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Abstract
We study Jacobi processes (Xt )t≥0 on [−1, 1]N and [1,∞[N which are motivated
by the Heckman–Opdam theory and associated integrable particle systems. These
processes depend on three positive parameters and degenerate in the freezing limit to
solutions of deterministic dynamical systems. In the compact case, these models tend
for t → ∞ to the distributions of the β-Jacobi ensembles and, in the freezing case, to
vectors consisting of ordered zeros of one-dimensional Jacobi polynomials. We derive
almost sure analogues of Wigner’s semicircle and Marchenko–Pastur limit laws for
N → ∞ for the empirical distributions of the N particles on some local scale. We
there allow for arbitrary initial conditions, which enter the limiting distributions via
free convolutions. These results generalize corresponding stationary limit results in the
compact case for β-Jacobi ensembles and, in the deterministic case, for the empirical
distributions of the ordered zeros of Jacobi polynomials. The results are also related
to free limit theorems for multivariate Bessel processes, β-Hermite and β-Laguerre
ensembles, and the asymptotic empirical distributions of the zeros of Hermite and
Laguerre polynomials for N → ∞.
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1 Introduction

By classical results, the empirical distributions of β-Hermite, β-Laguerre, and β-
Jacobi ensembles of dimension N tend for N → ∞ to semicircle, Marchenko–Pastur
as well as Kesten–McKay and Wachter distributions after suitable normalizations;
see e.g. [5, 12, 21, 29, 41]. Moreover, in the Hermite and Laguerre cases, there are
dynamical versions of these results in terms of Bessel processes (XN

t )t≥0 of dimension
N for the root systems of types A and B; see [7, 31] for the background on these
processes. Namely, let μ be some starting distribution on R or [0,∞[, and let for
N ∈ N, xN be starting vectors in R

N such that the empirical distributions of the
components of the xN tend to μ. If we consider the Bessel processes (XN

t )t≥0 with
start in these points xN , then under mild additional conditions and with an appropriate
scaling, the empirical distributions of the components of the XN

t tend for N → ∞
almost surely weakly to measures μt for all t ≥ 0. In the β-Hermite case, i.e. for
Bessel processes of type A, one hasμt = μ�μsc,2

√
t , whereμsc,2

√
t is the semicircle

distribution with radius 2
√
t and � the usual additive free convolution; see Section

4.3 of [2] and [39] for different approaches. Moreover, for the β-Laguerre case, i.e.
Bessel processes of type B, there are corresponding results in terms of Marchenko–
Pastur distributions and some construction in [39] which is related to the rectangular
free convolutions in [3, 4]. These results for Bessel processes hold also for stationary
Ornstein–Uhlenbeck-type versions as indicated in the end of Section 2 of [39]. For
the background on stochastic analysis and free probability we recommend [2, 25, 26,
30].

In this paper, we show that such limit results also appear for N -dimensional Jacobi
processes on [−1, 1]N for N → ∞ which were introduced and studied in [9, 10, 14,
27, 28, 32, 33, 38]. These processes depend on 3 parameters and may be described in
different ways. For instance, in the compact case, motivated by the theory of special
functions associated with root systems of Heckman and Opdam [17, 18], one can
define these processes as diffusions on the alcoves

ÃN := {θ ∈ [0, π ] : 0 ≤ θN ≤ . . . ≤ θ1 ≤ π}

with the Heckman–Opdam Laplacians

L trig,k f (θ) := � f (θ) +
N∑

i=1

(
k1 cot(θi/2) + 2k2 cot(θi )

+k3
∑

j : j �=i

(
cot(

θi − θ j

2
) + cot(

θi + θ j

2
)
))

fθi (θ)
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of type BC as generators with the multiplicities k1 ∈ R, k2 ≥ 0, k3 > 0 with
k1 + k2 ≥ 0 with reflecting boundaries. It is convenient to transform these objects in
this trigonometric form via xi := cos θi (i = 1, . . . , N ) into an algebraic form as in
[10, 38]. We then obtain diffusions on the alcoves

AN := {x ∈ R
N : −1 ≤ x1 ≤ . . . ≤ xN ≤ 1}

with the algebraic Heckman–Opdam Laplacians

Lk f (x) :=
N∑

i=1

(1 − x2i ) fxi ,xi (x)

