whilst both studies represent
aspects of subjective wellbeing, in a study with a sample of
N= 747 adolescents (aged 13–17 years), psychological
wellbeing dimensions of self-acceptance, autonomy, and
life development, were reported to remain stable over time
in both males and females, with only the positive inter-
personal relationships dimension showing an increase over
the 8 month period (Gómez-López et al., 2019). Although
such research sheds a light on subjective wellbeing, and
psychological wellbeing independently, the concept of
optimal wellbeing has long been recognized as encom-
passing both subjective and psychological wellbeing, and
therefore is important for prevention and intervention pro-
grams in adolescence to target both domains (Tejada-Gal-
lardo et al., 2020). Further, due to the reported shared
variance between subjective wellbeing, and psychological
wellbeing domains, it is imperative to consider an aggregate

wellbeing measure (Gatt et al., 2018). Taken together, these
results suggest that there is a need to further understand
wellbeing in early adolescence using a composite measure
of overall wellbeing, along with subjective and psycholo-
gical wellbeing independently.

Optimal wellbeing was once considered to be on a single
bipolar continuum with mental ill health at the other
extreme. However, research now evidences that although
psychopathology and wellbeing are consistently associated,
they operate on a functionally independent dual continua,
and as such, it can be postulated that wellbeing can be
enhanced despite the occurrence of mental ill health (Keyes,
2005; Mason Stephens et al., 2023). Further, evidence
suggests that measuring one construct alone, may not be
sufficient for understanding and interpreting levels of the
other, and unidimensional scales for psychopathology and
wellbeing may result in inaccurate interpretations of overall
wellbeing (Mason Stephens et al., 2023). The dual-factor
model therefore emphasizes the importance of considering
both psychopathology and wellbeing (Keyes, 2005), and in
early adolescence specifically, the dual-factor model has
been found to be useful in observing and understanding
changes in psychopathology and wellbeing profiles (Peter-
sen et al., 2022). Consequently, there is merit in measuring
various components of wellbeing and psychopathology to
further understanding of adolescent mental health.

Adolescent Brain Development

Complex patterns of change in white matter and gray matter
occur throughout the lifespan (Fuhrmann et al., 2015), and
in adolescence this follows a typical pattern of gray matter
volume decrease and white matter volume increase (Giedd,
2004), in a posterior/inferior to anterior direction (Olson
et al., 2015). Typically, the beginning of adolescence is
defined as being around 12 years of age coinciding with the
commencement of secondary school, as well as being
around the time of pubertal onset. In line with early ado-
lescence, myelination of the brain’s anterior regions com-
mences, and continues into early adulthood (Blakemore &
Choudhury, 2006). However, this process is non-linear
(Lebel et al., 2019), and the adolescent years are a parti-
cularly sensitive period for myelination of anterior brain
regions (Olson et al., 2015). The rate of white matter
maturation is thought to vary regionally throughout the
adolescent brain, with maturation in association tracts that
comprise frontal-temporal connections following a more
protracted developmental period compared to commissural
or projection tracts (Lebel et al., 2019). Literature regarding
typical white matter development from childhood to young
adulthood has been mixed, with some evidence suggesting
regionally dependent sexual dimorphism in white matter in
adolescence, yet other evidence pointing to no differences
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in sex, and pubertal effects on white matter trajectories
remain unclear (Lebel et al., 2019). Further it appears that
many cross-sectional studies on “adolescent” white matter,
comprise of participants covering a broad range of ages
from early childhood (aged 4 years) up to young adulthood
(aged 30 years) (Lebel et al., 2019), which may limit gen-
eralizability of findings, particularly when investigating
different phases of adolescence (e.g., early adolescence
compared to late adolescence). Hence, studies that focus on
narrower age ranges within the adolescent period are
needed.

Diffusion Tensor Imaging

Studies utilizing a diffusion tensor imaging (DTI) approach
can examine the structure of white matter tracts in vivo,
through measurement of water diffusivity. DTI is a non-
invasive Magnetic Resonance Imaging (MRI) technique that
quantifies the diffusion distribution of water within each
voxel along three orthogonal axes. Fractional anisotropy
(FA), the most reported DTI metric, measures diffusion
directionality with a range from 0 (isotropic diffusion—equal
in each direction) to 1 (diffusion occurs in one direction).
Axial diffusivity (AD) refers to the magnitude of diffusion in
the principal direction of diffusion, whereas radial diffusivity
(RD) refers to diffusion perpendicular to the principal dif-
fusion direction on the secondary and tertiary axes. Mean
diffusivity is calculated from the averaged diffusion along all
three axes. FA values may be used as proxy measurements of
white matter tract integrity, encompassing axon diameter and
relative alignment, axonal density, and thickness of the
myelin sheath (Beaulieu, 2002). Abnormally low FA values
may signify loss of axons and/or demyelination, whereas it
may be inferred from abnormally high FA that there may be
dense axonal packing, excessive myelination, and/or reduced
neural branching and functionality of the myelin sheath
(Soares et al., 2013). Mean diffusivity is also sensitive to the
aforementioned indicators of white matter integrity, but RD
and AD values are thought to provide more specific measures
of white matter microstructure compared to FA or mean
diffusivity alone (Goddings et al., 2021). Specifically, AD is
a more explicit marker of axon numbers and axonal coher-
ence, whereas RD is more sensitive to changes in myelina-
tion, axonal packing or myelin integrity (Lebel et al., 2019).
Studies in healthy children also suggest that FA and RD
values represent axonal packing and diameter and/or myeli-
nation (Krogsrud et al., 2016), and AD values in late ado-
lescence and adulthood may represent axon straightening
(Giorgio et al., 2010), with many adolescent brain studies
reporting that increases in FA and decreases in mean diffu-
sivity are largely driven by decreasing RD (Lebel et al.,
2019), reflecting large axonal diameter, myelination and
dense axonal packing (Feldman et al., 2010).

DTI analysis is widely utilized in the literature to infer
the relationships between white matter structure and integ-
rity, and behavioral, psychological, and cognitive measures
(Goddings et al., 2021). Historically the focus of the con-
nection between white matter development and cognitive
and behavioral changes has been on markers of specific
mental disorders as opposed to markers of mental health
and wellbeing. For example, FA irregularities have con-
sistently been found across studies examining numerous
mental disorders, including affective disorders (Sexton
et al., 2009), bipolar disorder (Heng et al., 2010), psychotic
disorders (Hermens et al., 2019), and schizophrenia speci-
fically (Kanaan et al., 2005), yet such abnormalities are not
always specific to an individual disorder and findings vary
considerably between studies. Further, it is an equally
important aim to understand the neurobiological profiles
that may indicate, or be associated with, adolescent mental
health and wellbeing.

