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Abstract
In this paper, we propose a model of national innovation production that formalizes the 
role of trade partnerships as a channel of knowledge spillovers across countries. The model 
is used to investigate the energy efficiency technological domain in the European Union 
(EU) using a panel database covering 19 EU countries for the time span 1990–2015. The 
model is estimated by using a novel empirical strategy which allows to assess the knowl-
edge spillover effects benefiting a country depending on its relative position in the trade 
network, and correct for common endogeneity concerns. We show that being central in the 
trade network is a significant determinant of a country’s innovative performance, and that 
learning-by-exporting mechanisms are responsible for increased innovation performances. 
We further reveal that neglecting network effects may significantly reduce our understand-
ing of domestic innovation patterns. Finally, we find that the benefits obtained from knowl-
edge diffusion varies with the domestic absorptive capacity and policy mix composition. 
Our main implication is that policy design informed by network-based case studies could 
help maximizing the exploitation of positive knowledge spillovers.
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1  Introduction

The continuous evolution of green technologies has been fostered by multiple public sup-
port instruments and massive investments in eco-innovation. Recently, questions have 
been raised on the cost effectiveness of these public support measures and scholars are 
now exploring whether the linkages across industries, technologies and policy instruments 
can be leveraged to reduce the financial burden of these investments, while remaining 
on track on a sustainable transition pattern. In this line of research, a large effort is cur-
rently dedicated to understand the potential role that co-evolving technological systems 
and cross-country spillover effects may play. This is done by using sophisticated analyti-
cal frameworks building on the well-established acknowledgment of the impact played by 
(generally-defined) positive externalities in this context. Relevant to this stream of research 
are those studies including innovation spillovers among the drivers of economic growth 
and firms productivity at the general level (Evangelista et al., 2018; Lee, 2020; Li and Bos-
worth, 2020; Mitze and Makkonen, 2020), and acknowledging their beneficial role in spe-
cific sectors such as the eco-innovation domain (Costantini et al., 2017a).1

The literature focusing on the eco-innovation domain is increasingly interested in the 
specific set of green technologies related to the energy system (Barbieri et al., 2016; Ver-
dolini and Galeotti, 2011), broadly distinguished between innovation patterns in renewable 
sources (see Johnstone et al., 2010; Reichardt and Rogge, 2016, among others) and energy 
efficiency (see for example, Noailly, 2012; Popp, 2002). In this context, the energy system 
of the European Union (EU) represents an attractive case study. Not only it allows to inves-
tigate the role of clean energy technologies in achieving a low carbon society, but it also 
provides the opportunity to observe how such disruptive technology regime shift generates 
large structural changes involving the whole economic system. Indeed, this radical change 
in the technological paradigm of the energy system comprises several transformations that 
also alter the political and organisation structure (Rosenow et al., 2016; Strunz, 2014).

In general terms, the costs of a successful transition of the energy system toward a more 
sustainable pattern depends on the structural features of countries, but also on the multiple 
linkages characterizing technologies, productive sectors and policies. It follows that if we 
rely on a definition of energy transition as a structural change involving the way energy 
services are produced, delivered and used, then clearly all these dimensions involved in the 
change should be jointly addressed, and the regulatory and institutional dynamics required 
for the transition should be coordinated with the evolution of the technological and eco-
nomic system (Rosenow et al., 2017). Such a deep transformation of the whole economic 
system brings unavoidable transaction costs, which can be smoothed if a systemic-evolu-
tionary view is adopted in policy mix design (Nill and Kemp, 2009).

In line with the so-called Porter hypothesis (Porter and Van der Linde, 1995), the reg-
ulatory framework may potentially turn adaptation costs into gains if the organisational, 
institutional and entrepreneurial settings are properly coordinated in exploiting the induced 
effects on the production and diffusion of the innovative goods and processes required to 
achieve the environmental targets. In this context, the institutional and socio-economic 
partnerships between EU members generate a complex web of relations which play a key 

1  Importantly, also policy spillovers are recently investigated in their capacity to better explain the innova-
tion performance (Dechezleprêtre et al., 2015; Peters et al., 2012), especially in green technologies (Marin 
and Zanfei, 2019).
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role in facilitating the coordination within and between countries for the development and 
deployment of new technological trajectories (Antonelli et al., 2020).

This coordination require to be analysed from both a top-down and a bottom-up perspec-
tive. Top-down actions include, for instance, general policies as the EU Smart Specialisa-
tion Strategy (S3) which are designed to overcome the Porter hypothesis, since knowledge 
co-creation and co-evolving economic systems can be key to transform the challenging 
goal of a sustainable energy transition into a development opportunity with no geographi-
cal boundaries (Santoalha and Boschma, 2020). In so doing, these strategies recognize a 
crucial role to the potential propelling strength played by spillover effects raising from co-
invention activities and technological relatedness, which can help EU countries to speed up 
in converging toward the top of the learning curve on international markets (Balland et al., 
2019; Foray et  al., 2011), and motivate the implementation of bottom-up actions. These 
type of actions, in fact, are strictly related to the improvement of the capacity of agents, 
firms, regions, and sectors to deploy new green technologies favoured by their pre-existing 
knowledge base (Montresor and Quatraro, 2020).

Given that a complete empirical analysis involving the whole energy system prevents 
a deep investigation on the fine-grained top-down and bottom-up mechanisms that can 
explain the evolution of the sustainable energy transition pathway, we select as a case study 
the technological domain related to energy efficiency (EE) in the EU residential sector, 
and we measure the innovation output of countries in terms of patent applications. Three 
reasons are behind this choice: (i) energy consumption in buildings is a key aspect of the 
sustainable transition, because one can either face substantial losses due to the increase in 
energy prices or gain large benefits from innovation and resource efficiency; (ii) the new 
policy document known as the “Clean energy for all Europeans” package (EC, 2019) puts 
energy performance in buildings as the first point of the European energy strategy for the 
next decades, since buildings are responsible for approximately 40% of energy consump-
tion and 36% of CO2 emissions in the EU; (iii) energy efficiency in the residential sector 
comprises both the production and the consumption side, therefore focusing on this sec-
tor allows to conduct a structural change analysis which is well grounded in the analytical 
framework developed by Cantner and Malerba (2007).

In order to synthesize in a unique empirical approach the two top-down and bottom-up 
perspectives, we propose an analytical design in which top-down coordination in policy 
mix design is represented by different indicators computed considering both within and 
between-country dimensions, while bottom-up coordination is accounted by looking at the 
positioning of each country within the network of economic and knowledge relations.

With respect to the latter element, we follow existing literature pointing at the role of 
exporting activities in fostering innovation, and we focus on the investigation of export-led 
spillover effects. The positive outcome of learning from foreign markets on domestic pro-
ductivity can derive from both direct and indirect linkages. Buyer-seller relationships may 
directly increase the knowledge stock of both partners, introducing novelties in the organi-
sational and managerial structure as well as in the technological content of the production 
process. Indirect effect may arise from the general increase in investments required for the 
firm to remain competitive on external markets (see among others, Andersson and Lööf, 
2009; Bustos, 2011; Lileeva and Trefler, 2010; Liu and Buck, 2007). Moreover, according 
to Dechezleprêtre and Glachant (2014) the focus on export activities as a driver of knowl-
edge externalities better allows to capture the role of the policy mix design in explaining 
characteristics of trading partners in terms of dimension and structure of markets.

We look at the economic partnerships between EU members in terms of bilateral export 
flows of goods and appliances relevant for the EE performance in the residential sector, in 
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order to test whether, and to which extent, trade partnerships in a bilateral and multilateral 
perspective increase the capacity to transform foreign knowledge into domestic innovation 
opportunities in the EE domain. In so doing, we are able to observe the interaction among 
foreign agents (customers, competitors, intermediaries) sharing the same market environ-
ment (here defined by the specific sector under investigation), and how this may lead to the 
access to state-of-the-art technologies and cutting-edge knowledge that are not available 
to those firms only operating in the domestic market (García et al., 2012). In other words, 
we can investigate how the sector-specific innovation output may benefit from the contin-
uos contamination with external inputs, especially if the firm/sector is well equipped with 
adequate technological absorptive capacity (Love and Ganotakis 2013; Zhao et al., 2019). 
Importantly, the adoption of a specific sector as a case study allows, at least partly, solving 
the criticisms moved by De Loecker (2013) to those empirical exercises based on purely 
macro-level aggregates.