+
N∑

i=1

(
−k1 − (1 + k1 + 2k2)xi + 2k3

∑

j : j �=i

1 − x2i
xi − x j

)
fxi (x). (1.1)

as generators with reflecting boundaries. The eigenfunctions of the Lk are Heckman–
Opdam Jacobi polynomials, and the transition probabilities can be expressed via
these polynomials; see [10, 27, 28]. On the other hand, these processes (Xt =
(Xt,1, . . . , Xt,N ))t≥0 can be described as unique strong solutions of the stochastic
differential equations (SDEs)

dXt,i =
√
2(1 − X2

t,i ) dBt,i

+
(
−k1 − (1 + k1 + 2k2)Xt,i + 2k3

∑

j : j �=i

1 − X2
t,i

Xt,i − Xt, j

)
dt (1.2)

for i = 1, . . . , N with an N -dimensional Brownian motion (Bt )t≥0 and with paths
which are reflected on ∂AN ; see [10, 16, 32, 33]. Following [10], we also transform
the parameters via

κ := k3 > 0, q := N − 1 + 1 + 2k1 + 2k2
2k3

> N − 1,

p := N − 1 + 1 + 2k2
2k3

> N − 1, (1.3)

and rewrite (1.2) as

dXt,i =
√
2(1 − X2

t,i ) dBt,i

+κ
(
(p − q) − (p + q)Xt,i + 2

∑

j : j �=i

1 − Xt,i Xt, j

Xt,i − Xt, j

)
dt (1.4)

for i = 1, . . . , N and t > 0. It is known (see e.g. [10, 14]) that for κ ≥ 1 and
p, q ≥ N − 1 + 2/κ , the process does not meet ∂AA

N almost surely.
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It is useful, also to consider the transformed processes (X̃t := Xt/κ )t≥0 which
satisfy

d X̃t,i =
√
2√
κ

√
1 − X̃2

t,i d B̃t,i

+
(
(p − q) − (p + q)X̃t,i + 2

∑

j : j �=i

1 − X̃t,i X̃ t, j

X̃ t,i − X̃t, j

)
dt (1.5)

for i = 1, . . . , N . For κ = ∞ and p, q > N − 1, these SDEs degenerate into the
ODE

d

dt
xi (t) = (p − q) − (p + q)xi (t) + 2

∑

j : j �=i

1 − xi (t)x j (t)

xi (t) − x j (t)
(i = 1, . . . , N )

(1.6)

which is interesting for itself and closely related to the classical Jacobi polynomials
(P(α,β)

N )N≥0 on [−1, 1] with the parameters

α := q − N > −1, β := p − N > −1.

These polynomials are orthogonal w.r.t. the weights (1 − x)α(1 + x)β as usual; see
Ch. 4 of [37]. The ODE (1.6) has the following properties which will be proved in
Appendix Section:

Theorem 1.1 Let N ∈ N and p, q > N − 1. Then, for each x0 ∈ AN , (1.6) has a
unique solution x(t) for t ≥ 0 in the sense that there is a unique continuous function
x : [0,∞) → AN with x(0) = x0 such that for t > 0, x(t) ∈ AN\∂AN holds and
satisfies (1.6).

Moreover, this solution satisfies limt→∞ x(t) = z ∈ AN\∂AN where the coordi-
nates of z are the ordered roots of P(q−N ,p−N )

N . This z is the only stationary solution
of (1.6) in AN .

The stationary solution z ∈ AN of (1.6) is the freezing limit for κ → ∞ of the
stationary distributions of the corresponding Jacobi processes with fixed p, q where
these distributions belong to corresponding β-Jacobi (or β-MANOVA) ensembles
with the densities

c(k1, k2, k3) ·
N∏

i=1

(1 − xi )
k1+k2−1/2(1 + xi )

k2−1/2 ·
∏

i< j

|xi − x j |2k3 (1.7)

with known Selberg-type norming constants c(k1, k2, k3). We recapitulate that, possi-
bly after some obvious transformation, these measures appear as the distributions of
the ordered eigenvalues of the tridiagonal models in [22, 23] and in log gas models on
[−1, 1]; see [15]. Moreover, for certain parameters, these distributions and the Jacobi
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processes have an interpretation as invariant distributions and Brownian motions on
compact Grassmann manifolds of rank N over F = R,C and the quaternions by the
connection between the Heckman–Opdam theory and spherical functions; see [10,
17, 18, 27, 28]. Even more generally for some parameters, these objects appear as the
ordered eigenvalues of matrices B∗B for upper left blocks B of size M × N of Haar
distributed random variables and Brownian motions in the unitary group U (R,F),
respectively, with the dimension parameters R > M > N ; see [10, 14].