Wellbeing and the Adolescent Brain

Research into the associations between neural indicators
and various components of wellbeing, had previously been
dominated by adult population studies, with a focus on gray
matter volume in regions typically associated with emotion
or reward processing (Gatt et al., 2018). In adolescents,
several recent volumetric gray matter studies have investi-
gated mental health and wellbeing. For example, in one of
the first studies in a community sample of early to mid-
adolescents aged 12–17 years (N= 89), results suggested
that more positive affect (subjective wellbeing) resulted in
greater decreases in caudate volume over time, and positive
affect was also found to be associated with larger hippo-
campal volume (Dennison et al., 2014). Similarly, using the
COMPAS-W (Gatt et al., 2014), which includes measures
of subjective, and psychological wellbeing and composite
wellbeing scores, a previous study from the Longitudinal
Adolescent Brain Study (Boyes et al., 2022) found negative
associations between left caudate volume and scores on
“composure” and “positivity” (both subjective wellbeing,
and closely related to optimism and positive affect), and
“total wellbeing”, in 12-year old’s indicating that smaller
caudate volume at age 12 is linked to increased subjective
wellbeing.

Numerous studies have investigated functional and
connective neural correlates of various aspects of wellbeing,
such as eudemonic wellbeing (Kong et al., 2015), flour-
ishing (Goldbeck et al., 2019), happiness (Luo et al., 2016)
and subjective wellbeing (Shi et al., 2018), implicating
several regions associated with the default mode and sal-
ience networks. However, results across studies have been
largely heterogenous in terms of wellbeing measures and
associated brain activity, with study samples comprised of
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mostly young adult and/or adults, as opposed to early
adolescents exclusively.

Studies specifically investigating white matter and how it
may be linked to aspects of mental health and wellbeing have
been limited until recently. Vitolo et al. (2022) measured
emotion regulation and white matter microstructure, finding
anomalies across tracts linking occipital, parietal, and temporal
regions, whereby those with low re-appraisal had increased
mean diffusivity in clusters within the superior longitudinal
fasciculus (SLF), superior corona radiata (SCR) and anterior
uncinate fasciculus (UF). Kotikalapudi et al. (2022) investi-
gated personality profiles that may be predictive of wellbeing
and the potential relationships with white matter. They found
that optimism was positively associated with AD values
exclusively in the right hemisphere, and specifically within the
anterior cingulum bundle (CNG), anterior corpus callosum
(CC genu), anterior thalamic radiation (ATR), corticospinal
tract (CST—which had the strongest finding relating to cluster
size), SLF, and UF. However, both studies did not directly
measure wellbeing, as Vitolo et al. (2022) measured emotion
regulation, while Kotikalapudi et al. (2022) assessed person-
ality profiles, that may predict wellbeing; and both studies had
mostly or only female samples aged from 18 to 40 years.
Further, in a multi-modal study, the associations between gray
matter volume, white matter microstructure, and subjective
wellbeing in a cohort of 17–65 year old’s was investigated
(Jung et al., 2022). Findings revealed that higher levels of
subjective wellbeing were associated with increased gray
matter volumes of the anterior insula, as well as decreased FA
values in clusters of the CC body, fornix cres/stria terminalis
(FCST) and precuneus white matter. Further, negative corre-
lations were found between quality of life and FA values in the
CC body, FCST and precuneus white matter, and between
positive emotion subscale scores, and the posterior corona
radiata (PCR), SLF, and CC splenium. Jung et al. (2022)
concluded that higher subjective wellbeing may be char-
acterized by decreased connectivity in the FCST and CC body.
However, their study sample comprised of participants aged
17–65 years, only measured subjective wellbeing and reported
FA values as the only measure of white matter microstructure.
Given the varied and somewhat disparate findings relating to
white matter and mental health and wellbeing in early ado-
lescence, it is speculative at this stage to postulate any inde-
pendent neurobiological mechanisms for these different
aspects of wellbeing. Therefore, it is imperative to provide
additional evidence to build a more comprehensive under-
standing of the neurobiology of wellbeing in adolescence.

Current Study

Despite prior research investigating the neural correlates of
mental health and wellbeing, significant gaps in knowledge

still exist, especially in early adolescence. Much of the
aforementioned research used either a measure of subjective
wellbeing or psychological wellbeing, but not both, and
according to the dual factor model, whilst psychopathology
and wellbeing operate on a functionally independent dual
continua, it is important to consider both psychopathology
and various domains of wellbeing. Further, evidence sug-
gests that measuring one construct alone, may not be suf-
ficient for understanding and interpreting levels of the other,
and unidimensional scales for psychopathology and well-
being may result in inaccurate interpretations of overall
wellbeing (Mason Stephens et al., 2023). Therefore, this
study used a composite measure of wellbeing encompassing
both subjective wellbeing and psychological wellbeing, a
quality-of-life measure, and a psychological distress mea-
sure. Based on the literature, 21 white matter tracts were
chosen as regions of interest representing the three major
types: (i) association fibers (SLF, UF); connect cortical
areas within each hemisphere, (ii) projection fibers (PCR,
SCR, CST, PTR, FCST, PLIC, CNG); connecting cortical
areas with subcortical structures, and (iii) commissural
fibers (CC genu, CC body, CC splenium); connecting
similar cortical areas between hemispheres. Given the het-
erogeneous findings across previous DTI studies in ado-
lescent populations, and the need to consider both
individual and collective measures of mental wellbeing, an
exploratory data-driven approach was undertaken. Addi-
tionally, utilizing cluster analysis as an optimal method for
characterizing potential neurobiological profiles, this study
aims to inform future research around potential associations
between mental health and wellbeing measures and white
matter profiles in early adolescence.

Methods

Ethics approval was granted by the University of the Sun-
shine Coast Human Research Ethics Committee (HREC#
A181064). Informed, written consent was obtained from
both the parent/caregiver and the adolescent prior to parti-
cipation in the study.

Participants

Participant data was acquired as part of the Longitudinal
Adolescent Brain Study (LABS), Australia. Participants
came from a self-selected community derived sample, who
were recruited from the Sunshine Coast area via a range of
networks, including local media, community services, and
schools. The LABS aims to track (via neuroimaging and
neuropsychological assessments) longitudinal changes in
the adolescent brain at four-monthly intervals over a period
of 5 years. Data from the LABS general population First
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Hundred Brains cohort (see Levenstein et al., 2023) were
utilized for this study (N= 101; 46.5% female). Participants
were between the ages of 12 and 13 years old
(Mage= 13.01, SD= 0.55), and proficient in spoken and
written English. Exclusion criteria included individuals who
reported having a major neurological disorder, intellectual
disability, medical illness, or those who reported sustaining
a head injury that involved loss of consciousness for greater
than 30 min. The methodology, selection, and inclusion
criteria for the First Hundred Brains cohort specifically, are
outlined in detail elsewhere (see Levenstein et al., 2023).

Procedure

For this specific study, data was used from the First Hun-
dred Brains cohort of participants who completed self-
report questionnaires including; the COMPAS-W (Gatt
et al., 2014), Kessler Psychological Distress scale (K10)
(Kessler et al., 2002), WHO-QOL BREF (Whoqol, &
Group, 1998), as well as those who had undergone MRI,
including DWI scans. A whole-brain DTI technique was
employed to determine FA values. Next, cluster analysis
was performed utilizing FA values obtained from key white
matter tracts. Cluster analysis is a hypothesis generating
technique, therefore, to better understand the functional
implications of the cluster groups identified, the association
between FA and self-report measures were also examined.