In this context however, it might be difficult to disentangle whether an increase associ-
ated with domestic innovation is mainly driven by the spillover effect associated to the 
export network itself or by the ability of the country to attract economic partners that are 
most relevant for knowledge diffusion. In addition, a correct assessment of the benefits 
accrued from knowledge spillovers may be hindered by the presence of confounding fac-
tors, the heterogeneity of industries belonging to different countries, and unobserved fac-
tors explaining the interaction between the domestic characteristics and the relative posi-
tion of the country in the network (Salomon and Jin, 2008).

Recent empirical approaches developed under the umbrella of economic complex-
ity have addressed the issue of heterogeneity of agents and unobservable characteristics 
with different applications and methodologies. From a general point of view, economic 
complexity may be defined as the set of differences in available capabilities and their 
interactions at the country level that might explain differential in income and productiv-
ity performances (Hidalgo and Hausmann, 2009; Hidalgo, 2021). In addition, non-linear 
relationships seem to better define the complexity of products and the fitness of countries 
which produce them (Tacchella et al., 2012), where the fitness of a country can be defined 
as the sum of the complexities of its exported products (Pugliese et al., 2017) and higher 
values are associated with increased probability of high economic growth perspectives 
with respect to countries with lower fitness (Tacchella et al., 2013).

The modelling exercise of knowledge dynamics seems to particularly benefit from the 
adoption of a complexity approach developed with a network design which allows pre-
cisely detecting the role of heterogeneity of a network in influencing the spillover process 
(Konno, 2016), with interesting applications to the green economy when differences in the 
country environmental regulatory setting are addressed (Mealy and Teytelboym, 2020).

In addition, a country/industry becomes competitive in the production of a given good 
once it has acquired the necessary skills, including knowledge (domestic and/or spilling 
from abroad). However, the acquisition of adequate capabilities is cumulative and path-
dependent, meaning that complex products requiring different and advanced skills will be 
competitively produced mostly by countries with high fitness. Nonetheless, there are cir-
cumstances that facilitate the shift of a country/sector from being a laggard to succeed in 
catching up with the leaders, depending on the specific features of the laggard as well as 
its relative position in the network (Sbardella et al., 2018). Accordingly, the structure of the 
web of linkages might contribute explaining to what extent a country/industry is able to 
capture innovation and productivity opportunities (Jackson et al., 2017).

Keeping this in mind, we develop an empirical investigation of the innovation dynamics 
of the energy efficiency in the EU residential sector in a setting where a country’s effort 
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is triggered by the effort of its economic partners, and the country’s outcome is a func-
tion of the outcomes of the connected countries and its centrality in the EU network of 
EE export. Our key research questions are: (i) if trade relations facilitate knowledge dif-
fusion in a typical learning-by-exporting process; (ii) if internal technological capabilities 
increase the absorptive capacity of external knowledge; (iii) if the heterogeneous patterns 
of energy transition occurring in different countries, and the relative position of each player 
within the multilateral network, contribute to shaping domestic innovation performance.

We address the three research questions with a two-step network econometric procedure 
which allows to jointly account for three main issues raised by the economic complexity 
literature. First, the role played by unobservable features influencing the absorptive capac-
ity related to the cross-country interactions is sorted out. Second, the network structure 
is modelled in order to monitor the effect associated to the centrality of single countries 
(interpreted as market leaders) as well as their proximity to leaders (in the case of lag-
gards). Third, the heterogeneity in absorptive capacity of knowledge spillovers related to 
internal factors as well as to the relative position within the network is explicitly modelled.

Our results show that maintaining a central position in the network of domain-specific 
export flows is crucial to magnify the effort exerted by a country in fostering its innova-
tion performance. In other words, the internal absorptive capacity of external knowledge 
is highly dependent on the relative position of the country within the web of multilateral 
linkages. Furthermore, the absorptive capacity seems to be magnified for those countries 
with technological advantages in domain-specific enabling technologies that allow better 
exploiting knowledge complementarity with trade partners. Finally, the knowledge spillo-
ver effect is larger for those countries better equipped with an energy regulatory setting 
speeding up the sustainable transition process.2

The rest of the paper is structured as follows. In Sect.  2 we describe the theoretical 
framework and econometric modelling approach. Section 3 describes the data used in the 
empirical analysis. Sections 4, 5, and 6 discuss the empirical models and summarizes the 
main results. Section 7 concludes and provides the main policy implications.

2 � Theoretical framework and econometric modelling

2.1 � Modelling the knowledge production function

At the core of the theory on the generation of new innovation is the hypothesis that new 
ideas, extant knowledge, and the resources assigned to research and development (R&D) 
activities can be represented by a stable relationship (Griliches, 1979; Jaffe, 1986, 1989), 
commonly formalized through a knowledge production function (KPF) expressed as:

where new innovation produced by country i at time t, Yit (in our case the stock of per 
capita patent applications in residential EE technologies) is generated through a number of 

(1)Yit = F(Xit)

2  It is worth mentioning that the network methodology developed in this paper can be easily adapted to 
other research questions, by looking for instance at innovation adoption (instead of innovation creation), 
and with bilateral linkages of the network represented by import (instead of export) flows as the diffusion 
driver of the embedded technical change.
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inputs contained in matrix Xit as for instance investments in R&D and the knowledge accu-
mulated over time, among the others.3

The empirical literature has often operationalized Eq. (1) using a linear function of the 
kind:4

where the terms �i and �t are respectively country and time fixed effects, sorting out from 
the model specification any unobserved factor which might hinder identification related to 
time-invariant characteristics of the country and potential trends existing in a specific year 
for all countries. Finally, � is a simple rescaling factor (i.e., the intercept).

A problem inherent in this early formulation of the KPF is that it relies on the strict 
assumption that countries act in a closed economy, and they do not exchange knowledge. 
In this paper instead, we follow the approach formulated by more recent studies (Bottazzi 
and Peri, 2007; Mancusi, 2008) and relax this assumption by considering the case of open 
economies potentially exchanging knowledge, thus formally introducing positive externali-
ties related to knowledge creation. In practice, we consider an augmented KPF of the form:

where the term XROWt represents the accumulated knowledge stemming from the rest of 
the world (ROW) and benefiting country i’s production of new innovation by adding to the 
existing domestic knowledge at time t. In this model therefore, new innovation produced by 
country i depends on the inputs devoted to research activities by both i and ROW.

In its infant stages, the empirical literature operationalized Eq. (3) through a linear func-
tion of the kind:

where � registers the strength of spillover effects that stem from the aggregation of the 
influences of ROW in expanding i’s existing knowledge.

Clearly, the assumption underlying Eq. (4) is that countries are not independent from 
each other. The innovation generated by country i, ln(Yit) , depends also on the knowledge 
created by other countries: i.e., the ith element of variable ln(XROWt) collapses into a sin-
gle term the knowledge produced by countries other than i, and contributing to i’s innova-
tion. This form of cross-correlation existing among countries can be made explicit with the 
relation:

where Gt is a n × n matrix, n being the number of countries included in the sample at time 
t, with the generic element gij registering the extent to which i benefits from knowledge 
spillovers stemming from j at time t. Formally, Eq. (5) can be considered the representation 
of the KPF of ROW.

Following the seminal work by Anselin et al. (1997), and the subsequent analytical exten-
sions, we explicit this cross-correlation in our equation, by considering the KPF of ROW as 

(2)ln(Yit) = � + �1ln(Xit) + �i + �t

(3)Yit = F(Xit,XROWt)

(4)ln(Yit) = � + �1ln(Xit) + �ln(XROWt) + �i + �t

(5)ln(XROWt) = Gt × ln(Yt)

3  Observe that it is a standard practice in the literature, confirmed by a large empirical evidence (see for 
instance Hall et al., 2005), to model the KPF so that inputs devoted to knowledge production by country i at 
time t affect the generation of ideas by i during that year.
4  From now on, we omit error terms to ease notation.
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the main source of knowledge spillovers, and model the KPF in Eq. (4) as a spatial autoregres-
sive process. In matrix form, this is equal to:

In order to make estimation feasible, Eq. (6) is rearranged as follows:

Then, provided that the parameter � is smaller than the spectral radius of matrix Gt , the 
term (I − �Gt) is invertible and Eq. (6) becomes:

2.2 � The role of trade‑based network spillovers

Several contributions approached the study of production knowledge using a spatial autore-
gressive process similar to that of the KPF presented in Eq. (7) (see for a review Autant-Ber-
nard, 2012). Most relevant to our study is the contribution by Ho et al. (2018), who investigate 
trade partnerships as the channel mediating knowledge spillovers across countries assuming 
that the production of knowledge by country i benefits from the spillover effects of the knowl-
edge produced by i’s trading partners. In this formulation, G is interpreted as a matrix repre-
senting the international trade network, where the generic element gij registers the value of 
bilateral imports between i and j. It follows that the term � assesses the technological spillover 
of i’s trading partners contributing to the innovation performance of country i. The results 
presented by Ho et al. (2018) show that the parameter � is positive and statistically significant, 
meaning that the import of goods (and the embodied technology) promotes knowledge flow 
and technology transfer.