We now turn to the main content of this paper. We follow [39] and derive several
almost sure limit theorems as N → ∞ for the empirical distributions of the Jacobi
processes (X̃ N

t )t≥0 and their deterministic freezing limits for κ = ∞ satisfying (1.6),
which are related to mean field limits of [34]. Considering the parameters p, q, κ ,
it will turn out that the limits depend on κ in a trivial way while the parameters
p, q, which depend on N , lead after suitable affine-linear transformations to different
limit distributions. The different cases are motivated by the stationary deterministic
case, where the empirical distributions of the roots of the classical Jacobi polynomials
appear. In this setting several limiting regimes with semicircle, Marchenko–Pastur
and Wachter distributions were derived in [13]. We follow this decomposition of the
cases and start with the deterministic case. However, compared to the stationary case,
we get not one but multiple limit results by using different time scalings. For this
we derive recurrence relations for the moments and PDEs for the Cauchy and the R-
transforms of the empirical distributions of the solutions in a general setting in Sect. 2;
see in particular Eq. (2.7). This PDE can then be applied to the different regimes.
In Sect. 3, we shall do so for two regimes where semicircle and Marchenko–Pastur
distributions appear. In the semicircle case we obtain the following result where μsc,τ

is the semicircle law with support [−τ, τ ] for τ ≥ 0 and μsc,0 = δ0:

Theorem 1.2 Consider sequences (pN )N∈N, (qN )N∈N ⊂]0,∞[ with
limN→∞ pN/N = ∞ and limN→∞ qN/N = ∞ such that C := limN→∞ pN/qN ≥
0 exists. Define

aN := qN√
NpN

, bN := pN − qN
pN + qN

(N ∈ N).

Let μ ∈ M1(R) be a probability measure satisfying some moment condition (see
Theorem 3.1 for the details), and let (xN = (xN1 , . . . , xNN ))N∈N be starting vectors
xN ∈ AN such that all moments of the empirical measures

μN ,0 := 1

N

N∑

i=1

δaN (xNi −bN )

tend to those of μ for N → ∞. Let xN (t) be the solutions of the ODEs (1.6) with
xN (0) = xN for N ∈ N. Then, for all t > 0, all moments of the empirical measures

μN ,t/(pN+qN ) = 1

N

N∑

i=1

δaN (xNi (t/(pN+qN ))−bN )
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tend to those of the probability measures

μt := (e−tμ) �
(√

1 − e−2tμsc,4(1+C)−3/2

)
.

This in particular implies that the μN ,t/(pN+qN ) tend weakly to the μt .

Theorem 1.2 is a local limit theorem on our particle systems around the points
bN ∈] − 1, 1[ for small times on the space scale 1/aN . We point out that this local
result preserves the asymptotic stationarity of the global systems. In fact, there are
local limit results on different time and space scales in Sect. 3 where this asymptotic
stationarity does not appear; see e.g. Theorem 3.4.We also deriveMarchenko–Pastur-
type local limit results in neighbourhoods of the boundary points ±1 in Sect. 3; see
e.g. Theorem 3.7. In the proof of this theorem we again solve the associated PDE for
the R-transforms; a modification of this PDE also appears in [6].

There are further limit regimes involvingKesten–McKay andWachter distributions,
which are also motivated by [13] and limit results for β-Jacobi ensembles in [12, 41].
In these cases it can be shown that under corresponding prerequisites on the initial
conditions, the empirical measures μN ,t/(pn+qN ) also converge to some probability
measures μt for t ≥ 0. However, the details of the limits are more involved here. In
contrast to the results presented in this work these limits cannot be easily described
by free convolutions but one canonically uses free projections; see remark at end of
sect. 4.

The deterministic results of Sect. 3will be extended in Sect. 4 to almost sure versions
for Jacobi processes with fixed parameter κ in the compact setting. We mention that
for κ ∈ {1/2, 1}, these results can be also derived via the approach in [24, 36] for
Jacobi matrix models by verifying the conditions of Theorem 2.1 in [36]. However,
our direct approach has the advantage that we obtain appropriate scalings in a more
obvious way, as by our freezing technique, all information on the limiting behaviour
for N → ∞ is already encoded in the deterministic dynamical systems. This provides
a simple unifying approach without matrix models.

