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Abstract
From a macro perspective, inventor networks tend to generate remarkably stable structures 
over time. At the same time, we observe highly dynamic processes at the micro level, in 
terms of inventor entries and exits as well as formations and terminations of collaborative 
relationships between them. In order to explain this—at least at the first glance—contra-
dicting pattern, we investigate processes at the intermediate network level. Our analysis 
draws upon co-patenting data for the entire population of West German inventors in the 
field of laser technology research from the onset of the technology in the early 1960s over 
a period of 45  years. Our findings suggest that the key factor for maintaining structural 
stability of networks is that directly linked partners of inventors with stabilizing proper-
ties—so-called ‘key players’—take over this function in a subsequent period. We show that 
processes at the intermediate network level provide new insights on the co-existence of 
micro fluidity and macro stability in complex adaptive systems.

Keywords Inventor network · Network stability · Key-player analysis · Innovation · Laser 
technology

JEL Classification D22 · D85 · L23 · O3

1 Introduction

The evident spread of R&D cooperation over the last decades (Hagedoorn 2002; Tomasello 
et al. 2017) indicates that innovation processes are increasingly characterized by a division 
of innovative labor (Wuchty et  al. 2007). The reasons for this trend are straightforward. 
R&D cooperation enables knowledge exchange and collective learning (Grant and Baden-
Fuller 2004; Buckley et al. 2009), may lead to cost saving, risk sharing, better solutions 
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and reduced time to market (Mowery et al. 1996; Martínez-Noya and Narula 2018). Hence, 
the network of cooperative relationships among innovative actors constitutes an impor-
tant element of the innovation system (Chaminade et  al. 2019). This holds true for both 
interorganizational and interpersonal networks. Previous research indicates that not only a 
actor’s individual network position (Powell et al. 1996; Stuart 2000), but also the structural 
characteristics at the overall network level matter for innovation outcomes (Fleming et al. 
2007). In other words, the system’s topology can be conducive to the creation of novelty 
in terms of innovation by providing favorable opportunities for cooperation with individual 
actors and to benefit from the knowledge of indirectly linked partners.

The majority of empirical network studies still neglects an in-depth analysis of the 
micro-foundations behind the observed macro patterns (Powell et al. 2005). Yet the find-
ings from previous research indicate that various types of innovation networks—regard-
less of the respective industry or technology setting—tend to form typical and structur-
ally stable patterns at the macro level (e.g., Powell et  al. 2005; Tomasello et  al. 2017). 
For instance, empirical evidence suggests a positive and significant relationship between 
‘small-world’ characteristics (Watts and Strogatz 1998)1 and innovative performance of 
firms across various industries (Schilling and Phelps 2007). Uzzi and Spiro (2005) ana-
lyzed the small-world network of creative artists in the Broadway musical industry from 
1945 to 1989 and showed that ‘small-world’ patterns are positively related to creativity 
of the actors involved. Similarly, emergence of ‘scaling properties’ (Albert and Barabasi 
2002; Barabasi and Bonabeau 2003) became evident in innovation networks. Powell et al. 
(2005) report for the US Life-Science industry the emergence and persistence of a power 
law degree distribution2 in various sub-networks, including the interorganizational biotech-
nology network.

A further frequently observed network characteristic is referred to as ‘core-periphery’ 
structure (Borgatti and Everett 1999).3 Rank et al. (2006) found a persistent pattern of a 
considerable number of companies that were only loosely connected to the network’s dense 
core in regional biotechnology networks. Kudic et  al. (2015) report similar findings for 
German firms in the laser industry network based on public-funding project data. Cattani 
and Ferriani (2008) investigate the sources of artists’ creativity in the Hollywood motion 
picture industry (1992–2003) and showed that actors occupying an intermediate position 
between the core and the periphery of the system are in a favorable position to achieve 
creative results.

These observations reveal an important insight: both interorganizational and interper-
sonal innovation networks appear to be structurally stable in the sense that they tend to 
develop persistent patterns that are typically assumed to be conducive to knowledge trans-
fer, learning and innovation. Against this backdrop, we define ‘structural stability’ as a 
network’s tendency to retain or regenerate typical patterns over time—i.e. non-random 
topologies such as those described above—in order to maintain its key functionalities, i.e. 
enable knowledge exchange, mutual learning, and the joint creation of novelty. This notion 

1 ‘Small world’ networks typically show a high level of clustering and short average path length. Thus, 
nodes can be reach by a small number of steps.
2 These types of networks are typically characterized by a small number of actors with a relatively high 
numbers of links (degree) while the majority of actors has one a small number of links.
3 A core-periphery structure in its simplest form refers to a partition of a network into a core of densely 
interconnected actors and peripheral actors that are sparsely connected to the core actors but not to other 
actors in the periphery.
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of stability does not mean that network structures are static but it refers to the ability of a 
system to repeatedly create certain structural properties despite high levels of discontinued 
ties and turnover of actors.

Parkhe et  al. (2006) and Brenner et  al. (2011) point to the insufficient consideration 
of processual issues—directly linked to various facets of network dynamics at the micro 
level—as one key limitation of network research. Over the past years only very few stud-
ies on innovation networks have been conducted to fill this gap.4 The reasons for this are 
manifold. Network evolution is a complex phenomenon that is driven by various factors 
and appears at multiple, mutually interdependent levels. In order to draw a realistic picture 
of network change, entries and exits of network actor as well as formations and termina-
tions of ties among them need to be considered simultaneously. In addition, extensive data 
requirements often prevent long-term investigations which are urgently needed to under-
stand the causes, drivers and underlying mechanisms of network dynamics. Ahuja et  al. 
(2012: 446) concludes in this context that the “paucity of empirical research likely stems 
from challenges such as the practical difficulties posed by obtaining longitudinal network 
data, the complexities of handling networks over time, and a lack of attention with the the-
oretical and econometric handling of endogeneity concerns”. Recent empirical studies on 
inventor network dynamics at the micro level show that network actors as well as their ties 
are in a constant state of flux (Fritsch and Kudic 2016; Fritsch and Zoellner 2018, 2020; 
Kudic et al. 2021).

The co-occurrence of macro stability and micro fluidity in networks may appear—at 
least at first glance—contradicting and incompatible. In this paper we seek to answer the 
question: “What explains the co-existence of macro-level stability and high levels of flu-
idity at the micro level of inventor networks?” This question is of key importance for a 
theory of network dynamics and for the understanding of innovation systems. In the fol-
lowing, we focus exclusively on inventor network structures, which are considered to be 
one specific type—among many others—of innovation networks in which nodes represent 
individual actors (inventors) and ties reflect joint R&D activities.5 We base our longitudi-
nal empirical analysis on a unique dataset encompassing all patent applications in the field 
of laser technology research in West Germany from the inception of the technology in the 
year 1961 until 2005.