Measures

Wellbeing (COMPAS-W)

As part of the self-report questionnaire, participants com-
pleted the 26-item COMPAS-W wellbeing measure to
assess Total Wellbeing, which is a reliable indicator of
mental health, as well as wellbeing subscales: Composure,
Own-worth, Mastery, Positivity, Achievement and Satis-
faction, to identify specific areas of strength and deficit
(Gatt et al., 2014). Each item is scored using a 5-point
Likert-type scale (1= strongly disagree to 5= strongly
agree) with a potential “total wellbeing” score ranging from
26 to 130. Six subscales represent a unique wellbeing
construct and include composure, own-worth, mastery,
positivity, achievement and satisfaction. Summing of indi-
vidual items results in scores ranging from a minimum of 3
to a maximum of 9, with some items loaded on multiple
subscales. Validated for use with 12–61 year-olds, the
COMPAS-W includes measures of eudemonic (psycholo-
gical wellbeing; own-worth, mastery and achievement), and
hedonic (subjective wellbeing; composure, positivity and
satisfaction) (Gatt et al., 2020). COMPAS-W has recently
been utilized in research linking wellbeing to subcortical
gray matter volume in adults (Gatt et al., 2018), and in 12

year old’s (Boyes et al., 2022). In the current sample, there
was good internal consistency (Cronbach’s α= 0.856). Cut-
offs for groups were based on the categories established by
Gatt et al. (2014), whereby “total wellbeing” scores of 89 or
below were classified as “languishing”, 90–110 “moderate”,
and 111 or higher were classified as “flourishing”. The
COMPAS-W can therefore be used as a continuous variable
or using categorizations. As mental illnesses can be diag-
nosed based on symptoms and analyses of functioning,
individuals can also be placed on a “wellbeing continuum”.
“Languishing” wellbeing in adults has been characterized
by impairments to psychological, social, and physical fac-
tors, and an increased likelihood of a depressive episode
(Keyes, 2002). By contrast, those who experience “mod-
erate” or “flourishing” wellbeing, appear to function better
in terms of relationships, educational attainment, and daily
living, with most people falling in the “moderate” category
(Keyes, 2002). However, it should not be assumed that all
individuals who are experiencing symptoms of a depressive
episode are “languishing”, and further, “languishing” indi-
viduals who are not depressed, can experience greater
impacts to their daily life (Keyes, 2002).

Psychological Distress

The K10 (Kessler et al., 2002) is a 10-item self-report
questionnaire pertaining to non-specific symptoms of psy-
chological distress, requiring respondents to report how
often they have experienced such symptoms over the past
30 days. Responses are rated on a 5-point Likert scale
ranging from 1= None of the time to 5= All of the time on
items such as “during the last 30 days, about how often did
you feel worthless”. Scores range from 10 (indicating low
levels of distress) to 50 (indicating severe levels of distress).
The K10 has been used in several prominent Australian and
international health surveys, inclusive of the Australian
Health Survey, the New Zealand Health Survey, and the
Canadian Community Survey, and has been validated for
use in adolescents aged 12 to 19 years N= 2325 (Chan &
Fung, 2014). In the current sample, the K10 had good
internal consistency (Cronbach’s α= 0.871). The K10 can
be used as a continuous variable, or scores can be cate-
gorized into groups. Cut-offs for groups were based on the
Australian Bureau of Statistics Information Paper which
categorizes K10 scores of 10–15 as “low” (likely to be
well), 16–21 “moderate”, 22–29 “high” and 30–50 “very
high” (Andrews & Slade, 2001; Australian Bureau of Sta-
tistics, 2012). Although high scores on the K10 are strongly
associated with depressive or anxiety disorders, the
experience of psychological distress does not classify
someone as experiencing mental disorder (Andrews &
Slade, 2001). Nonetheless, high and very high levels of
psychological distress are suggested to be a proxy measure
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for the presence of mental ill health (Australian Institute of
Health & Welfare, 2021). The K10 scale was utilized as an
additional measure to the COMPAS-W, to delineate those
who scored low on psychological distress and were there-
fore categorized as “well” as per the ABS categories
(Andrews & Slade, 2001; Australian Bureau of Statistics,
2012).

Quality of Life

The World Health Organization Quality of Life (WHOQOL-
BREF) (23 items) measures the following broad domains: (i)
physical health, referring to energy, fatigue, pain, discomfort,
sleep, and rest; (ii) psychological health, referring to bodily
acceptance, negative and positive feelings, self-esteem, and
cognition; (iii) social relationships, referring to personal rela-
tionships and social support; (iv) environment, referring to
financial resources, freedom, physical safety and security,
health and social care accessibility and quality, home envir-
onment, opportunities for acquiring new information and
skills, and physical environment. Total scores are achieved for
each domain, measured on a scale of 1 to 5, with higher scores
indicating better quality of life in that domain. The
WHOQOL-BREF has been employed extensively by both
psychological and medical research as a cross cultural measure
of health-related quality of life (Chen et al., 2006), and has
been validated in a sample of 365 Taiwanese, high school
students aged between 12.58 and 14.78 years (Chen et al.,
2006). In the current sample, this measure had good internal
consistency (Cronbach’s α= 0.918). The WHO QOL BREF
was used as an additional measure with reference to quality of
life and life satisfaction as a marker of mental health and
wellbeing.

MRI Acquisition

The MRI data were collected using Siemens Skyra 3 T MRI
scanner using a 64-channel head and neck coil at the XXX
Institute. The structural 3D T1-weighted images were col-
lected using magnetization prepared-rapid gradient echo
(MP-RAGE) sequence with TR/TE/flip angle=
2200 ms/1.76 ms; matrix= 256 × 256 × 208, and
resolution= 1.0 × 1.0 × 1.0 mm. The total time for the MP-
RAGE acquisition was 4 min. The diffusion tensor imaging
data were acquired using a multi-slice spin echo-planner
imaging sequence with TR/TE= 3300 ms/115 ms,
matrix= 114 × 114 × 72, resolution= 2.0 × 2.0 × 2.0 mm3,
and b-values= 8 × b= 0 s/mm2+ 27 directions with
b= 1000 s/mm2+ 62 directions with b= 2500 s/mm2. A
reversed phase encoding DTI data with 6 × b= 0 s/mm2

were also acquired for EPI distortion correction during data
pre-processing. The total time for the DTI acquisition was
10 min.