Following this approach, we adopt the international trade network as the term G facilitating 
the flows of technological externalities across countries. In our case, however, we focus on the 
export-led channel (see among others, Lileeva and Trefler, 2010; Liu and Buck, 2007), where 
the term � quantifies the learning-by-exporting effect, and when its estimated impact is higher 
than zero and statistically significant, positive spillover effects are at work.

An interesting feature so far overlooked by the literature in relation to Eq. (7) arises 
from the interpretation of this equation from a network perspective. Multiplying the term 
(I − �Gt)

−1 by a vector of ones (q), one obtains a measure of each country’s position in the 
export trade network G mediating technological spillovers across countries. The literature 
refers to this measure as to Katz-Bonacich centrality (Bonacich, 1972, 1987; Katz, 1953). To 
understand the intuition behind the Katz-Bonacich centrality, we can re-write (I − �Gt)

−1 × q 
using a Taylor expansion as follows:

Here the ith row of the matrix Gk
t
 keeps tracks of the countries that can be reached by coun-

try i in the network G in k steps at time t. Thus, if � is small enough (i.e. less than the 
spectral radius of G), it is easy to see that the ith element of vector b(Gt, ln(Yt)) , that is the 

(6)ln(Yt) = � + �ln(Xt) + �Gt × ln(Yt) + �i + �t

ln(Yt) = � + �ln(Xt) + �Gt × ln(Yt) + �i + �t

ln(Yt) − �Gt × ln(Yt) = � + �ln(Xt) + �i + �t

(I − �Gt) × ln(Yt) = � + �ln(Xt) + �i + �t

(7)ln(Yt) = (I − �Gt)
−1 × (� + �ln(Xt) + �i + �t)

(8)b(Gt, ln(Yt)) = (I − �Gt)
−1 × q ≈

∞∑

k=0

�kGk
t
× q
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Katz-Bonacich centrality of country i, approximates the number of all countries that can be 
reached by i through a direct or indirect path in the network, penalizing through the param-
eter � the contributions of distant countries in determining i’s centrality.5

Building on this intuition, we replace the vector q in the equation of the Katz-Bonacich 
centrality, Eq. (8), with a linear formulation of the KPF as Eq. (2).

By virtue of this operation, Eq. (7) becomes:

This model posits that the outcome of country i depends on the spillover effect generated 
by the inputs devoted by all countries to innovation activities as registered by Eq. (2), with 
the contribution of each country weighted by its distance from the position of i in the net-
work, as measured by its Katz-Bonacich centrality, recorded by the term (I − �Gt)

−1.6 In 
this way, it is possible to differentiate the impact of knowledge spillovers on the basis of the 
relative position of each country within the network, quantifying the role of proximity as 
suggested by the economic complexity framework.7

Equation (9) is the KPF empirically estimated in this work. Formally, it represents the 
reduced-form of a standard spatial autoregressive model where the innovation performance 
of countries depends both on domestic inputs and on knowledge spilling from other coun-
tries and mediated by their Katz-Bonacich centrality in the network, which determines the 
extent to which the innovation performance of a country benefits from the innovation out-
come from network-connected countries. In this way, we account for a multi-scale measure 
of proximity that is based on the characteristics of the countries belonging to the network, 
the strength of the bilateral linkages as well as the absorptive capacity of trade partners. 
From a theoretical standpoint, this setting is in line with recent contributions highlighting 
that the benefits provided by external knowledge to domestic innovation is not homogene-
ous across countries, but it is determined by countries’ absorptive capacity and their inte-
gration and coordination with ROW (Enkel et al., 2018).

2.3 � Econometric issues

A threat to the correct identification of spillover effects when estimating our model comes 
from the potential presence of unobserved characteristics of the exporting country which 
may bias our estimates if not properly considered. For instance, a source of concern is that 
innovation and environmental regulations or firms’ private investment in R&D boost the 
innovation performance of a country. At the same time, these might also induce changes 
in its economic and industrial structures, resulting in the production of goods embedding 
the new technologies, and the redirection of export flows towards destination markets with 

(9)

ln(Yt) = (I − �Gt)
−1 × q

= (I − �Gt)
−1 × (� + �Xt + �i + �t)

= b(Gt, ln(Yt))

7  Observe that this approach to modelling spatial autoregressive processes is long consolidated in the eco-
nomics of networks, and it was first pioneered by the seminal work by Ballester et al. (2006).

5  However, in order to observe that the contribution of countries far away is less relevant than that of neigh-
boring countries in determining the centrality of country i, one should adopt a more stringent hypothesis on 
the value of � : this should be less than the spectral radius of G, and less than 1.
6  Of course, the higher is � , the smaller is the contribution of countries that are far away to the innovation 
performance of a country.
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a proper absorptive capacity. If this is the case, our estimates would be biased from the 
presence of an unobserved term � (e.g. environmental and/or innovation regulation) which 
is correlated with both the generation of new knowledge of country i, ln(Yit) , and its trad-
ing partnerships registered by the network Gt . While previous literature disregarded this 
source of concern, we directly tackle this issue by estimating Eq. (9) in two steps using an 
approach similar to that proposed by Heckman (1979).

In the first step, we estimate a selection model to derive the likelihood for two countries 
to trade with each other at time t by using an equation similar to that of the gravity mod-
els,8 that is:

where � is a rescaling factor (i.e., the intercept), the term |zit − zjt| registers the absolute 
difference in the characteristics between country i and j driving the likelihood that the two 
will become trade partners at time t, �i and �j represent the country fixed effects respec-
tively for country i and j, �t is a time fixed effect, and �ijt is the unobserved part of the 
relation between i and j at time t.9 The estimation of Eq. (10) is specifically used to derive 
the term �ijt , that is a direct measure of the selection bias driving the trading partnership 
between i and j in the network G, at time t, representing the unobserved characteristics 
motivating i to export towards j.

In the second step of our procedure, we implement a correction for network endogeneity 
à la Heckman by plugging the measure of the selection bias �ijt derived from Eq. (10) into 
Eq. (9).10 In practice, this is done by relying on a standard set of assumptions11 which allow 
to derive a single measure for the selection bias stemming from the generic country i and 
related with all countries j, that is �it =

∑
j≠i �ijt , and then augmenting Eq. (9) as follows:

Here, the term ��t captures the selection bias and delivers consistent estimation of Eq. 
(11), since it controls for the unobserved term that is potentially correlated with both net-
work selection of country i and its innovation capacity, while � registers the magnitude of 
the spillover effect on i’s innovation outcome. Finally, ut indicates the error term. Estimates 
for this model can be performed using a non-linear least squares estimator (NLLS) and 
standard errors can be computed using standard bootstrap methods.12

(10)gijt = � + �|zit − zjt| + �i + �j + �t + �ijt

(11)ln(Yt) = � + �Xt + �Gt × ln(Yt) + ��t + �i + �t + ut

8  See for a discussion Charbonneau (2017) and Graham (2017).
9  Observe that by including time and country fixed effects, we incorporate in the equation all time-invariant 
factors driving the formation of trade partnership, such as distance, a shared border, or common language, 
among others.
10  Observe that this Heckman selection model is identified even without exclusion restrictions. Identifica-
tion, in this case, exploits non-linearities specific to the network structure of our model. In fact, the dyad-
specific regressor term contained in Eq. (10), |zit − zjt| , is expressed in absolute values of differences, and 
these differences in characteristics do not appear in the outcome Eq. (9).
11  Specifically, we assume that U = (u1, u2, u3, … , un)

� and �i = (�i1, �i2, … , �in)
� are jointly normal, 

with E(u2
i
) = �2

u
 , E(ui�ij) = �2

u�
∀i ≠ j , E(�ij�ik) = �2

�
∀j = k , and E(�ij�ik) = 0 ∀j ≠ k . Under these assump-

tions, the expected value of the error term u on the network selection is E(ui��i1,… , �in) = �
∑

j≠i �ij , where 
� =

�u,�

�2
�

.
12  Battaglini et  al. (2022) provide background and further details about this estimation method, together 
with the relative codes and settings of the R package to implement it.