The remainder of the paper is structured as follows: Sect. 2 summarizes the main con-
tributions of previous research concerning the development and underlying relationships 
of network structures. Section 3 introduces the data and provides a brief overview of the 
development of inventor networks in the West German laser industry. Next, we corroborate 
the macro level stability of network structures and show the high levels of inventor-level 
fluidity (Sect. 4). The stability of network relationships at the intermediate group level is 
then analyzed in Sect. 5. Finally (Sect. 6) we discuss the main findings, draw implications 
and outline some fruitful avenues for further research.

4 For an overview, see Graebner et al. (2018).
5 According to Ahuja et al. (2012) any network can be conceptualized in terms of three primitives: first, the 
nodes that comprise the network, second the ties that connect the nodes, and third the patterns or structure 
that result from these connections.
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2  Previous research and own research design

2.1  Knowledge, networks, and innovation

Already at the end of the nineteenth century, Alfred Marshall was among the first to 
acknowledge the role of knowledge in production and its transformative power within capi-
talist economic systems (Metcalfe 2010). He distinguished between inventions and innova-
tions and emphasized the prominent role of entrepreneurs in his writings. Joseph Alois 
Schumpeter (1912) argued that innovations—‘new combinations’ of knowledge—are the 
major source of endogenous economic growth.

Inspired by the ideas of Schumpeter, cooperation and networks play an important role in 
today’s neo-Schumpeterian approach (Nelson et al. 2018) developed in the 1970s (Freeman 
1974, 1991; Nelson and Winter 1974, 1982). While transaction cost theorists (Williamson 
1991) describe various forms of cooperation and networks as hybrid organizational modes 
between the polar cases of ‘market’ and ‘hierarchy’, the highly dynamic emergence of 
diverse types of cooperative agreements—especially in high-tech industries such as micro-
electronics, telecommunication, and biotechnology—led to the insight that cooperation 
need to be considered an organizational form in its own (Powell 1987). The prominent role 
of R&D cooperation and innovation networks for explaining knowledge transfer, learning 
and system-inherent innovation processes is reflected in the innovation systems literature 
(Chaminade et al. 2019), as they are considered an integral part of regional (Asheim et al. 
2019), sectoral (Malerba 2004), national or technological (Carlsson et al. 2002) systems of 
innovation from the very beginning.

Most innovations are not the result of linear processes but rather the outcome of 
repeated knowledge exchange and learning processes of various types of actors of an inno-
vation system that are often characterized by multiple feed-back loops (Kline and Rosen-
berg 1986; Chaminade et  al. 2019). These systems are complex and adaptive in nature. 
Complex, because processes and decisions of actors are path-dependent (Arthur 1989; 
David 1985), neither fully stochastic nor deterministic (Glueckler 2007), and they affect 
not only the decision maker but also the directly and indirectly connected partners. Adap-
tive, because each and every knowledge exchange and learning process in the system has 
an impact on the value and importance of an actor’s individual knowledge stock (Pyka 
et al. 2019).

For the purpose of this paper, we focus exclusively on one specific network layer of 
an innovation system, i.e. the network of inventors in the field of laser research in West 
Germany between 1961 and 2005. Based on the very general definition of networks “… 
as a set of nodes and the set of ties representing some relationship, or lack of relationship, 
between the nodes” (Brass et al. 2004, 795) we consider all actively operating inventors in 
the field of laser research in the period under investigation as potential nodes of the sys-
tems and regard co-patenting relationships as a proxy for collective knowledge exchange 
and learning processes with the goal of generating novelty in terms of innovations.

2.2  Linking network structure and innovation

Ahuja et al. (2012) point out that an in-depth understanding of the factors generating and 
shaping network structures should contribute to discovering the mechanisms and pro-
cesses that drive network outcomes. There is a long and extensive debate in the innovation 
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network literature on the role of either cohesive networks (Bourdieu 1986; Coleman 1988) 
or structural holes (Burt 1992, 2005) on innovativeness of actors involved. Experimental 
evidence (Milgram 1967) and empirical analyses (Uzzi et al. 2007) convincingly demon-
strate that real-world networks often show both properties: a high level of clustering (indi-
cating the existence of densely connected sub-groups) and short path lengths (indicating 
the presence of structural holes and brokers that are bridging these holes).

Proponents of the first view argue that cohesion facilitates “… the build-up of reputa-
tion, trust, social norms, and social control, for example by coalition building to constrain 
actions, which facilitates collaboration” (Nooteboom 2008: 619). Cohesion enables face-
to-face contacts and, thus, stimulates interorganizational learning (Ejermo and Karlsson 
2006; Storper and Venables 2004; Gilsing and Nooteboom 2005). However, after a certain 
point the positive effects of cohesiveness—or social proximity—on learning and innova-
tion may turn into opposite because group members may become too inward looking and 
restrained against new influences (Boschma 2005).

Proponents of the second perspective argue that small-world networks provide broker-
age opportunities. Inventors who manage to occupy such a position may gain an important 
advantage since they have a wider range of information and ideas broadly dispersed over 
the entire system. While brokers create social value for the network as a whole, it remains, 
however, rather unclear to what extent having a broker position also leads to benefits for 
the respective actor or firm in terms of better performance (Fritsch and Kauffeld-Monz 
2010; Rodan and Galunic 2004).

The logical conclusion that can be drawn from the presence of a networks characterized 
by cohesive, densely interconnected subgroups is that some actors obviously manage to 
attract more partners than others. Empirical studies indicate a significantly positive rela-
tionship between actor-specific centrality measures6 and innovation performance (Powell 
et al. 1996). A high concentration of cooperation activities of a few actors together with 
a high number of actors with only very few links is reflected by a highly skewed degree 
distribution. To put it differently, while a rather limited number of ‘network hubs’ (or ‘high 
degree’ actors) have a dominant network position, the majority of actors has only a fairly 
small number of ties. A broad range of studies have observed and empirically tested such 
‘scaling’ properties of networks (Powell et al. 2005; Newman et al. 2006).

Real-world networks consist only rarely of one fully connected component. A potential 
explanation for this observation is that formation and growth of networks is in principle 
possible via two distinct processes, each of which is accompanied by substantially different 
structural consequences (Kudic and Guenther 2017). First, isolated inventors without any 
tie to other actors can enter the network by attaching to an existing component. Second, 
new actors may form an interlinked group and enter the network as a new component. If 
both processes take place simultaneously, we may see at the same time growth of exist-
ing components and newly emerging small components. In other words, we observe the 
emergence of ‘core-periphery’ network structures that can be defined as “… a dense, cohe-
sive core and a sparse, loosely connected periphery” (Borgatti and Everett 1999, 375). The 
core is typically composed of key members of the community, particularly actors who have 
developed dense connections to others and act as network coordinators. It has been argued 
that the core of sectoral innovation networks contains essential elements of the industry’s 

6 The toolbox of social network analysis provides a wide range of centrality measures. Most notably, 
degree centrality (measures the number of direct partners of an actor) or eigenvector centrality (measures 
the importance of an actor based on the importance of its direct neighbor nodes).
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technological knowledge (Rank et al. 2006). The periphery includes actors who are only 
loosely connected to the core as well as to the other actors in the periphery (Cattani and 
Ferriani 2008, 826).