MRI Data Pre-Processing

Data were pre-processed and analysed using FMRIB’s Soft-
ware Library (FSL 5.0.9) as well as MRtrix 3.0 (Tournier
et al., 2019) and Advanced Normalization Tools (ANTs; 2.0.1;
https://www.nitrc.org/projects/ants). DTI data were denoised
using MRtrix-dwidenoise (Cordero-Grande et al., 2019) which
estimates the noise level and denoises the data based on ran-
dom matrix theory as it exploits data redundancy in the patch-
level PCA domain. The b0 images of the forward and reverse
phase acquired DTI images were prepared as input for the
FSL-Topup (Andersson et al., 2003) function for susceptibility
distortion correction, then were corrected for eddy current
using (FSL-eddy_openmp). Data were also corrected for field
bias using MRtrix-dwibiascorrect (Tustison et al., 2010), and
the mask was estimated using MRtrix-dwi2mask. To estimate
the DTI matrices, MRtrix dwi2tensor was used to compute the
corresponding tensor components, then MRtrix-tensor2metric
was used to generate the eigenvector maps used to estimate the
FA, RD and AD.

After pre-processing, out of the 101 participants included in
the First Hundred Brains cohort two participants were exclu-
ded because of incomplete data acquisition (missing MRI
data) resulting in a sample size for the current study, of
N= 99. To normalize the data to a common space, and as the
sample were young adolescents, a study specific template was
created. To generate the template, the FA of individual maps
were linearly registered to the FMRIB58 template-space using
FSL’s-FLIRT with 6 degrees of freedom, then all individual
maps were averaged to generate the initial template (i.e.,
Template0). Then a study specific template was generated
using the antsMultivariateTemplateConstruction2.sh script
from ANTS (Avants et al., 2011). Once all the FA maps were
non-linearly registered to the study-specific template, the
transformation and warp files were used to register the RD,
and AD maps to the study specific template. The group mean
FA images were generated and then skeletonized to identify
the centers of white matter tracts with a threshold FA value of
0.2. The Johns Hopkins University - International Consortium
for Brain Mapping (JHU-ICBM) DTI 81 labels atlas (Mori
et al., 2005) as part of FSL was used to create tract specific
masks of the tracts of interest and to extract the mean values of
the DTI measures from different white matter tracts. A total of
21 tracts were used in this analysis.

Statistical Analyses

Statistical analyses were conducted using the Statistical
Package for Social Sciences (SPSS version 26). Means, stan-
dard deviations, and frequencies of demographic and self-
report measures for the whole sample were first calculated.
Next, independent sample t tests (with Levene’s test) and chi-
squared tests were performed to identify any significant
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differences between males and females on the self-report
measures scores and categories, and age. Prior to the cluster
analysis, the DTI variables were checked for multicollinearity.
For the cluster analysis, mean FA scores for each of the 21
white matter tracts were standardized (converted to z-scores)
across the sample of N= 99, so that they could be comparable.
Next a hierarchical cluster analysis with Wards method of
minimum variance with a squared Euclidean distance measure
was performed. Cluster analysis creates homogenous groups
from the data and was therefore utilized in order to initially
identify FA profiles across the sample. Discriminant function
analysis was conducted (standard, confirmatory) to determine
which combination of FA variables best distinguished the
cluster groups.

Differences in DTI (FA, AD, RD), demographic data,
COMPAS-W scores, subscales, and categories, K10 scores
and categories, and WHO-QOL scores and subscales across
the cluster groups were assessed using one-way analysis of
variance (ANOVA) or chi-squared tests. For the ANOVAs,
Scheffe’s tests were used to determine post hoc pairwise
comparisons of cluster groups, and for the Chi-squared
tests, adjusted standardized residuals were analysed and
converted to p values, which were subsequently adjusted
using a Bonferroni correction. The significance level for the
above-mentioned tests was p < 0.05, except for the Chi-
squared residuals post hoc test, where a Bonferroni cor-
rection for multiple comparisons was applied accordingly
(adjusted p < 0.0042).

To identify which features of diffusivity (i.e., AD/RD)
may best describe any differences among the clusters, a
multinomial logistic regression analysis was performed. The
dependent variable was the cluster group, with RD and AD
scores as co-variates. To achieve a parsimonious model, the
four tracts that best differentiated the clusters were chosen.
AD and RD scores of the tracts were standardized to create
a comparable scale and were checked for collinearity. Any
variables (apart from FA values) that were significantly
different between cluster groups were to be included in the
model as covariates or factors. If the goodness of fit sta-
tistics were significant and evidence of over dispersion was
present, a standard error correction was performed with the
appropriate dispersion parameter.

Pearson’s correlations were conducted to examine asso-
ciations between key FA values for each tract and self-report
measures for the whole sample, as well as within each cluster
group. Given the number of correlations carried out, a Bon-
ferroni correction was applied for each set of correlations, with
the resultant significance level set at p < 0.0016.

Data Screening

Data cleaning and examination of self-report data and DTI
metrics showed that all outcome variables comprised valid

scores (no missing data) and were then assessed for nor-
mality and outliers. Using Shapiro-Wilks’s test of normal-
ity, COMPAS-W total wellbeing scores (and subscales),
K10 scores and WHOQOL total scores (and subscales)
were deemed non-normal (p < 0.05). However, visual
inspection of the histograms and box plots showed rela-
tively normal distributions for all scales and subscales with
no outliers. The only exception was positivity, which was
slightly skewed towards higher scores (skewness=−0.91).
However central limit theorem offers protection for viola-
tion of normality if the sample is over N= 30 for all
dependent variables, therefore no transformations were
performed. All other variables (DTI metrics) were normally
distributed.

Results

Whole Sample

Data from N= 99 participants (Mage= 13.01, SD= 0.55)
were accessed as part of LABS, with demographics and
variables scores for the whole sampled outlined in Table 1.
There were no significant differences between males and
females for age, total wellbeing scores, psychological dis-
tress categories, wellbeing categories, and all wellbeing
sub-scale scores, except mastery. Females had significantly
higher mastery scores (M= 23.46, SD= 3.61) than males
(M= 21.91, SD= 3.03, t=−2.326 [97], p= 0.011). The
only other significant difference between males and females
was for psychological distress scores, where females had
higher scores (M= 17.30, SD= 6.82) than males
(M= 14.43, SD= 4.34, t=−2.456 [74.3], p= 0.016). This
is in line with population data reported in the Young Minds
Matter Survey of 11–17 year olds (using the K10 and ABS
derived cut-offs that were also used for the current study),
where a higher proportion of females had high or very high
levels of psychological distress (Australian Institute of
Health and Welfare, 2021). Further in the whole sample of
the current study (Table 1) 15.1% had high or very high
levels of psychological distress which is also comparable
with the results from the Young Minds Matter Survey,
where it was reported that 16.8% of 11–17-year-olds had
high or very high psychological distress.