In Sect. 5, we transfer some of our results in Sects. 2, 3 and 4 to a noncompact
setting. For some parameters, these results have interpretations in terms of Brownian
motions on the noncompact Grassmann manifolds. It will turn out that in these cases,
some results remain valid up to some time inversion. However, it seems that here no
analogue to the stationary results like Theorem 1.2 holds, as the initial conditions do
not fit the prerequisites on the parameters pN , qN , aN , bN . Finally, we prove Theorem
1.1 and its noncompact analogue in Appendix Section.

2 Moments of the Empirical Distributions in the Deterministic Case

In this section, we study the solutions xN (t) of the ODEs (1.6) for suitable initial
conditions xN0 ∈ AN for N ∈ Nwith N → ∞ and suitable p = pN , q = qN > N −1
where this implies p = pN , q = qN → ∞. There are several limit regimes for the
empirical measures
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1

N
(δxN1 (t) + . . . + δxNN (t)) ∈ M1([−1, 1])

for N → ∞ and t ≥ 0 under the condition that a corresponding limit holds for the time
t = 0. For some of these limits wemust transform the data in an affine-linear way in all
coordinates depending on N . For this, we introduce suitable sequences (aN )N∈N ⊂
]0,∞[ and (bN )N∈N ⊂ R which will be specified later in specific situations. We
consider the transformed solutions x̃ N (t) = (x̃ N1 (t), . . . , x̃ NN (t)) with

x̃ Ni (t) := aN (xNi (t) − bN ) (1 ≤ i ≤ N )

as well as the transformed empirical distributions

μN ,t := 1

N
(δx̃ N1 (t) + . . . + δx̃ NN (t)) = 1

N
(δaN (xN1 (t)−bN ) + . . . + δaN (xNN (t)−bN )).

(2.1)

In order to determine possible weak limits of the measures μN ,t , we shall study the
moments

SN ,l(t) :=
∫

[−1,1]
yl dμN ,t (y) = alN

N

N∑

i=1

(xNi (t) − bN )l = 1

N

N∑

i=1

x̃ Ni (t)l , (2.2)

of these measures for l ∈ N0, t ≥ 0, and N ∈ N.

Proposition 2.1 The moments SN ,l(t) of μN ,t satisfy the ODEs

d

dt
SN ,0 ≡ 0,

d

dt
SN ,1 = −(p + q)SN ,1 + aN (p − q − bN (p + q)), (2.3)

and

d

dt
SN ,l = l

[
−(p + q − (l − 1))SN ,l + aN (p − q − bN (p + q − 2(l − 1)))SN ,l−1

− a2N (1 − b2N )(l − 1)SN ,l−2 + Na2N (1 − b2N )

l−2∑

k=0

SN ,k SN ,l−2−k

− N
l−2∑

k=0

SN ,k+1SN ,l−1−k − 2aNbN N
l−2∑

k=0

SN ,k SN ,l−1−k

]
, l ≥ 2 ,

(2.4)

where we used the shorthand p = pN , q = qN .

Proof We rewrite the ODE (1.6) as an ODE for x̃ Ni by

d

dt
x̃ Ni (t) =aN (p − q − bN (p + q)) − (p + q)x̃ Ni (t)
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+ 2
∑

j : j �=i

a2N (1 − b2N ) − aNbN (x̃ Ni (t) + x̃ Nj (t)) − x̃ Ni (t)x̃ Nj (t)

x̃ Ni (t) − x̃ Nj (t)
, (2.5)

where we agree that a summation j : j �= i means that we sum over all j �= i from
1 to N . We shall also suppress the dependence of SN ,l and x̃ N on t . (2.5) yields the
following ODEs for l ∈ N:

d

dt
SN ,l = l

N

n∑

i=1

(
x̃ Ni

)l−1
(
d

dt
x̃ Ni

)

= l

N

[
aN (p − q − bN (p + q))N · SN ,l−1 − (p + q)N · SN ,l

+ 2
∑

i, j : i �= j

(a2N (1 − b2N ) − x̃ Ni x̃ Nj )
(
x̃ Ni

)l−1 − bNaN (
(
x̃ Ni

)l + (
x̃ Ni

)l−1
x̃ Nj )

x̃ Ni − x̃ Nj

]
.

Hence, for l = 1,

d

dt
SN ,1 = aN (p − q − bN (p + q)) − (p + q)SN ,1.