Rosenkopf and Padula (2008) confirm this pattern by showing that the likelihood of an 
entrant to attach to a network incumbent increases with the incumbent’s ‘prominence’ in 
the network as proxied, e.g., by his degree centrality or his eigenvector centrality (Bonac-
ich 1987). Others demonstrated the emergence and solidification of a core-periphery struc-
ture in various firm and industry settings (Rank et al. 2006; Kudic et al. 2015) and showed 
that the occupation of an intermediate position between the core and periphery may foster 
creativity (Cattani and Ferriani 2008).

2.3  Network dynamics and the fluidity of actors and ties

One key insight in network research is that an in-depth study of structural phenomena 
requires a comprehensive understanding of the dynamics at the micro level that cause these 
emerging structures. Accordingly, we apply a micro-based network evolution perspective 
that aims at understanding how processes at the level of induvial inventors determine the 
development of network structures that can be observed from a macro perspective. This is 
very close to the structural network change approach introduced by Doreian and Stockman 
(2005, 3–5) according to which network evolution “… captures the idea of understand-
ing change via some understood process …” whereas these underlying processes can be 
defined as a “… series of events that create, sustain and dissolve …” the network structure 
over time. Hence, networks change due to entries or exits of actors as well as due to forma-
tion or termination of connections among these actors, and they are affected by the inten-
sity and quality of persistent ties (Graebner et al. 2018). These micro dynamics affect the 
structural configuration at higher levels of aggregation in nontrivial ways.7

The traditional argument why cooperative agreements are formed goes back to trans-
action cost theory. It was argued that for a particular category of transactions—i.e. those 
characterized by a moderate asset specificity and frequency of disturbances—a reduction 
of transaction costs (as compared to the alternatives market or hierarchy) can be achieved 
by adopting intermediate organizational forms (Williamson 1991). Attention was drawn 
early to the fact that this line of reasoning neglects strategic and social influencing factors 
(Eisenhardt and Schoonhoven 1996). By now it is well-known that a broad variety of deter-
minants and motives can affect the decision to form a cooperation, such as risk reduction 
(Sivadas and Dwyer 2000), time savings (Mowery et al. 1996), access to new national and 
international markets (Perlmutter and Heenan 1986; Gebrekidan and Awuah 2012), status 
and reputation building (Houston 2003; Arend 2009), as well as knowledge-related motives 
such as knowledge access (Grant and Baden-Fuller 2004; Buckley et al. 2009) and interor-
ganizational learning (Kale et al. 2000; Nielsen and Nielsen 2009).

Once a cooperation between two or more partners is established, there are good reasons 
to maintain this relationship. An increasing level of trust plays a key role here, particularly 
in the context of mutual knowledge transfer and learning. Previous research shows that 
trust enhances the amount of information and knowledge that can be exchanged among 
partners and can decrease the related costs (Tsai and Goshal 1998; Zaheer et al. 1998). At 
the same time an opportunity cost argument applies. Instead of using scarce resources to 

7 For an in-depth discussion, see Kudic and Guenther (2017).
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identify a new suitable cooperation partner, negotiate the terms of the cooperation, and 
establish a well-working and trust-based relationship that may require frequent face-to-face 
contacts, actors could use these resources for other purposes. Since the partner-specific 
investments will be sunk if an R&D cooperation is abandoned, one may expect an incen-
tive for actors to maintain a relationship over longer periods of time.

There is, however, also a number of arguments for discontinuing an existing partner-
ship and the establishment of new ones. Termination of a cooperation may be regarded as 
planned in case of time-limited cooperation projects such as publicly funded R&D projects 
with a fixed duration. Stability of such a cooperation is often reflected in repeated projects 
with the same set of partners, as the above arguments for the maintenance of partnerships 
are typically not project-related.

An unplanned termination refers to a situation where the disadvantages outweigh the 
benefits. Reasons may be opportunistic behavior of project partners (Das and Teng 2000), 
learning races (Amburgey et al. 1996), failure of the respective project (Greve et al. 2009) 
and other factors that mitigate the knowledge transfer (Simonin 1999). A further reason 
may be that the dynamics of innovation processes lead to obsolescence or irrelevance of 
the present partner’s knowledge and require the continuous acquisition of new partners 
(Kim et al. 2006; Fritsch and Zoellner 2020). Moreover, ties are terminated in case that a 
cooperation partner exits the market or the technological field while newly emerging firms 
and actors can offer promising new opportunities for collaboration.

The above considerations suggest that fluidity of actors and links in innovation networks 
tends to be conducive to the performance of an innovation system while too much stability 
could be detrimental. This should particularly hold in a turbulent technological regime that 
is characteristic for the early stages of an industry life-cycle.8 Most of the literature on the 
dynamics of relationships between actors is at the level of organizations, particularly the 
level of firms (see for example the contributions in Cropper et al. 2008). The rather few 
empirical studies that analyze the dynamics at the level of inventors and their ties show 
surprisingly high levels of entries and exits as well as newly established and terminated 
ties. For example, a study by Ramlogan and Consoli (2014) on collaborative research in 
medicine finds that the share of new cooperations in academic publications over all coop-
erations is above 70% in all years of the observation period.

In an analysis of regional inventor networks Fritsch and Zoellner (2020) analyzed the 
fluidity in regional inventor networks in successive three year periods based on patent data. 
They found that more than 78% of all inventors are only present in one three year period, 
14.51% are active in two periods and only about 7% appear in networks for more than 
two successive periods. Only 9.7% of all ties between inventors can still be found in the 
successive period. Fritsch and Zoellner (2020) find some statistically significant relation-
ships between the entry and exit of actors and measures of the network structure such as 
the share of the largest network component and the share of isolates. The results suggest 
that fluidity leads to some fragmentation of the networks, but that the effect is not very 
pronounced. Relating the levels of fluidity to the performance of networks in terms of the 
number of patents per R&D employee (patent productivity) suggests positive effects of 
new actors and ties.

8 Buenstorf and Heinisch (2020) provide empirical evidence on science and industry evolution for the first 
50 years of the German laser industry.
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2.4  What do we want to know and how can we get there?

Our analysis of the co-existence of macro-level stability and micro-level fluidity is based 
on a unique dataset of co-patenting relationships among inventors in the German laser 
industry over a period of 45 years. We employ a three-stage research design. The first step 
is analyzing the structural stability of the inventor network by exploring the structural fea-
tures and pattern formation processes along different lines. We consult a set of standard 
metrics to gain an initial intuition of the system’s overall topology and related development 
patterns. Next, we test for the emergence of two structural phenomena—scaling proper-
ties and core-periphery structure—to check whether the system is characterized by stable 
pattern formation processes at the macro level. In a second step, we turn to the micro level 
and analyze the degree of fluidity by exploring node and tie re-occurrence rates over time. 
Third, in order to determine who or what keeps the system together, we identify two types 
of key players: those who warrant diffusion properties of the system, and those who are 
responsible for the structural cohesion of the system.