Cluster Characteristics

Agglomeration coefficients generated by the cluster analysis
for the 21 white matter tracts revealed a demarcation point
between three and four cluster solutions. For optimal sta-
tistical power, cluster groups should be n > 20 (Dalmaijer
et al., 2022), thus a three-cluster solution was selected. This
was confirmed via inspection of the dendrogram. The
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resultant cluster groups/sizes were: cluster 1 [n= 48];
cluster 2 [n= 28], and cluster 3 [n= 23] and their demo-
graphic and self-report data are provided in Table 1. Among
the cluster groups there were no significant differences in
wellbeing, quality of life and psychological distress scores
(or subscale scores). Further, when evaluating wellbeing
and psychological distress categories, Chi squared tests
revealed that there were no significant differences between
clusters. Finally, there were no significant differences in the
proportion of females-to-males among the three cluster
groups (see Table 1).

Across the three cluster groups distinct profiles of FA
scores were evident (Fig. 1). All 21 of the DTI variables
revealed significant main effects of “cluster group”
(p < 0.001). Specifically, cluster 2 showed significantly
decreased FA scores across all tracts compared to the other
clusters (Scheffe’s; ps ≤ 0.045). In contrast, cluster
3 showed significantly increased FA scores (Scheffe’s;
ps ≤ 0.017) across all tracts except for the CST-R and L,

UF-R and L, and CC genu (no different from cluster 1).
Compared to the other clusters, cluster 1 showed an inter-
mediate FA profile.

To evaluate the parameters underlying FA, clusters were
also compared in terms of AD and RD. For AD scores,
ANOVA revealed significant main effects of “cluster
group” in only three of the tracts—the CNG-R & L, and the
PLIC-L (ps ≤ 0.015). In the CNG-R, cluster 2 had sig-
nificantly decreased AD scores compared to cluster 1 and 3
(Scheffe’s; ps ≤ 0.026). In the CNG-L, cluster 2 had sig-
nificantly decreased AD scores compared to cluster 3
(Scheffe’s; ps ≤ 0.016). In the PLIC-L, cluster 2 had sig-
nificantly decreased AD scores compared to cluster 1 and 3
(Scheffe’s; ps ≤ 0.037). No other significant main effects
were found for AD scores.

For RD scores, there were significant main effects of
“cluster groups” for all tracts (ps ≤ 0.010) except for FCST-
R and the CST-R. Specifically, cluster 2 showed sig-
nificantly increased RD scores in 14 of the tracts compared

Table 1 Whole sample and
cluster demographic
characteristics and
variable scores

Whole sample N= 99
M (SD)

Cluster 1 n= 48
M (SD)

Cluster 2 n= 28
M (SD)

Cluster 3 n= 23
M (SD)

COMPAS-W Total 100.33 (11.18) 100.38 (11.95) 101.21 (8.94) 99.17 (12.30)

K10 Total 15.77 (5.78) 15.48 (6.00) 14.89 (3.12) 17.43 (7.48)

WHO-QOL Total 97.09 (10.37) 97.21 (10.94) 98.04 (9.45) 95.70 (10.48)

SWB (hedonic)

Composure 14.42 (2.98) 14.83 (2.87) 14.54 (2.92) 13.34 (3.19)

Positivity 20.98 (2.86) 20.92 (3.03) 21.57 (2.06) 20.39 (3.27)

Satisfaction 35.62 (5.30) 35.69 (5.55) 36.39 (3.67) 34.52 (5.89)

PWB (eudemonic)

Own worth 33.25 (4.45) 33.21 (4.44) 33.64 (3.62) 32.87 (5.43)

Mastery 22.63 (3.38) 22.65 (3.20) 22.61 (3.65) 22.61 (3.55)

Achievement 11.60 (2.12) 11.33 (2.30) 11.36 (1.59) 12.43 (2.15)

QoL

Physical 21.08 (2.63) 21.02 (2.77) 21.39 (2.20) 20.83 (2.85)

Psychological 23.74 (3.42) 23.81 (3.41) 24.39 (2.98) 22.78 (3.84)

Social 8.46 (1.36) 8.46 (1.41) 8.61 (1.17) 8.30 (1.49)

Environmental 34.95 (4.03) 35.10 (4.27) 34.86 (3.75) 34.74 (4.01)

Overall 8.86 (1.13) 8.81 (1.07) 8.79 (1.17) 9.04 (1.22)

Whole sample
N (%)

Cluster 1
n (%)

Cluster 2
n (%)

Cluster 3
n (%)

Females 46 (46.5) 20 (41.6) 13 (46.4) 13 (56.5)

Wellbeing category

Flourishing 17 (17.2) 11 (22.9) 3 (10.7) 3 (13.1)

Moderate 63 (63.6) 26 (54.2) 22 (78.5) 15 (65.2)

Languishing 19 (19.2) 11 (22.9) 3 (10.7) 5 (21.7)

Psychological distress category

Low/Well 60 (60.6) 31 (64.6) 16 (57.1) 13 (56.5)

Moderate 24 (24.2) 9 (8.3) 11 (39.3) 4 (17.4)

High 12 (12.1) 6 (12.5) 1 (3.6) 5 (21.7)

Very high 3 (3.0) 2 (4.2) 0 (0) 1 (4.3)
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to the other clusters (Scheffe’s; ps ≤ 0.043). The only
exceptions were the CST-L, the PTR-R, the PTR-L, and the
FCST-L, where cluster 2 had significantly increased RD
scores compared to only cluster 3, the UF-R where cluster 2
had significantly increased RD scores compared to only
cluster 1 (Scheffe’s; p= 0.023)., and in the PTR-R, FCST-L
cluster 3 had significantly decreased RD scores compared to
only cluster 1 (Scheffe’s; p= 0.002).

Discriminant Function Analysis

With the 21 FA variables entered simultaneously as pre-
dictors, discriminant function analysis confirmed the dis-
tinct FA profiles, generating two functions to separate the
three cluster groups. The first function accounted for 95.5%
of the differences among the clusters (Wilk’s λ= 0.119,
p < 0.001). The second function explained the remaining
4.5% of the variance and was also statistically significant
(Wilk’s λ= 0.709, p= 0.004). The structure matrix showed
a clear delineation, with function 1 being characterized by
high to moderate discriminant loadings (in decreasing order

of magnitude) for SCR-R (r= 0.548), SCR-L (r= 0.520),
SLF-R (r= 0.468), PCR-L (r= 0.462), PLIC-R
(r= 0.452), CNG-R (r= 0.424), PCR-R (r= 0.420),
PLIC-L (r= 0.415), SLF-L (r= 0.401), CC body
(r= 0.360), CNG-L (r= 0.320), PTR-L (r= 0.319),
whereas function 2 was characterized by UF-R (r= 0.409),
and CC genu (r= 0.338). The resultant discriminant func-
tion analysis showed an overall correct classification rate of
96.0% with a cross-validation (“leave-one-out”) technique
confirming the stability of this classification procedure with
an overall correct rate of 81.8%.