725Network‑driven positive externalities in clean energy…

1 3

3 � Data

3.1 � The dependent variable

We construct a panel database considering 19 EU countries covering the time span going 
from 1990 to 2015.13 We begin the discussion by presenting the dependent variable ln(Yit) 
adopted in this study. This is the innovation produced by country i at time t, and it is meas-
ured by computing the country’s patent stock in residential EE technologies for a given 
year, scaled by the population and taken in logarithm.14

We rely on the count of patent applications to the European Patent Office (EPO). The 
choice of the EPO database relies on two main reasons: (i) all countries in the panel belong 
to Europe so that the protection of the invention on the European market represents the best 
pay-off solution in terms of costs and benefits from the firm’s perspective; (ii) inventions 
covered by EPO patents are considered as representative of those innovations that are more 
profitable as filling to EPO is more expensive than to a national patent office. Indeed, as 
international applications can be very expensive, a deliberate choice about where to file 
a patent application is part of a firm’s innovation strategy (Clarke, 2018; Kim and Lee, 
2015). Data, available from OECD data portal, are constructed by using information from 
the Worldwide Patent Statistical Database (PATSTAT) and eco-innovations are identified 
through search algorithms for environment-related technologies developed by OECD. Pat-
ent statistics provides information about published applications for patents by country’s 
inventor, and fractional counting is applied in those cases where inventors belong to differ-
ent countries.15

The patents considered to construct our dependent variable are those classified in five 
technological domains relevant for the EE performance in the residential building sector, 
namely those categorized by the Y02 Cooperative Patent Classification (CPC) as: lighting, 
heating and cooling, ventilation or air conditioning, home appliances, ICT, and end-user 
technologies (see Table 6 in the "Appendix" for additional details).16 Patents in this spe-
cific technological domain are recognized as particularly relevant within the EU Energy 
and Climate strategy in light of the increasing committent to ensure a clean, but also fair 
energy transition for all citizens, and have been promoted from both the Energy Union R&I 
and Competitiveness priority on “Smart EU energy system with consumers at the centre” 

13  We select all EU member states for which we have full data availability for the time period considered. 
Accordingly, the countries contained in our dataset are: Austria, Belgium, Czech Republic, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Poland, Portugal, Slovak 
Republic, Spain, Sweden, United Kingdom.
14  This is a standard approach to measuring innovation output, widely used by the economic literature. 
We acknowledge that this measure may entail drawbacks (Griliches, 1990; Jaffe and Trajtenberg, 2002). 
Although patent statistics provide very detailed information on the technological characteristics of the 
invention (with quite an extensive coverage both in space and time), not all inventions are patented and 
some forms of innovation can be over-represented with respect to others (e.g. product innovations). For 
further details about the use of patents as an innovation indicator in the environmental-friendly domains see 
Kemp and Pearson (2007).
15  We acknowledge that the use of EPO patents is an underestimation of the overall innovative capacity at 
the country level since many inventions are registered only in national patent offices. At the same time, this 
is a standard procedure in cross-country analyses in order to have comparable values that are not biased by 
country-specific characteristics of the national patent systems.
16  We consider the priority date (i.e., first filing date worldwide) since it is the closest to the actual date of 
invention.
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and in the Strategic Energy Technology Plan actions “Smart solutions for consumers”. This 
is the reason behind the focus on the well-detailed classification of patent families devel-
oped under the European Commission supervision (Fiorini et al., 2017). The residential EE 
technologies registered at the EPO account for about 3% of total patents on average, show-
ing an increasing trend along the entire time period here analysed (1990–2015), but also a 
wide heterogeneity among the 19 EU countries. The growth rates of total and EE patents 
from 1995 to 2015 are, respectively, 87% and 300%, which determine the larger share of 
EE patents in more recent years.17 In terms of patent mix, among the five EE patent sub-
classes, the share of the ICT domain increased considerably during the period under analy-
sis, ranging from 5.6% in 1990 to 35.5% in 2015. Looking at the cross-sectional dimension, 
EU countries are characterised by different levels of specialization and diversification over 
the five technological domains. Eastern European countries, for example, are among the 
most specialized in residential EE technologies (with a share of around 6% of total patents 
compared to 1.75% for EU15 countries on average, and with peaks over 20% in selected 
countries and years).

In line with Hall et al. (2005), we calculate the patent stock measure by applying a Per-
petual Inventory Method (PIM) with a continuous discount approach to the number of pat-
ent applications filed by a country at time t. Put in formula, our dependent variable is:18

where the decay rate d is equal to 15%, as suggested by OECD (2009). The value of 
Patent stock is scaled by the population count for each country i at time t (as registered in 
the database EUROSTAT), in order to adjust for the size of the country.19

3.2 � The domestic innovation drivers

Turning to the domestic drivers of innovation included in the KPF, we distinguish them in 
two broad categories, related to the policy mix design and to the absorptive capacity of the 
specific technologies under scrutiny.

The first group is created following the recent contributions on the role of the policy 
mix in inducing eco-innovation (see for example, Costantini et  al., 2017b; Rogge and 
Reichardt, 2016), and it includes the technology-push and demand-pull effects resulting 
from the implementation policy instruments.

The technology-push factor registers the effort to support invention activities and pro-
mote the deployment of new technologies financed by public budget. This is commonly 
measured using the log transformation of a country’s R&D stock, which we obtained by 
applying the PIM with a decay rate d = 15% to the country’s public R&D investments in 
EE expressed in constant 2010 USD scaled by the country population. Original data on 
annual public expenditures in R&D related to the energy sector are taken from the IEA 

(12)Patent stock pcit = ln

�∑t

s=0

�
Patentis × e[−d(t−s)]

�

Populationit

�

17  By comparing 1990 and 2015, the growth rate in EE patents is almost five times larger that the growth 
rate registered for total patents.
18  This implies assuming cumulativeness and obsolescence of technological knowledge over time (Grili-
ches, 1979).
19  Alternative decay rates equal to 10% and 20% have been tested for robustness. Results remain stable in 
signs and statistical significance, and they are available upon request from the authors.



727Network‑driven positive externalities in clean energy…

1 3

energy technology RD&D budget databases. Energy R&D flows cover basic and applied 
research activities and experimental development related to technologies to generate, dis-
tribute, monitor and use energy, but exclude demonstration and deployment activities. We 
refer to this variable as the technology-push policy indicator.

The demand-pull factor is instead a measure of how the policy stringency (commonly 
measured by energy taxation) influences energy prices and consequently changes demand 
patterns in residential energy consumption. In building this indicator, we rely on the 
EUROSTAT electricity and natural gas prices and taxes and the energy balances data-
bases, which provide annual data on prices and taxes distinguishing by end-users type 
(households and industrial) and by different levels of taxation (e.g., excluding taxes and 
levies; excluding VAT and other recoverable taxes; including all taxes, levies and VAT), 
and data on annual consumption of distinguished energy commodities. Accordingly, we 
select indicators specific for domestic consumers, corresponding to small households (e.g. 
electricity consumption for dwellings of about 70m2 , and natural gas used for cooking, 
water and central heating). The final demand-pull variable is obtained by calculating the 
average energy tax rate in the residential sector as an ad valorem equivalent on energy 
market price (USD at constant 2010 prices per toe of energy consumed) scaled by the final 
consumption expenditure of households as follows:

where n indexes energy commodities mainly consumed in the residential sector (namely, 
electricity and natural gas). We refer to this variable as the demand-pull policy indicator.