Our analyses clearly show that these two types of key players are anything but persistent 
over time. This result raises a number of questions. Who are these key players, where do 
they come from and why do they occupy their roles only for a short period of time? Who 
takes over the role of an ‘old’ key player who discontinues in the network? Are discon-
tinuing key players and their successors typically connected? Was there an exchange of 
knowledge prior to the role change so that the knowledge of the ‘old’ key player remains in 
the system? To answer at least some of these questions, we turn our attention to the inter-
mediate network level, specify the ego networks for each of the top key players over time 
and analyze to what extent these highly important roles are passed over to members of the 
same group.

3  Technology and data

3.1  German laser research

The acronym ‘laser’ was originally coined by Gould (1959) and stands for ‘Light Ampli-
fication by Stimulated Emission of Radiation‘9 German laser research provides an ideal 
empirical setting for the purposes of this study for several reasons. First, laser technology 
can be characterized as knowledge-intensive and science-driven (Bertolotti 2005; Bromb-
erg 1991; Grupp 2000). Second, the development of laser technology requires expertise 
from various scientific disciplines such as optics, electronic engineering and physics 
(Fritsch and Medrano 2015). Thus, the creation of novel products and services in this field 
is often a collective process characterized by a pronounced division of labor between vari-
ous actors and institutions. Third, German laser research is a well-defined and documented 
technological field (Albrecht 2019; Buenstorf et  al. 2015; Fritsch and Medrano 2015; 
Kudic 2015).

9 It describes a wide range of devices for the amplification of coherent light by stimulated photon emission 
generated by pumping energy through an adequate medium. A laser device emits a coherent light beam, 
both in a spatial and a temporal sense that can be generated based on different gain media, such as solid 
crystals and semiconductors, for example. The coherent light beam can be modulated and amplified.
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The roots of laser research reach back into the early twentieth century (Albrecht 2019; 
Bromberg 1991). However, it took until early 1960 that a research group led by Theodore 
H. Maiman at the Laboratories of the Hughes Aircraft Company in Malibu (California, 
USA) could first demonstrate the existence of a laser effect. The first laser patent applica-
tion in Germany dates back to 1961 (For details, see Fritsch and Medrano 2015).

3.2  Data sources, co‑patenting, and the construction of inventor networks

Our empirical study is based on patent applications in the field of laser technology in West 
Germany from 1961 to 2005, a period of nearly half a century. The patent data provides 
us with information about the applicant organizations and all of the inventors, and are the 
basis for identifying ties between these inventors. In order to isolate the effect of German 
unification in the year 1990, we exclude laser patents by inventors located in East Ger-
many and strictly limit the analysis to inventors in West Germany.10 The core objective of 
our data gathering procedure was to identify the pool of knowledge and expertise in the 
field of laser technology for West Germany as accurate as possible. For this purpose, the 
dataset includes all patenting and co-patenting activities of West German applicants and 
the respective inventors registered at the German Patent and Trademark Office (DPMA). 
Non-German applicants were only included in the data if there was at least one German co-
applicant listed in the patent document. For the purpose of this paper we employed exclu-
sively inventor data. Inventors with a foreign residence were excluded from the dataset.11

The patent information was obtained from the database DEPATISnet (www.depat isnet 
.de), which is maintained by the German Patent and Trade Mark Office. From this source 
we selected all patent applications with priority in West Germany that were assigned to 
the technological field ‘devices using stimulated emission’ (IPC H01S) as either the main 
or secondary class. Research in this IPC class is related to laser beam sources that consti-
tutes the basis for all kinds of applications. We account for important applications of laser 
technology by including those patent applications in the fields of material processing (IPC 
B23K), medical technology (IPC A61 without IPC A61K) and spectroscopy (IPC G01N) 
that mention the term ‘laser’ in the document.12 We found an increasing number of patents 
in all these IPC classes over the entire observation period. In the early years of the technol-
ogy, patenting activities reflect a clear dominance of research related to beam sources (IPC 
H01S). After the year 2000, we observe a clear trend shift from patenting in the basic tech-
nology of beam sources to its applications. Figure 4 and Table 4 in the Appendix provide 

10 We restrict our analysis to West Germany because of rather significant differences in patenting practices 
between East and West Germany before the reunification in 1990 (for details see Grupp et al. 2005).
11 The share of inventors with a foreign residence that were excluded was below 5% in most observation 
periods—for instance, 4.85% in the 1960–65 period, 4.03% in the 1966–70 period and 5.24% in the final 
2001–2005 period. We also checked for the occurrence of those foreign inventors in several observation 
periods and found that only 2.02% of all excluded foreign inventors that were excluded in the 2001–2005 
period also occurred in at least one preceding observation period.
12 These were the main technological fields of application during the period under inspection that could be 
clearly identified on the basis of IPC classification. Many of these applications were developed by diversify-
ing producers of laser beam sources. Quite a number of producers that were already active in these fields 
of application and adopted the laser diversified upstream into production of beam sources (Buenstorf et al. 
2015).

http://www.depatisnet.de
http://www.depatisnet.de
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further details on patenting and co-patenting activities in West German laser research.13 In 
total, we identified 4381 laser-related patent applications between 1961 and 2005. A main 
benefit of our data is that it comprises the full population of all German inventors active in 
the field of laser research over the entire observation period. The data allows us to analyze 
R&D cooperation activities and network entry modes for the entire population of inventors 
from the early emergence of this technological field onwards.

A key point when using patent data for network analyses is the cleaning and standardi-
zation of the raw data based on the names of inventors. Different spellings of the names 
were harmonized, and a contextual plausibility check was carried out for the few cases in 
which different inventors with identical names appeared. A unique identification number 
was assigned, which allows each inventor to be accurately identified over the entire obser-
vation period. We assume that all co-inventors that are listed in a patent document were 
connected to each other and cooperated in the respective R&D.14

The priority filing date of a patent application was used as timestamp. In order to inves-
tigate the development of inventor networks we divide the entire period of analysis into 
nine five-year windows of observation.15 Hence, we account for the limited lifetime of 
cooperative ties by assuming that co-patenting relationships persist for a limited period of 
up to five years. This assumption is necessary since patent data provide no direct indication 
of tie-duration or tie-termination dates. Although the duration of projects can considerably 
vary, many patent applications may be based on joint research over a period of two to three 
years (Greve et al. 2009; Phelps 2010; Ramlogan and Consoli 2014). According to Park 
and Russo (1996), the average duration of a cooperative R&D project between organiza-
tions is less than five years.