Multinomial Logistic Regression Models

Given the discriminant function analysis findings, AD and
RD scores from the SCR-R, SCR-L, SLF-R and PCR-L,
were used for the multinomial logistic regression analysis,
as these were revealed to be the 4 most distinguishing tracts
according to the discriminant function analysis. The resul-
tant model was found to be significant (- 2 Log Likelihood –
68.10, χ2(22)= 139.27, p < 0.001) and accounted for 86.1%
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Fig. 1 a Standardized FA scores (mean with 95% confidence interval
bars) across cluster groupings, derived from 21 white matter-tracts
(JHU-ICBM atlas). b Visualization of the 21 JHU-ICBM atlas tracts
included in the cluster analysis, overlaid on a standard space template.

Axial slices depict inferior to superior moving from left to right. For
greater distinction, bilateralized or single tracts are each color coded
uniquely and correspond to the labels on the x-axis in subplot-a
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of the variance (Nagelkerke R2= 0.861). As cluster 1 had
the intermediate profile of FA scores, this cluster was
chosen to be the reference group. The odds ratio for each
variable revealed that, compared to cluster 1, cluster 2 was
significantly more likely to have increased RD in the PCR-
L, SCR-R and SLF-R (ps ≤ 0.040), and decreased AD in the
PCR-L (p= 0.024), whereas cluster 3 was significantly
more likely to have decreased RD in the SCR-R
(p= 0.011), and increased AD in the SCR-R (p= 0.021),

Correlations

There were no significant correlations between FA scores of
each of the 21 tracts and the self-report variables in the
whole sample (p < 0.0016). For cluster 1, one significant
association was revealed: K10 total correlated with FA in
the SLF-L (r=−0.462, p < 0.001; Fig. 2). For cluster 2,
COMPAS-W total wellbeing scores were associated with
FA in the SCR-L (r=−0.623, p < 0.001; Fig. 3). For
cluster 3, no significant within cluster correlations were
found (p < 0.0016).

Discussion

Previous findings across DTI studies exploring the
neurobiology of mental wellbeing in adolescent
populations have been heterogenous, with much of

the previous research using either a measure of
subjective wellbeing or psychological wellbeing, but
not both, and had not considered a dual-factor perspective
of wellbeing and psychopathology. Therefore, the goal
of the current study utilizing DTI data obtained from
the First Hundred Brains cohort, a fixed dataset of 101
unique early adolescents, was to identify potential neuro-
biological profiles from FA values across 21 major white
matter tracts throughout the brain, that may underlie
differences in measures of wellbeing. Via cluster analysis
three distinct and significantly different cluster profiles
were identified, and confirmatory discriminant function
analysis revealed that these three cluster groups were
maximally separated by two key patterns (discriminant
functions). First, consistent FA changes in 12 tracts
(representing projection, association and commissural
fibers); and second, consistent FA changes in the right UF
and the CC genu, which are two tracts with functional
connections within the frontal lobes. Between-groups ana-
lyses revealed that the three clusters did not significantly
differ in any measures of mental health and wellbeing.
However, two significant left lateralized, negative associa-
tions (SLF-L and K10 in cluster 1, and SCR-L and
COMPAS-W total in cluster 2) were found, providing
preliminary evidence of the potential laterality of the rela-
tionship between markers of white matter integrity and
mental health and wellbeing specifically in early
adolescents.

Fig. 2 Correlation between FA
of the SLF-L and K10 scores in
cluster 1 (r=−0.462, p < 0.001;
N= 48; triangles), compared to
cluster 2 (no significant
correlation; N= 28; squares)
and cluster 3 (no significant
correlation; N= 23; circles).
FA fractional anisotropy; SLF–L
superior longitudinal fasciculus,
left; K10 scores= psychological
distress, with higher scores
meaning higher psychological
distress
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Structural Connectivity Differences in
Cluster Groups

Overall, the clusters identified were neurobiologically dis-
tinct in a few ways. Cluster 1 showed an intermediate FA
profile in all tracts compared to clusters 2 and 3, had sig-
nificantly increased AD scores in the CNG-R and PLIC-L
compared to cluster 2, and significantly decreased RD
scores in the 14 of the 21 tracts compared to cluster 2 and 3.
Although cluster 1 had the intermediate FA profile, such FA
values (i.e., increased relative to cluster 2) in combination
with increased AD and decreased RD, could be reflective of
larger axonal diameter or higher myelination (Feldman
et al., 2010).

Cluster 2 had a distinct profile with significantly
decreased FA scores across all tracts compared to the other
clusters, had significantly increased RD scores in 14 of the
tracts compared to the other clusters, and significantly
decreased AD scores compared to cluster 1 and 3 in the
CNG-R, in the CNG-L compared to cluster 3, and in the

PLIC-L compared to cluster 1 and 3. Focusing on the four
most distinguishing tracts in terms of FA that were revealed
from the discriminant function analysis, the findings from
the multinomial logistic regression showed that cluster 2
was significantly more likely to have increased RD scores in
PCR-L, SCR-R and SLF-R, and decreased AD in PCR-L
compared to cluster 1. Therefore, in the PCR-L specifically,
as AD may be a marker of axon numbers and axonal
coherence, and RD may represent changes in myelination,
axonal packing or myelin integrity (Lebel et al., 2019). The
combination of decreased FA, increased RD and decreased
AD compared to the other clusters, may be reflective of
axonal degeneration, or potentially slower development
Feldman et al. (2010).

Cluster 3 had a distinct profile of increased FA scores
across all tracts compared to the other clusters and was
significantly different across all tracts except for the CST-R
and L, UF-R and L, and the CC genu (no different from
cluster 1). There were no significant differences in terms of
AD scores in cluster 3 compared to the other clusters, but

Fig. 3 Correlation between FA of the SCR-L and COMPAS-W total
wellbeing scores in cluster 2 (r=−0.623, p < 0.001, N= 28; squares),
compared to cluster 1 (no significant correlation; N= 48; triangles)

and cluster 3 (no significant correlation; N= 23; circles). FA fractional
anisotropy; SCR–L superior corona radiata, left; COMPAS-W Total
Wellbeing, with higher scores meaning higher total wellbeing
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significantly decreased RD scores in 18 tracts compared to
cluster 2 were evident. Relating to the multinomial logistic
regression, cluster 3 was significantly more likely to have
decreased RD and increased AD in the SCR-R specifically.
Studies in healthy children suggest that FA and RD values
represent axonal packing and diameter, and/or myelination
(Krogsrud et al., 2016), therefore, the neurobiological pro-
file of cluster 3 with increased FA along with decreased RD
and unaffected or increased AD, compared to the other
clusters, might indicate dense axonal packing, large axonal
diameter, excessive myelination, and/or reduced neural
branching and functionality of the myelin sheath (Feldman
et al., 2010; Soares et al., 2013).