The second group of covariates aims at registering the key role played by the absorptive 
capacity of a country in explaining the opportunity to catch advantage from knowledge 
spillovers. Specifically, we consider three alternative aspects of the technological capability 
of a country in this specific domain. First, we consider a measure of specialization in Key 
Enabling Technologies (KETs) since they are multi-purpose in their final use, with hori-
zontal and rare properties that are suitable to be combined with other types of inventions 
and are largely promoted by the program of the European sustainable energy transition 
strategy (Foray et al., 2009). According to Montresor and Quatraro (2020), the capacity to 
develop and exploit new green technologies is favoured by the existence of a horizontally 
available knowledge base well represented by KETs. This effect is further reinforced by the 
relatedness of KETs to the technological domain under scrutiny. Accordingly, the patents 
here categorized as KETs are those included in two specific classes of the EE domain: 
Information and Communication Technologies (ICT) and End-use technologies, collected 
under the Y02D (10, 30, 50, 70) and Y02B 70 CPC codes, respectively. These two codes 
include, for example, devices for reducing energy-consumption in wireline and wireless 
communication networks, smart grids, electric power management and systems integrat-
ing power-related technologies. Patents falling under this category refer to technologies 
that can be embedded in several different devices and appliances, with the major scope of 
reducing energy consumption or maximizing EE (EC, 2014). The technological specializa-
tion of a country is calculated as the share of KETs stock over the total stock of patents in 
EE for each country i and year t, and we refer to it as KET-share.

A second alternative variable within this second group is a measure of technological 
advantages in KETs as developed by Soete (1987) and Cantwell (1989), extensively applied 
in the analysis of countries’ innovation and specialization performance (see Evangelista 

(13)Demand − pullit =

∑2

n=1

�
Energy taxn

it
× Energy consumptionn

it

�

∑2

n=1

�
Energy pricen

it
× Energy consumptionn

it

�
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et al., 2018; Montresor and Quatraro, 2017, among others). Similar to the trade specializa-
tion indicator developed by Balassa (1965), the revealed technology advantage (RTA) here 
adopted measures the relative strength of each EU country in the KETs classes, compared 
to all EU countries included in the sample. We refer to this variable as KET-RTA​ and we 
compute it as follows:

where a value larger than 1 for country i in year t indicates that it has a specialization in 
KETs higher than the EU average.

The third alternative measure is based on the notion of knowledge diversification, a fac-
tor deemed strategic for the diffusion of innovation by the literature (see for instance Huang 
and Chen, 2010). This is proxied by a variable registering the composition of a country’s 
knowledge stock in terms of variety of patents developed within individual EE technology 
domains. Similar to Kim et al. (2016) and Leten et al. (2007), we investigate whether tech-
nological diversification might spur innovation performance, e.g. through larger economies 
of scope from R&D activities. In particular, we follow the common approach of measuring 
the country’s technological diversification using the modified Herfindahl–Hirschman Index 
(HHI) (as for example in, Chiu et  al., 2008; Garcia-Vega, 2006; Lin and Chang, 2015; 
Quintana-García and Benavides-Velasco, 2008). Accordingly, our indicator of Patent vari-
ety is given by the modified HHI and calculated as:

where the ratio in parenthesis represents the share of patent stock over the total stock of EE 
patent for each kth of the five CPC-Y02 sub-classes here considered (see Table 6) in coun-
try i and year t.20

3.3 � The knowledge spillover effects

Turning to the potential mechanism causing spillover effects, that is the cross-country cor-
relation among the domestic patterns of innovations, this is operationalized with matrix Gt 
in Eq. (11). Specifically, we measure the generic connection gijt using the value of export, 
from i to j at time t, of those EE household-type appliances and equipment (laundry, refrig-
erators, dishwashing machines, electromechanical and electro-thermic appliances, boil-
ers and lighting fittings) closely related to the EE technological domain in terms of patent 
activities. Data is retrieved from the United Nations COMTRADE database and expressed 
in constant 2010 USD (additional details are presented in Table 7 of the Appendix). The 
implication of using trade data is that the matrix Gt is a directed weighted network, where 
the bilateral relation between i and j postulates that the influence exerted by country j over 
i might be different from that exerted by i over j, depending on the value of their respective 

(14)KET − RTA
it
=

KET Stock
it

Patent Stock
it

/
KET Stock

EUt

Patent Stock
EUt

(15)Patent varietyit = 1 − HHIit = 1 −

5∑

k=1

(
Patent stockk

it

Patent stockTOT
it

)2

20  Robustness checks have been conducted by using an alternative measure of patent variety adjusted by the 
total number of patents as suggested by Hall (2005) to correct for potential bias in Herfindahl-type meas-
ures applied to count data. Results remain stable in sign and statistical significance and they are available 
upon request from the authors.
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export. In order to account for the relative importance of each partner for the spillover ben-
efiting each country, Gt is column-normalized.21 An instance of the network structure for 
the years 1995, 2005, and 2015 is provided in Fig. 4 of the “Appendix”.

Two main mechanisms are explained by these data. On the one hand, if the export flow 
is directed toward a market better equipped in terms of technological capabilities, there is 
larger scope for learning and upgrading. On the other hand, exporting to larger destination 
markets (with higher demand growth potential) enhances the incentive to invest in innova-
tive activities as the expected sales and profits grow (Fassio, 2018). It follows that the ben-
efits exerted from spillover effects will also depend on the trading partners characteristics, 
and should be assessed by looking at the position of a country in the trade network.

Finally, we select a number of variables in order to assess the propensity of countries to 
trade with each other in network G, and model the selection process in our estimation strat-
egy represented by Eq. (10) of the two-step procedure proposed in Sect. 2.3. First, we con-
sider the proximity of countries motivating the creation of export relationships by account-
ing for all the variables included in the KPF considered in this study: i.e., technology-push, 
demand-pull, KET-share, KET-RTA​ and patent variety. Proximity relative to each of these 
variables is measured by taking the absolute difference between the values of the varia-
ble for each ij country pair. Second, we consider proximity in terms of general knowledge 
production capacity, another crucial driver of trading relationships. This is proxied by the 
absolute difference in per capita GDP between two countries, at constant 2010 USD log-
transformed values (retrieved from the OECD Statistics National Accounts database).22 All 
these variables are used to proxy the term |zit − zjt| in Eq. (10).

4 � The export‑led network relevance for knowledge spillovers

The results obtained from the investigation of our first research question are presented in 
Table 1 where we report the second-step estimation of Eq. (11). As a benchmark, column 
(1) reports the OLS fixed effects estimates of a traditional KPF as in Eq. (1), in which the 
innovation performance of EU countries is explained only using the domestic knowledge 
and resources assigned to R&D, and assuming that countries act in a closed economy and 
knowledge is not exchanged across countries (i.e. � = 0 ). The results are consistent with 
well-established findings: an increase in the stock of public R&D in EE by country i, as 
proxied by the variable technology-push, increases its innovation performance in the EE 
technological domain as measured by Patent stock.

Column (2) presents the NLLS estimates of a KPF positing the existence of knowledge 
spillover effects as modelled in Eq. (9).23 Here, we use the network G of bilateral exports in 
EE household-type appliances and equipment without controlling for network endogeneity. 

21  In a robustness check, we also use a different normalization by dividing each trade flow by the sum 
of the population of trade partners, and then we column normalize the matrix. Results are available upon 
request from the authors.
22  As a robustness check, this term is replaced with a variable specifically related to the national innova-
tion system, namely the percentage of people employed in science and technology with respect to the active 
population (from EUROSTAT database on human resources in science and technology, HRST).
23  Some caution should be used when interpreting the results from this model. The reason is that our data 
allows to consider the centrality of a country only within the European export network. Moreover, some 
risks arise from the fact that our data may not be perfect in registering connections among countries (e.g. 
import and export data not always report consistent information).
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In line with Ho et al. (2018), we find a positive and statistically significant effect of spillo-
vers on domestic innovation performances as 𝜙 > 0 . Moreover, since the goodness of fit of 
this model, as measured by the Akaike Information Criterion (AIC), improves with respect 
to that in Column (1), we conclude that accounting for knowledge spillovers across coun-
tries increases our understanding of country’s innovative performance.