For benchmarking purposes, we generate Erdős and Rényi (1959) random graph net-
works, comparable to their real-world counterparts in terms of size and density.16 For ana-
lytical purposes, we employ the software package UciNet 6 (Borgatti et al. 2002, 2013). 
We are well aware that patents reflect only a part of the diverse types of formal and infor-
mal relationships among inventors. It is, however, plausible to assume that documented 

13 A closer look at the size distribution of inventor teams clearly indicates an increasing tendency towards 
co-patenting activities and an increasing tendency towards larger teams over time. More than 70% of all 
patent applications filed between 1961 and 2005, are co-patented by two or more inventors. This confirms 
the assessment by Wuchty et al. (2007) that innovation processes are increasingly characterized by a divi-
sion of innovative labor for the German laser industry.
14 As an alternative to inventor networks, one could analyze cooperative patenting activities between 
organizations (e.g., public research institutes and firms). This assumes that researching organizations hold 
the relevant knowledge rather than the inventors. If the patent document names several organizations as 
applicants, identifying such cooperative relationships between organizations can be accomplished using the 
patent statistics. There is, however, no information available in such cases that identifies the partner with 
which an individual inventor that is listed in the patent document is affiliated. As compared to ties among 
inventors, co-applications of patents with several organizations are relatively rare and the construction of 
applicant networks is not conclusive. For example, at the onset (1961–65), we found 33 applicants while 
the share of isolated applicants amounts to 87%. In the middle of our observation period (1981–85), we 
found only 119 applicants, and again a very high share of isolates (86.3%). The low share of co-applications 
implies that the largest part of cooperative efforts by inventors occurs within the same organization. Analyz-
ing inventor networks assumes that the relevant knowledge is represented by the inventors rather than by the 
organizations with which they are affiliated.
15 We conducted several robustness checks and experimented with four-year and six-year windows as well 
as with moving window setting, without significant differences in the reported results.
16 This procedure was always sufficiently often applied (n > 30) to generated representative random bench-
marks. For detail see Kudic et al. (2021).
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co-inventorship implies other forms of cooperation, such as co-publications and informal 
knowledge exchange. A comprehensive data source that accounts for the variety of rela-
tionships between innovating actors does not exist.17

4  Macro‑level stability and micro‑level fluidity

4.1  Prevalence of macro‑level stability

To explore the structural characteristics of the German laser industry inventor network, 
we draw upon basic graph-theoretical concepts and employ social network analysis (SNA) 
metrics (Wasserman and Faust 1994; Jackson 2008; Borgatti et al. 2013; Newman 2010). 
We begin by focusing on a number of measures that describe the topology of the entire 
system (Table 1). Network size is simply defined as the number of inventors with at least 
one dyadic relationship to another inventor, while the total number of actors encompasses 
both inventors with co-inventors as well as unconnected inventors (isolates). The share of 
isolated inventors, those without any ties, decreases over time (with the exception of the 
last period) while the total number of ties as well as the average number of ties (degree) 
maintained by inventors is continuously increasing. Network density, i.e. the total number 
of ties divided by the number of possible ties (Wasserman and Faust 1994), is decreasing. 
This is not surprising, since the number of potentially available network ties rises rapidly 
with increasing network size.

The component-based network measures provide an interesting picture of the system’s 
overall tendency of fragmentation. A component is defined as a connected sub-graph, 

Table 1  Basic network metrics, 1961–2005

Description 61–65 66–70 71–75 76–80 81–85 86–90 91–95 96–00 01–05

Total number of inventors 95 189 215 260 419 723 923 1284 1369
Number of inventors with links 65 134 172 212 359 632 820 1196 1212
Share of isolates (%) 31.58 29.10 20.00 18.46 14.32 12.59 11.16 6.85 11.47
Number of ties 86 205 278 409 643 1135 1888 2608 2921
Average number of ties (degree) 1.97 2.09 2.36 2.58 2.74 2.87 3.24 3.61 3.89
Network density 0.031 0.016 0.014 0.012 0.008 0.005 0.004 0.003 0.003
Number of components 19 39 44 60 97 145 173 218 215
Component size distribution
Largest component 15 19 23 13 35 84 59 114 115
2nd largest component 5 10 11 10 11 22 28 59 72
3rd largest component 5 9 8 10 11 15 27 33 39
Average component size 3.42 3.44 3.91 3.53 3.70 4.36 4.74 5.49 5.64
Network diameter 5 7 5 4 5 7 9 11 9
Average path-length 2.107 2.193 1.966 1.425 2.197 2.402 2.524 3.775 2.916
Overall clustering coefficient 1.071 1.316 1.166 1.417 1.3 1.169 1.449 1.163 1.15

17 A comparison of regional innovation networks constructed with different data sources (Fritsch et  al. 
2020) finds that patent data tend to underestimate ties among private sector firms, while universities and 
other public research institutions are well-represented in patent data.
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while the component size simply reflects the number of inventors involved in this compo-
nent. We observe an increase of the number as well of the average size of components. A 
closer look at the component size distribution of the three largest components reveals par-
ticular strong growth of the main component. The network diameter and the average path 
length follow no clear trend.18 The same holds for the overall clustering coefficient that 
reflects the density of each inventor’s nearer surrounding by measuring how many of the 
inventor’s directly neighboring partners are interconnected. However, when using meas-
ures from our random benchmark networks (see Figs. 5 and 6 in the Appendix), a compari-
son of the average path length with the overall clustering coefficient reveals that German 
laser research networks exhibit a significantly shorter path-length and higher overall clus-
tering coefficients.

We now turn attention to two structural properties at the overall network level that 
reflect structural stability of inventor networks. Figure 1 illustrates the degree distribution 
of the German laser research network for the entire observation period (1961–2005). The 
degree distribution indicates how many inventors—on average and over the entire observa-
tion period—had two, three, four or more direct cooperative relationships. It does, how-
ever, not account for the intensity of a cooperation. The graph on the left-hand side shows 
the degree distribution based on the total number of inventors for the entire observation 
period. On the right hand side, we show the normalized numbers plotted on a log–log 
scale. In the case of random networks, the values on the logarithmic scale should represent 
a curved line (towards the upper right), while the straight line (from the upper left to the 
lower right) that we find indicates a ‘fat-tailed’ degree distribution. Hence, the German 
laser research inventor network exhibits a typical ‘scale-free’ degree distribution meaning 
that there is a small number of inventors with an extremely high number of ties (up to 40), 
while the majority of the inventors have degrees far below ten.
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Fig. 1  Degree distribution, 1961–2005

18 The network diameter reflects the length of the longest geodesic path, while the measure of an average 
path length incorporates all geodesic distances among reachable pairs of inventors, and provides an average 
measure at the systemic level.
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The second structural feature we are interested in from a stability perspective is the 
core-periphery structure. The emergence of this macro pattern is directly linked to network 
entries and exits of inventors as well as formations of new partnerships or termination of 
existing ones.