Moreover, for l ≥ 2 we first observe that

2
∑

i, j : i �= j

(a2N (1 − b2N ) − x̃ Ni x̃ Nj )

(
x̃ Ni

)l−1

x̃ Ni − x̃ Nj

= 2
∑

i, j : i< j

(a2N (1 − b2N ) − x̃ Ni x̃ Nj )

(
x̃ Ni

)l−1 −
(
x̃ Nj

)l−1

x̃ Ni − x̃ Nj

=
l−2∑

k=0

∑

i, j : i �= j

(a2N (1 − b2N ) − x̃ Ni x̃ Nj )
(
x̃ Ni

)k (
x̃ Nj

)l−2−k

= a2N (1 − b2N )

(
N 2

l−2∑

k=0

SN ,k SN ,l−2−k − (l − 1)NSN ,l−2

)

− N 2
l−2∑

k=0

SN ,k+1SN ,l−1−k + (l − 1)NSN ,l .

Similarly it holds that

∑

i, j : i �= j

(
x̃ Ni

)l + (
x̃ Ni

)l−1
x̃ Nj

x̃ Ni − x̃ Nj
= N 2

l−2∑

k=0

SN ,k SN ,l−1−k − N (l − 1)SN ,l−1.

Combining these equations yields (2.4). �


123



Journal of Theoretical Probability

We next state Proposition 2.1 in terms of the Cauchy transform of μN ,t . Recall that
the Cauchy transform of μ ∈ M1(R) is defined as

Gμ(z) :=
∫

R

1

z − x
dμ(x) (z ∈ {z ∈ C : �(z) > 0}).

We now set GN (t, z) := GμN ,t (z). For |z| sufficiently large we write GN as

GN (t, z) =
∞∑

l=0

z−(l+1)SN ,l(t). (2.6)

The partial derivatives GN
t (t, z) := ∂tGN (t, z), GN

z (t, z) := ∂zGN (t, z) and
GN

zz(t, z) := ∂2z G
N (t, z) are related as follows:

Proposition 2.2 The Cauchy transforms GN (t, z) of the measures μN ,t , t ≥ 0, satisfy
the PDE

GN
t (t, z)

=(p + q)zGN
z (t, z) + (p + q)GN (t, z) + ∂zz

(
z2GN (t, z)

)

− a(p − q − b(p + q))GN
z (t, z)

+ 2ab∂zz
(
zGN (t, z)

)
− (1 − b2)a2GN

zz(t, z) − 2Na2(1 − b2)GN (t, z)GN
z (t, z)

+ 2N
[
z2GN (t, z)GN

z (t, z) + z(GN (t, z))2 − zGN
z (t, z) − GN (t, z)

]

+ 2bNa((GN )2 + 2zGN
z G

N − GN
z ) . (2.7)

This PDE can be used to derive limit theorems for theμN ,t under different assumptions
on the parameters p = pN , q = qN , aN , bN for N → ∞ and t ≥ 0. We present such
limit results in the next section where in the limit roughly speaking free sums of the
limit initial distributions with Wigner and Marchenko–Pastur distributions appear.

Proof (2.6) gives

GN
t (t, z) =

∞∑

l=0

z−(l+1) d

dt
SN ,l(t) =

∞∑

l=1

z−(l+1) d

dt
SN ,l(t). (2.8)

We now calculate this series by using (2.3) and (2.4). For this we use the following
equations:

−
∞∑

l=1

z−(l+1)l(p + q − (l − 1))SN ,l

= −(p + q)

∞∑

l=1

z−(l+1)l SN ,l +
∞∑

l=1

z−(l+1)l(l − 1)SN ,l
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= (p + q)zGN
z (t, z) + (p + q)GN (t, z) + ∂zz

(
z2GN (t, z)

)
, (2.9)

∞∑

l=1

lz−(l+1)aN (p − q − bN ((p + q) − 2(l − 1)))SN ,l−1

= −aN (p − q − bN (p + q))GN
z (t, z) + 2aNbN ∂zz

(
zGN (t, z)

)
, (2.10)

−
∞∑

l=2

z−(l+1)l(l − 1)SN ,l−2 = −GN
zz(t, z),

∞∑

l=2

z−(l+1)lN
l−2∑

k=0

SN ,k SN ,l−2−k = −2NGN (t, z)GN
z (t, z) , (2.11)