Column (3) displays the results of Eq. (11) where, in addition to the knowledge spillover 
effect ( � ), we further control for network endogeneity.24 The coefficient of the selection 
correction term (reported in Table 1 as Unobservables) is small but statistically significant 
and this is consistent with the presence of some unobservable characteristics correlated 
with both the innovation performance of country i and i’s ability to establish trade partner-
ships. Second, the AIC value shows a further improvement with respect to previous specifi-
cations as the model implemented in Column (3) outperforms the goodness of fit of models 
in Columns (1) and (2). Third, and most importantly, estimates in Column (3) confirm the 
positive and statistically significant effect of � while increasing its coefficient value with 
respect to Column (2), meaning that this is a key aspect to be introduced in an economic 
complexity approach since neglecting the issue of endogeneity produces an underestima-
tion of spillover effects.25

It is worth stressing that the coefficient of the variable technology-push retains the same 
sign and statistical significance across models from Column (1) to (3). However, the inter-
pretation and magnitude of its effects differ. When including knowledge spillover effects 
into the model, the marginal effect of technology-push is not given by � any more, but:

This is a n × n matrix. Here, the ith element on the diagonal registers the direct effect of a 
change in i’s investment in R&D (technology-push), on its production of innovation (patent 
stock). Complementing with this, the generic off-diagonal element ijth records the spillover 
effect produced by a change of technology-push in country j and increasing the value of 
patent stock featured by country i. The magnitude of such spillover effect is weighted by 
the distance of i from j. It follows that the marginal effects of technology-push are het-
erogeneous across countries, and they are determined by the position of the country in the 
network of EE export G. By comparing different effects, those directly related to technol-
ogy-push in Column (1) obtained with an OLS estimator corresponds to the coefficient 
� = 0.4815 , while the marginal effect in Column (3) is 0.5022 plus an average indirect 
effect quantified as 0.0742, suggesting that standard estimates neglecting network spillo-
vers tend to understate the effect of the R&D investments.26

In Column (4), we include the demand-pull indicator as the second main instrument 
forming the policy mix, and control for the stringency of the price-based measures imple-
mented by a country in stimulating a dynamic growth of demand and market size for new 

(16)(I − �G)−1�

24  Estimates of the selection model, as Eq. (10), are presented in Table (4). When testing the robustness of 
our results to the choice of the selection model, by replacing the term GDP with the the number of persons 
employed in science and technology as percentage of active population, we find that our results are quali-
tatively unchanged, since estimates from both the first and the second stage are substantially unaffected. 
Results are available upon request from the authors.
25  As a robustness check, we have estimated Eq. (11), Columns (3–7) as in Table 1, by using the network 
G of bilateral imports, as in Ho et al. (2018), in the same digits as for exports and results remain stable in 
signs and statistically significant. Results are available upon request from the authors.
26  Results are available in the “Appendix”, Table 5.
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technologies (Del Río, 2010). Our results confirm that, in addition to the positive role of 
technology-push policies, also the demand-pull factor has a positive and statistically sig-
nificant coefficient. This result confirms existing evidence about the role of demand side 
(price-based) measures (i.e., energy taxation) in stimulating the innovation performance. 
When computing marginal direct and indirect effects for the two measures here adopted 
to proxy the policy mix design, both direct and indirect effects related to the technology-
push dimension are substantially higher than those arising from the demand-pull stimulus. 
While the difference in direct effects between the two instruments is consistent with find-
ings in Costantini et al. (2017b), the higher strength of the spillover effects associated to 
efforts in R&D support (the indirect margins are equal to 0.188 and 0.019 for technology-
push and demand-pull, respectively) contrasts with previous findings on the predominant 
role played by demand-driven spillovers. This divergence can be explained by the greater 
efficiency of our model in capturing the multiple network-related channels responsible for 
externalities, thus opening new opportunities in research design when complex systems are 
under investigation.

With respect to the second research question, we test the role of the absorptive capacity 
of countries into our model specification, in order to sort out from our KPF an unobserved 
factor which might be potentially relevant to explain the national creation of knowledge. 
Accordingly, from Column (5) to (7) we include into our model specification the three 
alternative indicators used to characterize the domain-specific technological capability 
of countries, namely, the share of patents in KETs (KET-share), the variable indicating 
whether country i exhibits a RTA in KETs (KET-RTA​), and the diversification in knowl-
edge production (patent variety). In all the three cases, the coefficients are small but sta-
tistically significant and the measure of goodness of fit shows further improvements. Most 
importantly, all our predictions are confirmed since both the spillover effect ( � ) and the 
selection correction term (Unobservables) maintain their sign and statistical significance. 
This suggests that the absorptive capacity of countries may represent an important input of 
their KPF. At the same time, this input does not significantly interfere with our understand-
ing of the role played by knowledge spillover effects.27

5 � The Katz‑Bonacich centrality as a complex measure of proximity

In order to test the third research question we use Eq. (8) to compute the Katz-Bonacich 
centrality of countries in network G in different years. The value of � in the equation is 
retrieved from estimates in Table 1. Specifically, the value of � is obtained from the model 
specification in Table  1, Column (4) with � = 0.8974.28 The Katz-Bonacich centrality 
obtained in this way is used to describe the spatial and temporal processes underlying the 
innovation patterns by introducing the role played by the relative position and the strength 
of linkages emerging across the network.

28  Observe however that results are qualitatively unchanged when using the value of � presented in col-
umns (3), (5), (6), and (7) of Table 1. Results are available upon request from the authors.

27  We further test the robustness of our results to the inclusion of other potentially relevant inputs such as 
the general propensity to generate domestic knowledge (proxied by the patent stock in non-EE technology 
per capita), the lagged patent stock (5-year lag), and by including the 1-year lag of all explanatory variables. 
Results remain unchanged in signs and statistical significance, and they are available upon request from the 
authors.
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Figure 1 shows the top 10 EU countries in terms of Katz-Bonacich centralities in 2015, 
and their evolution over time from 1990 (i.e. the first year considered in this study). In all 
years, Germany’s centrality clearly outruns all other countries, although its relative impor-
tance decreases in recent years. Second and third most-connected countries are respectively 
France and the UK. The two countries are found with a similar value of Katz-Bonacich 
centrality in 2015 meaning that they benefit from similar spillover effects. However, while 
France maintains a relatively stable position in the network and constantly features a high 
Katz-Bonacich centrality, the UK presents a more unstable evolution. As for the remain-
ing countries, we observe a process of convergence to a similar centrality value in some 
cases. This is for instance the catch-up process followed by Poland, which describes a typi-
cal leading-laggard proximity effect. In other cases instead, we register a process of diver-
gence: i.e. countries (e.g. Netherlands) decreasing their network centrality over time.

This is a significant evidence of a change in the benefits from spillover effects obtained 
by countries at the individual level. In fact, countries such as Poland have experienced 
an increase in their network centrality, and moved closer to high performing countries 
in terms of innovation development, e.g. Germany, thus benefiting from higher spillover 
effects likely because of their spatial proximity to leading (central) countries. On the con-
trary, countries like the Netherlands moved from the core to a more peripheral position 
within the network, benefiting from milder spillover effects in recent years.29

We now examine the spatial distribution of Katz-Bonacich centrality in the European 
geographic space. This is summarized in Fig. 2, where we represent the map of EU coun-
tries in 1995 and 2015. In each map, countries are assigned to a specific colour, with darker 
hues indicating countries with a higher Katz-Bonacich centrality in the network at a given 
year. The map clearly shows the predominant but partly decreasing centrality of Germany 
over time. Germany has always the darkest colour, but this tends to fade from 1995 to 
2015. At the same time, we find evidence of a change in position of many countries in 
the network. Colours get darker for some countries, signalling that they are moving to the 
centre of the network and improving the extent to which they benefit from spillover effects 
(Poland and Sweden), while they get lighter for other countries (Belgium and the Nether-
lands), showing that these are shifting towards the fringe of the network, where spillovers 
are smaller.