To check whether the German laser inventor network shows a core-periphery structure 
we employ k-core measures.19 A k-core measure includes all inventors that are adjacent 
to at least a minimum number, k, of other inventors in the component (Wasserman and 
Faust 1994). In a first step, we calculate k-core measures for all inventors over time. The 
repeated calculation of k-core measures (for k = 1, … n) enables us to plot coreness layers 
for different k-core intensities over time, typically referred to as k-core strata. The coreness 
strata allows us to check for the existence and emergence of a core-periphery structure. The 
larger the gap between k-core strata with high and low k values, the more pronounced is 
the core-periphery structure of the network.

We assign all inventors in the network into four categories based on their k-core val-
ues (c4:12 > k ≥ 10, c3: 9 ≥ k ≥ 7, c2: 6 ≥ k ≥ 4 and c1: 3 ≥ k ≥ 1) and plot the k-core strata 
over time. The dashed line (top of Fig. 2) provides the total number of inventors with a 
k-core value between one and three. These inventors can be considered to be located at 
the network periphery. In contrast, the solid thin line depicts the number of inventors with 
extremely high k-core measures in absolute terms. These inventors can be regarded as con-
stituting the very core of the network. In addition, we calculated an average k-core level, 
plotted in Fig. 2 (top) as a solid fat line.

A high spread between the low-level k-core category (i.e. dashed line) and the higher-
level categories (i.e. solid thin line, dashed-dotted line, and dotted line) indicates the 

Fig. 2  K-core strata and core-periphery structure, 1961–2005

19 For an overview of approaches for identifying core-periphery patterns, see Csermely et al. (2013).
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existence of a core-periphery structure in the German laser inventor network for the entire 
observation period. The bottom of Fig. 2 reports the relative changes compared to the aver-
age k-core level. The k-core average is represented by 0 on the y-axis of the graph. Below 
average k-core values are represented by the black bar while above average k-core values 
are represented by the other bars in the chart. The exploration indicates a quite stable and 
persisting core-periphery structure over the entire observation period.

In sum, basic network metrics for the inventor networks in German laser technology 
indicate an increasing tendency towards a division of innovative labor. A closer look at the 
connectedness and cohesiveness of the network exhibits a remarkable degree of structural 
stability in terms of size, density and component size distribution. The network’s over-
all topology is characterized by a scale-free degree distribution. The exploration of k-core 
strata reveals a structurally stable and persistent pattern formation process. These results 
may be regarded as a stable segregation trend reflecting a core-periphery structure over the 
entire observation period. Overall, the reported patterns are largely in line with findings 
reported for other real-word networks (e.g., Powell et  al. 2005; Kudic 2015; Tomasello 
et al. 2017).

4.2  The various facets of micro‑level fluidity

In accordance with previous studies (Fritsch and Zoellner 2018, 2020; Phelps 2010; Ram-
logan and Consoli 2014), we find rather high levels of fluidity of inventors and ties over 
time. The upper right part of Table 2 reports the shares of identical inventors (in percentage 
terms) in the networks across the different periods of analysis. For instance, the compari-
son between the first time period (1961–1965) and the second period (1966–1970) shows 
that only 8.54% of all inventors appear in both observation periods. The maximum share of 
identical actors in two subsequent time periods is 13.02%. With increasing time distance 
between the compared sub-periods this share strongly converges towards zero. This rather 
high fluctuation of network inventors over time indicates a low level of structural stability 
at the inventor level.

The numbers below the diagonal line in the lower left of Table 2 shows the shares (in 
percent) of reoccurring ties between pairs of inventors across different time periods. We 
find that discontinuation of ties tends to be even more pronounced than the fluidity of 
inventors. For example, only 5.85% of all ties between inventors are identical in the period 
1961–1965 and 1966–1970. For more distant periods this share also strongly converges 
towards zero.

The very high levels of fluidity of inventors and their ties clearly demonstrate that the 
German laser research network exhibits a very high level of instability at the micro level. 
After only two observation periods, nearly the entire population of inventors is replaced by 
new actors. The fluidity of ties is even more pronounced. Almost no tie between inventors 
lasts for more than two periods. This raises the question: how is it possible that there is so 
much structural stability at the macro level, when the micro level exhibits such high levels 
of constant change?
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5  The co‑existence of macro stability and micro fluidity

In order to shed light on the co-existence of structural stability at the macro level and 
micro-level fluidity we conduct a key player analysis based on Borgatti (2003, 2006). 
Hence, we try to identify a set of inventors who either warrant the diffusion properties 
or stabilize the structural configuration of a given network. Key player metrics go way 
beyond typical centrality measures, such as degree centrality, betweenness centrality, or 
eigenvector centrality, which are typically applied to address an actor’s position within a 
network (Borgatti 2006).

The first identification criterion  KPPNEG allows us to detect so-called (type-1) key 
players who, if removed from the network, would cause the most significant fragmenta-
tion of the network (Borgatti 2006). In other words, the measure allows us to identify 
those inventors who are most important for keeping the inventor network together. The 
second criterion  KPPPOS identifies those key players (type-2) who are most relevant for 
the diffusion of knowledge in a given network structure (ibid). Hence, it enables us to 

Table 3  Key player analysis, actor-specific, diffusion-based  (KPPPOS)
1961-1965   1966-1970   1971-1975 

1976-1980 1981-1985 1986-1990

1991-1995 1996-2000   2001-2005 

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv4061 --- 4.563 1.000 Inv3008 2.000 5.688 0.500 Inv1009 --- 7.625 ---
Inv1129 --- 4.375 4.000 Inv2216 1.500 4.813 --- Inv2310 1.500 7.500 2.625
Inv1369 --- 4.125 1.000 Inv1145 --- 4.344 1.250 Inv2966 --- 6.875 1.000
Inv146 --- 3.750 --- Inv4157 1.250 4.906 0.500 Inv3946 --- 6.500 ---
Inv2496 --- 3.313 0.500 Inv179 --- 4.281 0.500 Inv259 --- 6.125 ---

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv2869 --- 5.000 1.000 Inv2579 3.750 11.500 1.500 Inv274 3.750 13.563 18.594
Inv3703 --- 4.750 --- Inv774 --- 9.250 --- Inv2189 3.250 12.875 6.609
Inv3136 --- 4.625 --- Inv3486 --- 9.000 0.875 Inv1346 4.750 12.625 9.547
Inv3856 3.070 4.250 1.750 Inv1039 --- 8.500 --- Inv3769 --- 12.250 12.547
Inv425 --- 4.125 --- Inv3992 --- 8.500 --- Inv2790 3.125 12.125 4.500

ID (t-1) t0 (t+1) ID (t-1) t0 (t+1) ID (t-1) t0 (t+1)

Inv274 13.563 18.594 6.625 Inv2222 4.000 19.203 22.172 Inv183 --- 26.156 ---
Inv1925 --- 14.281 2.000 Inv1250 --- 16.813 --- Inv675 --- 25.938 ---
Inv2188 8.688 12.875 --- Inv20 --- 16.609 13.727 Inv3567 --- 25.891 ---
Inv4076 6.156 12.797 7.000 Inv3512 4.500 16.609 20.578 Inv2156 11.164 25.875 ---
Inv3769 12.250 12.547 3.000 Inv1170 --- 15.742 23.531 Inv3644 --- 24.109 ---
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determine those inventors who are most significant for the transfer of information and 
knowledge. The two measures follow a closely related logic, but capture two qualita-
tively different facets of network stability. While the  KPPNEG measure addresses the 
physically observable tie structure, the  KPPPOS measure relates directly to the function-
ality of the system.