Mental Health and Wellbeing Across Clusters

While the analysis found no significant differences between
the clusters in terms of mental health and wellbeing, there
were ostensible health and wellbeing differences across the
clusters. For example, cluster 3 had the lowest total quality of
life and wellbeing scores (including all subjective wellbeing
subscale scores and two out of the three psychological
wellbeing subscales), and the highest psychological distress
scores. Further, overall cluster 3 had the highest proportion of
those categorized as having high or very high psychological
distress, and the lowest proportion of those classified as well
(according to ABS cut offs). These results taken together with
the neurobiological profile of cluster 3, could indicate that
dense axonal packing, large axonal diameter, excessive
myelination, and/or reduced neural branching and function-
ality of the myelin sheath in early adolescence may be linked
to lower overall mental health and wellbeing. Such patterns
may indicate the possible emergence of psychopathology and
should therefore be followed longitudinally in this specific
cohort to track further potential changes in structural con-
nectivity. In contrast, cluster 2 had the highest overall well-
being and quality of life scores, and lowest psychological
distress scores, with a neurobiological profile of lower FA
values. The lack of statistical significance despite ostensible
differences in health and wellbeing (particularly in cluster 2
and 3), may in part be due to the small size of the two clusters,
and the general population sample as opposed to a clinical
sample. Therefore, future research should aim to confirm or
refute these trends with larger sample sizes and examine the
differences in neurobiological profiles and mental health and
wellbeing in more detail, and longitudinally, to establish any
potential causal links.

Associations Between Mental Health and Wellbeing
in Individual Clusters

Among all participants (i.e., the whole sample) after a
Bonferroni correction, no significant associations with

wellbeing measures and FA values were evident. In a pre-
vious study from the LABS a consistent pattern of sig-
nificant correlations in the whole sample (N= 73) between
social connectedness and FA (negative), RD (positive) and
AD (positive) clusters in numerous tracts, including clusters
of the CC genu were found (Driver et al., 2023). This
indicated that adolescents with lower social connectedness
had a white matter profile suggestive of reduced axonal
density or coherence. Such consistent association patterns
were not evident in the whole sample analysed in the
current study.

Despite analyses identifying no significant differences
between the three cluster groups in measures of wellbeing,
correlation analyses performed on the wellbeing measures
and FA values in the individual cluster groups identified
two significant associations. Given the seemingly contrast-
ing findings of these two associations, it is important to
consider such findings according to the differing subgroup
white matter profiles. Cluster 1, with the intermediate white
matter profile which may be reflective of larger axonal
diameter or higher myelination, had a negative relationship
identified for K10 and the SLF-L, such that those with
lower psychological distress had higher FA values in this
tract. The SLF is one of the largest association fiber bundle
systems, connecting frontal, temporal, and parietal areas
ipsilaterally (Janelle et al., 2022), and is thought to be
responsible for language function, motor planning (left
hemisphere), and spatial orientation (mainly right hemi-
sphere) (Janelle et al., 2022), and increases in FA in the SLF
has been found to correlate with improved emotion recog-
nition (Mürner-Lavanchy et al., 2020). This tract is said to
mature rapidly during adolescence but also shows a pro-
tracted development (Lebel et al., 2019). When considering
the neurobiological profile of cluster 1 in comparison to
cluster 2 (Fig. 2; with the overall white matter profile sug-
gesting axonal degeneration or more likely slower devel-
opment), this pattern of DTI measures may be reflective of
more rapid development in this tract for cluster 1, and the
development of the SLF-L may also be linked to better
mental health and wellbeing.

The second negative correlation was in cluster 2,
between COMPAS-W total wellbeing and the SCR-L, such
that those with higher total wellbeing had lower FA values
in this tract. This suggests that for this subgroup, with an
overall profile of decreased FA (reflecting axonal degen-
eration or slower development), better wellbeing was
associated with lower FA values specifically in the SCR-L.
Vitolo et al. (2022) reported that those who were identified
as low dispositional users of reappraisal had increased mean
diffusivity in the SCR. Although mean diffusivity is based
on the averaged diffusion along all axes, higher mean dif-
fusivity values and lower FA values both correspond with
less diffusion restriction and less directionality. Therefore,
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the correlations observed in SCR-L FA in cluster 2, contrast
with Vitolo et al’s. (2022) increased mean diffusivity find-
ings, when considering positive markers of wellbeing (i.e.,
better reappraisal skills and better mental wellbeing). The
difference in findings may be due to the broader age range
(18–40 years), and mostly female sample, of Vitolo et al’s
study, and therefore may be explained by developmental
differences. The findings from the current study also con-
trast with earlier studies that reported that adolescents with
depression had lower FA values in the SCR (LeWinn et al.,
2014). The SCR is a key projection fiber which connects the
brain stem to the cortex and has been found to be associated
with various aspects of attention (Stave et al., 2017),
arousal, emotional conditioning, and memory consolidation.
Additionally, it has been reported that increased wellbeing
may be associated with reduced gray matter volume in the
pontine nuclei (Gatt et al., 2018), and the authors postulated
that the aforementioned processes that involve the brain
stem, may therefore play a role in wellbeing, which may
explain the association with wellbeing in this brain area and
associated white matter tracts. Additionally, it has been
reported that wellbeing is not stable in adolescence and may
decrease as youth mature (Patalay & Fitzsimons, 2018) and
therefore, the higher wellbeing scores in cluster 2 with the
corresponding lower FA values may be reflective of slower
developmental maturity.

Taken together, the findings of lower FA being asso-
ciated with higher total wellbeing (cluster 2), and lower FA
being associated with higher psychological distress
(cluster 1), may also provide collective evidence of psy-
chopathology and wellbeing operating on a functionally
independent dual continuum. This further supports the dual-
factor models’ emphasis on the need to measure both psy-
chopathology and wellbeing for understanding and inter-
preting levels of the other. Thus, although there were no
significant differences between the three cluster groups and
the different measures of wellbeing, ignoring the potential
for differences in structural connectivity when evaluating
relationships with wellbeing measures, would have resulted
in an omission of these cluster specific relationships.

Due to both associations being found in left hemisphere
tracts, there appears to be a slight left side dominance in the
current study, suggesting that FA values in left hemisphere
tracts may be more representative as neurobiological mar-
kers of mental health and wellbeing outcomes in early
adolescence. In previous LABS findings via electro-
encephalography, there were hemispheric differences in
relationships with neural activity and psychological distress
and wellbeing (Sacks et al., 2023). Similar to the current
study, a significant left lateralized relationship was found
with wellbeing, however a right lateralized relationship was
found with psychological distress (Sacks et al., 2023). The
lateralized relationships were postulated to potentially