We then study the role of the geographical space in determining the benefits derived 
from spillover effects, by looking at the extent to which the Katz-Bonacich centrality of 
one country is spatially-autocorrelated with neighbouring countries. To this purpose, 
we compute the Global Moran Index (GMI) of the Katz-Bonacich centrality of coun-
tries in each considered year. The GMI is a metric comprised between −1 and 1. When 
it approaches 1, it indicates the presence of clusters, with countries characterised by high 
(low) centrality value located close to one another in the geographical space. When it is 
close to −1 , it signals the presence of hot spots: there are different countries with a high 
(low) network centrality each of them surrounded by a selected group of countries with 

29  Katz-Bonacich centrality is the least sensitive centrality measure in terms of a random or systematic var-
iation of the network structure (Bolland, 1988), and one should be really concerned with the sensitivity of 
this measure only when dealing with random networks (Ghoshal and Barabási, 2011), which is not our case. 
Still, structural variations in the network across time may represent a confounding factor in our exercise. 
For this reason, we also replicate Fig. 1 considering the ordinal instead of the cardinal ranking of coun-
tries. All results remain unchanged. Observe, however, that we cannot replicate this approach for the other 
analyses contained in this section, since they can only be conducted using a continuous variable. Results are 
available upon request from the authors.
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low (high) connections with the rest of the network. Finally, when it is equal to zero, it pro-
vides evidence for no specific spatial pattern: countries with high and low centrality value 
are randomly distributed in the geographical space. To complement this analysis, we also 
compute the Bivariate Global Moran Index (BGMI), which allows to account for spatio-
temporal patterns by providing a measure of the extent to which the Katz-Bonacich central-
ity of one country at time t is influenced by the centrality of neighbouring countries at time 
t − 1 . The support and the interpretation of the GMI and BGMI is the same: positive and 
negative values indicate respectively positive and negative spatio-temporal autocorrelation, 
while values close to zero indicate no spatio-temporal autocorrelation.30

The value of the GMI and BGMI is reported in Fig.  3. The figure shows that coun-
tries with high centrality values tended to coalesce in the geographical space in the earlier 
years considered in this analysis: i.e. the GMI is positive. However, the decreasing trend 
of this index over time suggests that a dispersion process is in place, with countries featur-
ing similar values becoming progressively dispersed in space. This suggests that top-most 
connected countries in the trade network are changing over time and they tend to be sur-
rounded by low-connected countries more and more. In addition, we observe a constant 
decrease of the BGMI, indicating that temporal persistence in spatial patterns became neg-
ligible over time.

All in all, the evidence thus indicates a multi-centre structure is emerging within Europe, 
with the raise of high-centrality nodes heterogeneously distributed in the geographical 
space, and low-connected countries surrounding one of the local centres. This evidence 
against the presence of a spatial core-periphery structure (i.e. a single geographical cluster 
benefiting from high spillover effects with respect to the surrounding area) suggests that 
innovation diffusion increasingly flows across network connections over the time span here 
considered, following a pattern that is different from that dictated by spatial constraints.

6 � The role of heterogeneity in network spillover effects

Until now, we have assumed that knowledge spillover effects are described only by param-
eter � , which is homogeneous for all countries. Nonetheless, it is plausible to expect that 
the magnitude of the network externalities exerted by a country might be altered by the 
characteristics of its trading partners. This is in line, for example, with existing evidence 
suggesting that policy mix similarity between countries and destination markets may repre-
sent important drivers of innovation performances (Fassio, 2018).

Moreover, apart from the already acknowledged role played on knowledge spillovers 
by the heterogeneity in the network structure (Hoekman et al., 2009), we propose a novel 
empirical perspective to test our third research question, i.e. if the heterogeneity in the 
proximity of different country features also explains the mechanisms transforming external 
knowledge into domestic innovation. Accordingly, we test if and to what extent the benefit 
from knowledge spillover effects stemming within a group of countries sharing a similar 
characteristic are different from those originating from inter-group connections. We posit 
the existence of two groups, A and B. We then assume that countries belonging to group A 

30  For both the GMI and BGMI, we use a row-normalized queen contiguity matrix where two countries are 
connected if they share a common border.
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share a given characteristic z. On the contrary, countries in group B do not hold characteris-
tic z. We then decompose the effect of the spillover of Eq. (9) as follows:

where Gwithin registers trade partnerships within countries in group A, and within countries 
in group B, while Gbetween records trade partnerships going from countries in group A to 
countries in group B, and viceversa.31

(17)
ln(Yt) = (I − �withinGwithin − �betweenGbetween)

−1×

(� + �Xt + �i + �t)
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31  Observe that Gwithin + Gbetween = G.
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It follows that �within assesses the magnitude of network spillovers mediated from within-
group connections independently from the group they belong, and �between measures the 
magnitude of network spillovers stemming from connections with countries belonging to 
the other group. We further distinguish intra-group spillover effects by decomposing the 
effect of parameter �within into �within 1 , that is the spillover effect running within countries 
in group A, i.e. those holding characteristic z, and �within 0 , that is the spillover effect flow-
ing within countries in group B, that is those not featuring characteristic z. Eq. (17) then 
becomes:

where Gwithin 0 + Gwithin 1 = Gwithin.32

We estimate Eqs. (17) and (18) by grouping together EU countries according to five dif-
ferent characteristics z. The characteristics selected to this purpose are relative to the policy 
mix dimension, as measured by the variables technology-push and demand-pull, and to the 
characteristics of the absorptive capacity, as recorded by the variables KET-share, KET-
RTA​ and Patent variety. We then assign countries to group A in a given year if they feature 
a value of z higher than the EU median value of z in that year, and we assign the remaining 
countries to group B.33 The only exception to this rule is when we consider the variable 
KET-RTA​. In this case, countries are assigned to group A in a given year if they feature a 
value of z higher than 1, and they are assigned to group B otherwise.

We begin by discussing the results obtained from grouping countries according to the 
policy mix dimension. Results obtained from estimating a single parameter for within-
group spillover effects (Eq.  17) are reported in Table  2. In Columns (1)-(4)-(7), the 

(18)
ln(Yt) = (I − �within 0Gwithin 0 − �within 1Gwithin 1 − �betweenGbetween)

−1×

(� + �Xt + �i + �t)
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Fig. 3   Spatial distribution of Katz-Bonacich centrality over time: Moran index

32  Observe that the terms (I − �withinGwithin − �betweenGbetween)
−1 × q and 

(I − �within 0Gwithin 0 − �within 1Gwithin 1 − �betweenGbetween)
−1 × q , where q is a generic factor, represent an 

extension of Katz-Bonacich centrality. Katz-Bonacich centrality and its extensions belong to a family of 
eigen-based network centrality measures also referred to as parameter-dependent network centrality meas-
ures. The reader interested in the details about this family of network centrality measures is referred to 
Battaglini et al. (2022).
33  The predictions of our model are robust to the choice of a different threshold value (i.e., the median 
value) to form groups. Results are available upon request from the authors.
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characteristic z used to discriminate between different groups is derived from the Technol-
ogy-push indicator. In each column, we adopt the same specification, but we alternatively 
use a different technology variable. The same exercise is presented in Columns (2)-(5)-(8). 
Here however, the characteristic z used to group countries is that obtained from demand-
pull. Our results show that �within and �between are positive and statistically significant for 
both policy indicators regardless of the technology dimension being tested. This leads to 
the conclusion that knowledge spillover effects arising from learning by export mecha-
nisms have a positive and statistical significant effect, both if trade partners show a policy 
effort equally committed to the sustainable energy transition, or not.

Interestingly, we observe that the diffusion of innovation between countries is equally 
affected by all trading partners, regardless of the group they belong according to the vari-
able technology-push: i.e., the magnitude of spillover effects registered within and between 
different groups is almost equal. On the contrary, when grouping countries according to the 
variable demand-pull, we observe that spillover effects are significantly larger among trad-
ing countries sharing the same level of regulatory stringency (here proxied by the price-
based mechanism), with respect to those registered between countries featuring a different 
energy taxation profile.

We further explore these findings in Table  3, where we estimate a parameter for the 
spillover effects of each single group as in Eq. (18). In Columns (1)-(4)-(7) are reported 
the results relative to the grouping criterion provided by the variable technology-push, 
while Columns (2)-(5)-(8) refer to the demand-pull characteristic. Notably, we find that 
the within group spillover effects are statistically significant only among trading partners 
featuring a high policy stringency. On the contrary, the parameter relative to the spillover 
effects of countries in the other group is not statistically significant. This implies that the 
learning by exporting mechanism channelling the diffusion process of EE innovation ben-
efits the exporting country only if both trade partners are characterised by a strong public 
support to R&D activities and their market demand faces a stringent regulatory setting. 
These results are robust to alternatively specifications of the technological domain since 
estimates remain qualitatively unchanged.

We now turn our attention to the results obtained from grouping EU countries accord-
ing to the absorptive capacity. Estimates relative to Eq. (17), containing a single parameter 
for within-group spillover effects, are presented in Columns (3)-(6)-(9) of Table 2, which 
refer to the grouping criterion provided by the variables KET-share, KET-RTA​ and Pat-
ent variety respectively. In each model specification is also included the variable used for 
deriving the grouping criterion. All model estimates show that both the within and between 
spillover effects are positive and statistically significant: i.e. trading partners benefit from 
innovation externalities channelled by the export flows, regardless of whether they share a 
similar technological specialization or not.