We run the analyses for each of the nine observation periods and employ the results 
to find out whether the same or different actors are responsible for the structural stabil-
ity at the overall network level.20 Table 3 reports metrics for a diffusion based key players 
criterion  (KPPPOS) in the period before (t − 1) and after (t + 1) a given observation period 
(t = 0).21 We assign particular weight to this measure in our analysis because it directly 
addresses the core function of an inventor network, i.e. enabling knowledge exchange 
between directly and indirectly connected actors of the system. The higher the displayed 
key-player value, the more important the respective actor is with regard to systemic dif-
fusion properties. For instance, in the 1961–1965 observation period, removing inventor 
Inv4061 would weaken the diffusion properties of the system most, followed by inventor 
Inv1129, etc.

Our findings show that only a very small share of inventors occupy a key player role 
in the network for a given observation period. Even more interesting, we find that the key 
player metrics for the same inventors significantly vary over time. The changing set of top 
key players and the highly volatile key player metrics clearly indicate that most inventors 
occupy this role for only one time period. Thus, contrary to our initial expectations, indi-
vidual inventors are not responsible for sustaining the structural stability in terms of diffu-
sion maintenance of the network over time. This observation underscores the high level of 
micro-level fluidity in inventor networks. At the same time, this raises the question of what 
keeps the network together and ensures its functionality.

Based on our considerations outlined above, we have good reasons to assume that the 
intermediate network level may provide some deeper insights into the co-existence of the 
characteristic macro stability and micro fluidity of inventor networks. In particular, we are 
curious to see whether key player positions are passed on from a prominent inventor in a 
given time period to members of his or her direct cooperation environment, proxied by 
inventor-specific ego networks.

To test this presumption, we proceed as follows. First, we explore the component size 
distribution for each of the nine observation windows separately and sort the components 
by size. Second, for each observation window we identify the largest components contain-
ing around 30%22 of all network actors and calculate key player metrics for each compo-
nent separately, based on both the diffusion and the fragmentation criterion.23 Third, for a 

20 We used specific key player software (Borgatti 2003) to identify type-1 and type-2 key players for the 
main component of the inventor networks in each of the 9 sub-periods.
21 KPPNEG identifies about the same set of key players as  KPPPOS for all observation windows. This implies 
that the same set of inventors occupies key player roles according to both, the ‘diffusion’ and the ‘fragmen-
tation’ criterion. Table 5 in the “Appendix” provides detailed results for the structurally-oriented key player 
analysis  (KPPNEG metrics).
22 Since the size distribution is characterized by discrete size categories and varies for each observation 
window. The 30% value is an approximate threshold criterion. For instance, in the first time window (61–
65), the three largest components contain 36.9% of all inventors. In the last time window (01–05), the larg-
est components account for 29.6% of all inventors. Additional explorations on sized distribution of compo-
nents are available upon request.
23 Since components can be interpreted as autarkic elements of an overall network, we run the key player 
analysis for the entire network and identify the most dominant key inventor for each component separately.



370 M. Fritsch, M. Kudic 

1 3

robustness check we define two categories of key players based on the  KPPPOS criterion for 
each of the largest components over all time windows. Category I refers to the top 12.5% 
key players, and category II includes the top 25% of all identified key players. Fourth, in 
order to identify the direct network surrounding of the key players, we apply an ego-net-
work approach24 where we treat the previously identified key inventors as focal actors.

To do so, we identify the full set of directly linked partners (the ‘alters’) for each focal 
actor while simultaneously considering the ties between the alters. By definition, second 
tier ties are excluded from this group concept. Finally, we construct random ego-network 
benchmarks for the full set of the top 12.5% (25%) key players identified and reported 
above.25 These random ego-network benchmarks are comparable in terms of size and 
structure to their real-world ego-network counterparts. The main difference between the 
empirically observed ego-networks and their corresponding random ego-networks is that 
all partners (‘alters’) of the key players (‘focal actors’) in a given observation period are 
selected randomly. Hence, step 4 and 5 allow us to assign empirically observable real-
world ego-networks and a randomly generated benchmark ego-network to each key player.

Figure 3 shows a comparison of real-world ego networks with random benchmarks for 
the inventors with high key-player values in the German laser research network.26 The 
rationale behind our exploration is straightforward. If top key player positions are passed 
on from a prominent inventor to partners located in his direct cooperation environment, the 
top key players of a successive period should be found at a higher rate in the ego-network 
of the focal inventor than elsewhere. In other words, the potential overall damage caused 
by the removal of key players selected from the direct ego-network surrounding would be 
greater than in case of randomly selected partners.

The explorations on the left-hand side show comparisons between the real-world and 
randomly generated benchmark ego networks for the top 12.5% key players. The black dot-
ted lines show the rate at which subsequent key player positions are filled with inventors 
from the key players’ direct ego networks for three selected reference periods, while the 
grey lines represent the random ego network benchmarks. On the right-hand side, we see 
the results of the same analysis for the top 25% key players. Our results clearly show that 
there is a much higher prospect for the successor of a top key player to be a member of the 
previous key player’s ego network as compared to alters from randomly generated bench-
mark ego networks.

6  Discussion and conclusions

6.1  Main findings

We analyzed the development of the inventor network in German laser research from the 
inception of the technology in 1961 until 2005, a period of 45 years. From a macro per-
spective, the development of this network appears to be a continuous process where each 

24 An ego-network is defined as an actor’s (i.e., the ‘ego’) direct cooperation environment. This environ-
ment includes the ego, all directly connected actors (so-called ‘alters’), and all indirect ties between the 
alters (Ahuja 2000; Hite and Herterly 2001).
25 The random selection procedure was repeated 30 times to control for fluctuations caused by outliers.
26 The full set of results (for all observation periods) is provided in Fig.  4 of the Appendix. Robustness 
checks reveal similar results and are available upon request.
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step builds on the previous one. The basic properties of the network and their development 
are well in accordance with other studies on innovation networks. The propensity for co-
inventorship, as well as the average size of inventor teams increased considerably over time 
(Wuchty et al. 2007), there is a persistent tendency towards scaling, and we observe the 
emergence of a core-periphery structure. Overall, the results indicate a high level of struc-
tural stability at the macro level.

Investigating the development of the network at the micro level of inventors and their 
ties, we found high levels of fluidity. Only a rather small share of inventors in a certain 
five-year period reoccurs in the subsequent period. After only two periods, nearly the entire 
population of inventors has changed completely. According to these high levels of inventor 
fluidity, there is an equally pronounced degree of instability at the level of ties. Repeated 
and long-term ties are an exception. In sum, these findings clearly indicate rather high lev-
els of turbulence under the surface of slowly changing macro structures.