provide support for a dual factor model of mental health and
wellbeing (Sacks et al., 2023). In a an earlier review of
neuroimaging studies however, it was concluded that
although there was some evidence to suggest left sided
laterality in regards to the dorsolateral prefrontal cortex and
positive affect, there was overall limited literature to defi-
nitively conclude evidence of laterality of any associations
with the brain and mental health and wellbeing (King,
2019). Relating to white matter specifically, previous lit-
erature finding associations between aspects of wellbeing
and structural connectivity, only reported on bilateral find-
ings (Jung et al., 2022; Vitolo et al., 2022). Additionally,
although Kotikalapudi et al. (2022) reported that optimism
was associated with AD in numerous tracts in the right
hemisphere exclusively, their participants were mostly
female and ranged from 18 to 40 years old. From a devel-
opmental perspective, a recent study reported on the FA
values of the three branches of the SLF, finding a significant
right lateralization in adolescents, but only in two portions
of the SLF (Amemiya et al., 2021), whilst a longitudinal
study in 9–13 year olds reported that pubertal stage was
positively correlated with fiber density in the SLF-R spe-
cifically (Genc et al., 2020). Another study following
female participants annually for six years from age nine,
found that earlier pubertal timing (but not tempo), predicted
greater FA and in left-lateralized tracts, including the corona
radiata (Chahal et al., 2018). An earlier small study reported
that girls (n= 29 aged 12–14 years) exhibited higher FA in
the SCR-R compared to aged matched boys, who exhibited
higher AD in several tracts including the SLF-R (Bava
et al., 2011). Consequently, as there appears to be incon-
clusive evidence in previous literature relating to later-
alization in terms of adolescent development and relating to
mental health and wellbeing measures, the findings from the
current study provide preliminary evidence for the potential
laterality of the relationship between markers of white
matter integrity and mental health and wellbeing specifi-
cally in early adolescents.

Limitations

There are some limitations to this study that warrant dis-
cussion. Firstly, due to the cross-sectional exploratory nat-
ure of this study, the results limit understanding of the
potential developmental underlying neurobiological pro-
cesses. It is acknowledged that a key role of developmental
neuroimaging is to elucidate any variability in behavioral
and cognitive development within a representative sample
(Lebel et al., 2019). As such, the First Hundred Brains
cohort is comprised only of 12–13-year old’s, from a gen-
eral population sample, with the goal of future research with
this cohort to expand on these cross-sectional findings with
follow up longitudinal research, as this cohort progresses
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through adolescence. Secondly, as this study was explora-
tory, future studies should aim to refute or confirm such
findings. Next, although there is evidence that stage of
puberty may influence white matter development (Genc
et al., 2017), this was not measured in the current study.
However, the constrained age range in this cohort reduces
the likelihood of difference due to puberty, and a puberty
measure has since been added to the LABS research pro-
gram which can be included in future longitudinal follow-
up studies with the First Hundred Brains cohort. Regarding
the cluster groups, although cluster 2 and 3 were adequate
for statistical power N ≥ 20;(Dalmaijer et al., 2022), a larger
sample size would be beneficial to enhance the statistical
power of the subsequent analysis of the cluster groups.
However, overall the large sample size within this con-
trolled age bracket far exceeds thresholds that are con-
sidered adequate for neuroimaging sample sizes (Vitolo
et al., 2022). Further, the small age range of participants in
this study reduces the potential for developmental variation
and is a strength of the current study compared to previous
research that includes much broader age ranges. The
selection of white matter tracts in this study was based on
previous literature that implicated these tracts in wellbeing
related constructs and represented each of the three types of
tracts. However, it is possible that the integrity of other
white matter tracts that have not been included in this
analysis may be associated with wellbeing and may con-
tribute to further differentiation of the cluster groups.
Therefore, future research could expand the breadth of tracts
investigated to further understanding of the neurobiological
markers of wellbeing in adolescents. Finally, it is
acknowledged that crossing fibers are an inherent problem
in certain DTI software and analysis techniques (Schilling
et al., 2022), which can result in lower FA values within a
certain voxel (Feldman et al., 2010), and FA values depend
significantly on type of acquisition and analysis used (Lebel
et al., 2019). Therefore, it is possible that these results have
been affected by crossing fibers. Future research including
alternative volumetric measures of white matter may pro-
vide more evidence for the interpretation of the current
findings.

Implications

The data driven exploratory approach of this study provides
preliminary evidence of variations in indicators of white
matter integrity in early adolescence that may be linked to
differences (albeit subtle in this study), to mental health and
wellbeing. In other words, the analysis undertaken here
revealed associations across two white matter tracts in clus-
ters with significantly different profiles of DTI measures, that
were not observed at the whole sample level. As previous
literature is largely varied and somewhat disparate relating to

white matter and mental health and wellbeing in early ado-
lescence, the findings from this study contribute to building a
more comprehensive understanding of the potential neuro-
biology of wellbeing in early adolescence. Given the nature
of the LABS and that this cohort is sampled from the general
population, the white matter profiling and associated mental
health and wellbeing measures, although subtle, may be
indicative of different levels of both protection and risk of
emerging psychopathology, which need to be tracked long-
itudinally to validate such preliminary evidence. That is, the
cluster group with poorer mental health and wellbeing
metrics and corresponding perturbations in structural con-
nectivity indicators (cluster 3) may be at risk of developing
mental disorders. In a DTI based cluster analysis study of an
older clinical population, similar subgroups were found with
corresponding associations with mental health outcomes (i.e.,
severity of symptoms and functioning) (Hermens et al.,
2019). Along with the evidence that 50% of mental disorders
occur before the age of 14, this supports the notion that
identifying the early neurobiological markers of mental
health and wellbeing, and emerging psychopathology, and
continuing to monitor subgroups from early adolescents, is
warranted. Research focused on adolescent mental health
vulnerability and opportunity, is vitally important for early
detection and prevention of psychopathology, and improve-
ment in mental health and wellbeing. Therefore, it is the
intention of the LABS to further track such neurobiological
markers of mental health and wellbeing using the fixed First
Hundred Brains cohort as they progress through adolescence.
Additionality, in early adolescence specifically, the dual-
factor model of mental health and wellbeing was found to be
valuable in observing and interpreting changes in wellbeing
and psychopathology profiles over time, whereby it was
identified that those with low peer support were most likely to
change from complete mental health to vulnerable status
(Petersen et al., 2022), Therefore, should the profiles of the
current adolescent cohort worsen, then interventions that
target modifiable factors such as social connectedness (Driver
et al., 2023) and sleep (Jamieson et al., 2020), that can affect
white matter integrity perturbations, may be warranted.
Improving assessment and characterization of wellbeing, and
monitoring changes longitudinally may be key to improving
clinical assessments and subsequent interventions for youth.

Conclusion

Previous research exploring adolescent mental health and
wellbeing and associated neurobiological markers has been
disparate and limited by broad age ranges and the utilization
of individual measures of mental wellbeing, as opposed to a
composite measure. By using an exploratory data-driven
approach to analyze white matter profiles and mental health
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and wellbeing measures from a fixed cohort of early ado-
lescents, this study found three distinct profiles reflecting
different white matter features across 21 major tracts. While
there were there were no significant differences between the
three cluster groups and the different measures of wellbeing,
the current study provides preliminary evidence in terms of
the left lateralization of the associations with wellbeing
measures that were found within two of the three neuro-
biologically different clusters. The current study therefore
contributes to the growing knowledge of the neurobiologi-
cal markers of mental health and wellbeing in early ado-
lescence, and by continuing to follow the First Hundred
Brains cohort as they progress through adolescence, the
future aim is to track such measures over time, providing
more detailed insight into the potential neurobiological
markers of mental health and wellbeing.
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