However, when we introduce a control for technological proximity based on KETs char-
acteristics (for both KET-share and KET-RTA​), the within dimension is higher than the 
between one, because the magnitude of the spillover effect is lower when the two trade 
partners feature a patent portfolio differently specialized in KETs. On the contrary, when 
controlling for relatedness based on a measure of patent diversification (Patent variety), the 
spillover effects between different groups are found to be larger than that existing among 
countries within the same group, revealing that the spillover is magnified when the trading 
partners are heterogeneously diversified in their knowledge basis.

Given the divergent results about within and between spillovers when considering dif-
ferent measures of the technological dimension, we extend our investigation by estimat-
ing a parameter for the spillover effects for each single group using Eq. (18). Results are 
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presented in Columns (3)-(6)-(9) of Table  3, with grouping criteria replicating Table  2. 
First, results in Column (3) reveal that benefits from spillover effects are larger when both 
trading partners have a low share of EE patents in KETs, meaning that they are more spe-
cialized in those domain-specific innovations such as lighting, heating, cooling and home 
appliances that are directly related to commercialization opportunities on the market. Sec-
ond, if the specialization in KETs is relatively higher (KET-RTA​), knowledge spillovers are 
larger in country pairs sharing a technological relatedness as in Column (6). This implies 
that only countries with a RTA in KETs (which can be considered top innovators in this 
field), exhibit the competences required to fully exploiting the multi-purpose and comple-
mentarity gains from KETs, thus benefiting the most from the innovation process of con-
nected trade partners. Third, when looking at technological diversification as a grouping 
criterion (Patent variety), the largest effect is associated to �within 0 , suggesting that trad-
ing countries benefit from larger spillovers when they can exploit complementarities in 
knowledge creation in specific EE domains. On the opposite, according to Huang and Chen 
(2010) and Leten et  al. (2007), when patent diversification is too high, the lack of spe-
cific competences may have detrimental effects of the innovation performance because the 
learning by exporting mechanism is harder to activate between over-diversified countries. 
This last result partly contrasts with the evidence found in Table 2 and suggests that the dif-
ferentiation adopted by Eq. (18) for group-specific effects produces more precise insights 
on the innovation diffusion process.

7 � Conclusion

This paper proposes a network-based methodology to detect the role and impact of knowl-
edge spillovers in the innovation process applied to the case study of residential energy 
efficiency technologies within the European Union. Given the increasing emphasis of the 
EU environmental and innovation policy framework on the role played by green energy 
technologies in fostering a sustainable transition, such methodology contributes in inform-
ing the policy mix design by deeply detecting the channels of international knowledge dif-
fusion and suggesting how to reduce transaction costs and maximize policy effectiveness.

Our results, while confirming the key role played by proximity in enabling collaborative 
innovation by triggering mutual learning, trust formation and frequent interactions, suggest 
that the multiple dimensions (i.e. cognitive, institutional, organizational, social) of proxim-
ity (Boschma and Frenken, 2011; Mahdad et al., 2020) might differently interact with the 
knowledge diffusion process. In particular, this study allows emphasising four main out-
comes related to the relation between proximity and innovation performance.

First, the geography of innovation in Europe has been gradually changing over time. 
In the nineties, the most central node in the export network who benefited from largest 
spillover effects was Germany. More recently, other countries became important central 
nodes and began to substantially benefit from innovation spillover effects. As a result, we 
observe a slow but constant evolution from a geographical core-periphery structure, with 
Germany being the main centre, toward a structure where new centers are emerging, such 
as France, Poland, Sweden and the UK. Consequently, many low-connected countries in 
the export network are now geographically closer to a centre of the network, and this could 
have potentially reduced the transaction costs for knowledge sharing typical of a peripheral 
positioning.
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Second, the regulatory proximity here measured by different instruments forming the 
policy space is particularly effective in facilitating knowledge spillovers when there is 
coordination in R&D support policies.

Third, technological capabilities, relatedness and cognitive proximity are all factors 
enhancing the probability of agents to interact and exchange knowledge, thus strongly 
affecting the scope and nature of spillovers. In particular, innovation performances are 
guided by both internal capabilities and the relatedness in innovation efforts with countries 
sharing a common economic space. The exploitation of externalities is highest when agents 
can benefit from complementary specialization processes. On the opposite, an excess in 
diversification and an innovative process over-specified on KETs reduce the opportunities 
to transform into innovative capacity the knowledge developed by non-related partners. 
If, from the one side, enabling technologies move the country’s technological frontier for-
ward, given their general-purpose nature and capacity to recombine existing ideas, on the 
other side such advantage might be a source of constraint by reducing the number of coun-
tries from which the innovative process can benefit.

Fourth, the transformation of external knowledge into domestic innovation is also 
influenced by the heterogeneity in the network structure and the existence of clusters of 
countries.

Two main policy implications derive from our study. First, the heterogeneity of spill-
overs across groups characterised by a different policy stringency suggests a relevant 
implication for the future design of a policy mix strategy oriented to a sustainable energy 
transition. Even if the climate and energy regulation at the EU level are centralised in the 
overall design process, the implementation at the country level is still highly heterogene-
ous. This is mainly justified by the differences in implementation costs across countries, 
which are left free (or at least they can bargain) to decide the instruments to be adopted and 
their relative stringency. While this negotiation approach can have short-term benefits for 
those countries with structural characteristics that impede a rapid transition process, at the 
same time it reduces opportunities to capture those knowledge externalities coming from 
countries that are accelerating their transition process, with longer-term losses. Accord-
ingly, a higher policy coordination will be essential to faster knowledge complementarity 
exploitation.

Second, further efforts are required to speed up the convergence process by develop-
ing different economic centres to completely transform the previous core-periphery struc-
ture of the EU market into a multi-centre structure. To this purpose, renewed efforts in 
the smart specialization strategy (Foray et al., 2011; Uyarra et al., 2014), tailored to help 
regions and countries to identify their specific place-based and technology-domain poli-
cies, could bring to catch the opportunities from knowledge externalities in a faster and 
cost-effective transition process. Our methodology could be used as an analytical basis of 
this policy development for instance by applying it to different green technology domains 
forming the sustainable energy strategy in order to completely replace the “one-size fits 
all” policy design.

Appendix

See Tables 4, 5, 6, 7 and Fig. 4
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Table 4   First stage

Results for model (10). Column (1), (2), (3), (4), (5) report the estimates of the “first stage” for the model 
estimated in Table (1), Column (3), (4), (5), (6), (7) respectively. Standard errors are reported in parenthe-
ses. *, **, *** indicate statistical significance at the 10, 5 and 1 percent level

Dep. var.: export between country i and country j

(1) (2) (3) (4) (5)

ln(GDP) pc − 0.0338*** − 0.0350*** − 0.0280*** − 0.0294*** − 0.0299***
( 0.0033) ( 0.0034) (0.0036) ( 0.0036) (0.0036)

Technology-push (*100) − 1.5904** − 1.5820** − 1.2141* − 1.3912** − 1.2585**
(0.6222) (0.6220) (0.6239) (0.6227) (0.6266)

Demand-pull (*100) − 0.7775** − 0.7455** − 0.7343** − 0.7615**
(0.2715) (0.2710) (0.2714) (0.2713)

KET-share − 0.0310***
( 0.0053)

KET-RTA​ − 0.0090***
( 0.0020)

Patent variety − 0.0182***
( 0.0045)

Country Fix. Eff. Yes Yes Yes Yes Yes
Year Fix. Eff. Yes Yes Yes Yes Yes
Num. Obs. 8892 8892 8892 8892 8892
AIC − 20880.9140 − 20887.1686 − 20920.0967 − 20905.8304 − 20901.4757

Table 5   Quantification of the effects of technology-push

Quantification of the mean marginal direct and indirect effects presented in Table 1, Column (3). For com-
parison purposes, Column � contains the estimated coefficient reported in Table 1, Column (1)

Direct effects � Mean St. Dev. Max Min

0.4815 0.5022 0.0580 0.7120 0.4314

Indirect effects Mean St. Dev. Max Min

0.0742 0.0748 0.4495 0.0004
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