To explore the relationship between macro level stability and micro level fluidity more 
deeply, and to gain a better understanding of who or what keeps the network together, we 
conducted a key player analysis. This analysis reveals high levels of fluidity even in key 
player positions in a network (based on both the diffusion and the fragmentation criterion), 
because these positions are only rarely occupied by the same inventors in successive peri-
ods. Our explorations show, however, a pronounced tendency for key player positions to be 
passed on to inventors who belong to the ego network of the previous key player. Interest-
ingly, the passing over of key player positions via ego-network structures is not constrained 
by organizational boundaries. Hence, there is a tendency for continuity at the team level—
regardless of whether the inventors come from same or different organizations—that may 
complement our understanding of the co-existence of macro stability and micro fluidity.

6.2  Implications

The simultaneous consideration of our results at the micro and the macro level has a num-
ber of interesting implications. For example, the strongly skewed and ‘fat-tailed’ degree 
distribution of the network cannot be explained by persistence of a small number of excep-
tional network actors. Network theorists frequently refer to a ‘rich-get-richer’ argument, 
suggesting that actors with an above-average degree in a given period attract ties at a higher 
rate than other actors in subsequent time periods (Albert and Barabasi 2002; Barabasi and 
Bonabeau 2003). Our results show continuous entry of new inventors—characterized by 
an above-average intensity of cooperation—who remain in the network for only a short 
time span. This insight challenges the logic behind the wide-spread preferential attachment 
mechanism, an often-implemented attachment mechanism in dynamic models of network 
change.

Our results also question a number of economic theories that imply longevity and per-
sistence of partnerships. For instance, transactions-cost arguments suggest that actors typi-
cally spend considerable time and resources to identify a suitable cooperation partner and to 
build up trust (Das and Teng 2000) in order to counteract opportunistic behavior and reduce 
the risk of terminating unsuccessful partnerships (Doz 1996). In other words, a high level of 
micro-level fluidity caused by the frequent termination of relationships implies considerable 
sunk costs for the partners involved. Similarly, principle-agent theory (Spence 1976) suggests 
that network actors have strong incentives to remain in the networks since it allows them 
to continuously improve their strategic positioning and reduce information asymmetries by 
sending out signals to potential partners. For instance, a high and continuously increasing 
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number of partner (reflected by an actor’s degree) signifies a high willingness and ability of 
cooperation that may generate valuable opportunities for future cooperation.

The findings of our key player analyses could be regarded an indication that trust may 
not only be relevant at the interpersonal or interorganizational level, but also at the team 
level. In such a case, individual investments in trust building and knowledge generation 
may benefit a group as a whole and are, therefore, not completely lost if a relationship 
between two actors is terminated. In other words, intermediate level within inventor net-
works seem to play an important role as intertemporal repositories where trust and knowl-
edge may persist despite entry and exit of single members.

6.3  Limitations and further research

The high levels of fluidity at the micro level raise some fundamental questions: Why do 
inventors choose to establish a cooperative R&D relationship? How do they select their 
cooperation partners? Why is an established relationship maintained or abandoned? In a 
nutshell, our findings indicate that there must be forces at work that are more important 
than the sunk costs that occur if a relationship is abandoned.

Currently, we know very little about the dynamics of innovation networks. Particularly, 
the levels of discontinuing actors and of new actors in a network are largely unexplored.27 
More research in different technological fields and countries is desirable to assess the lev-
els and patterns of network dynamics, particularly the fluidity of actors and ties in differ-
ent environments. In addition, the reasons for abandoning a cooperative relationship are 
not very clear. To the best of our knowledge, there is still no sound empirical evidence 
about the drivers and structural consequences of tie terminations resulting from unsuccess-
ful partnerships.

Similarly, knowledge and learning-related drivers of tie terminations confront us with 
a number of highly interesting questions. Does a new cooperation partner become more 
attractive primarily after the knowledge of the old partners is completely absorbed? Does 
the knowledge of the partner of a discontinued relationship become uninteresting or obso-
lete due to the general dynamics of the innovation process?28 Do network actors follow a 
long-term cooperation strategy and, if so, are these decision sequences mirrored in actor-
specific network trajectories or do relevant patterns only become visible at higher aggrega-
tion levels? Do these association patterns differ between established network members and 
newcomers?

Finally, we know nearly nothing about the role of actor fluidity in the performance of 
the respective innovation system. On the one hand, one might argue that a high level of 
fluidity indicates an effective allocation of talent and a fast diffusion of knowledge. On 
the other hand, fluidity of actors and ties may involve high levels of sunk costs and loss 
of knowledge of discontinuing actors. Hence, it is unclear if a high level of fluidity has a 

27 The only comparable study of actor fluidity that we are aware of is the analysis of Fritsch and Zoellner 
(2018, 2020) for nine German regions over a period of 15 years. The study is based on patent data and iden-
tifies quite similar levels of actor fluidity.
28 The few available studies that consider the discontinuation of cooperative ties (e.g., Greve et al. 2009; 
Park and Russo 1996; Thune and Gulbrandsen 2014) name completion of the R&D project and project fail-
ure as main reasons for abandoning a cooperative relationship.
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positive or negative effect on system performance.29 To what extent is the knowledge of 
discontinuing actors lost for the respective innovation system? How do new actors impact 
the performance of the system? At the same time, it would be highly interesting to gain 
deeper insights into other layers of innovation systems, e.g. the interorganizational inno-
vation network, and investigate co-evolutionary processes with firm level dynamics. For 
instance, Buenstorf and Heinisch (2020) provide empirical evidence on the long-term evo-
lution of entries and exits of German laser technology firms. It would be interesting to 
analyze how different stages of industry life cycle affect network evolution and vice versa. 
Answers to such questions could considerably contribute to our understanding of collective 
innovation and the division of innovative labor.

Appendix

See Figs. 4, 5, 6, 7 and Tables 4, 5.

Fig. 4  Patent applications of laser technology in different applications: West Germany 1961–2005

29 Belderbos et al. (2015) investigate the relationship between the dynamics of R&D cooperation and inno-
vation performance based on a panel of Spanish firms. They conclude from their analysis that it is more the 
persistent collaboration that has a positive effect on firm innovativeness, while the effect of discontinued 
cooperation was insignificant. Fritsch and Zoellner (2019) measure performance based on the number of 
patents per R&D employee (patent productivity), and find a positive relationship between the share of new 
actors and ties and the performance of the respective innovation system. While there is a positive relation-
ship between the share of discontinued inventors and patent productivity, the relationship between the share 
of discontinued ties and patent productivity is positive.
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Fig. 7  Real-world ego networks vs. random benchmarks, for top 12.5% (l.r.s.) and top 25% key players 
(r.h.s), full observation period
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