−
∞∑

l=2

z−(l+1)lN
l−2∑

k=0

SN ,k+1SN ,l−1−k = 2N (z2GN (t, z)GN
z (t, z)

+ z(GN (t, z))2 − zGN
z (t, z) − GN (t, z)) , (2.12)

and

−
∞∑

l=2

z−(l+1)l
l−2∑

k=0

SN ,k SN ,l−1−k = (GN )2 + 2zGN
z G

N − GN
z . (2.13)

If we combine (2.9)–(2.13) with (2.3), (2.4) and (2.8), we obtain the PDE (2.7). �


3 Wigner- andMarchenko–Pastur-Type Limit Theorems in the
Deterministic Case

We now study conditions on the parameters pN , qN , aN , bN above which lead to lim-
its for the measures μN ,t that involve semicircle and Marchenko–Pastur distributions.
In both cases, we consider aN → ∞ which implies that we possibly must work with
measures with noncompact supports. We thus need moment conditions. We recapit-
ulate from [1] that a measure μ ∈ M1(R) satisfies the Carleman condition if the
moments cl = ∫

R
xl dμ(x) (l ∈ N), of μ satisfy

∞∑

l=1

c
− 1

2l
2l = ∞. (3.1)

By [1], a probability measure with the Carleman condition is determined uniquely by
its moments.

We also use the following modified moment condition:

There exists some γ > 0 with |cl | ≤ (γ l)l for all l ∈ N. (3.2)

It can be easily checked that (3.2) implies the Carleman condition.
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Further, we recapitulate from [2] that the R-transform of μ ∈ M1(R) is
Rμ(z) := ∑∞

n=0 kn+1(μ)zn with the n-th free cumulants kn(μ) of μ. It is related to
the Cauchy transform by

Rμ(Gμ(z)) = z − 1/Gμ(z). (3.3)

Moreover, the R-transform satisfies Rμ�ν = Rμ + Rν for μ, ν ∈ M1(R) for the free
additive convolution �.

Additionally, we use the following notation: We denote the image of μ ∈ M1(R)

under some continuous mapping f by f (μ). We use this notation in particular for
the maps x �→ |x | and x �→ x2 and write |μ| and μ2. Furthermore, for a constant
v ∈ R \ {0} let vμ the image of μ under x �→ vx . Finally, for a probability measure
μ on [0,∞[, let μeven the unique even probability measure on R with |μeven| = μ.
With these notations we have Gvμ(z) = v−1Gμ (z/v) and thus, by (3.3),

Rvμ(z) = vRμ(vz). (3.4)

We now turn to the first limit case where semicircle laws μsc,λ ∈ M1(R) with
radius λ > 0 appear. We recapitulate that the Wigner law μsc,λ with radius λ > 0 has
the Lebesgue density

2

πλ2

√
λ2 − x21[−λ,λ](x).

It is well-known that Rμsc,λ (z) = λ2

4 z; see Section 5.3 of [2].
We have the following first result:

Theorem 3.1 Consider sequences (pN )N∈N, (qN )N∈N ⊂]0,∞[ with
limN→∞ pN/N = ∞ and limN→∞ qN/N = ∞ such that C := limN→∞ pN/qN ≥
0 exists. Define

aN := qN√
NpN

, bN := pN − qN
pN + qN

(N ∈ N).

Let μ ∈ M1(R) satisfy (3.2). Moreover, let (xN )N∈N = ((xN1 , . . . , xNN ))N∈N be a
sequence of starting vectors xN ∈ AN such that all moments of the empiricalmeasures

μN ,0 := 1

N

N∑

i=1

δaN (xNi −bN )

tend to those of μ for N → ∞. Let xN (t) be the solutions of the ODEs (1.6) with
xN (0) = xN for N ∈ N. Then, for all t > 0, all moments of the empirical measures

μN ,t/(pN+qN ) = 1

N

N∑

i=1

δaN (xNi (t/(pN+qN ))−bN )

123



Journal of Theoretical Probability

tend to those of the probability measures

μt := (e−tμ) �
(√

1 − e−2tμsc,4(1+C)−3/2

)
. (3.5)

Proof Using the recurrence relations (2.4), (2.3) together with the initial conditions for
t = 0 and our choice of bN , we see that the moments S̃N ,l(t) := SN ,l(t/(pN + qN ))

of μN ,t/(pN+qN ) satisfy

S̃N ,0 ≡ 1, S̃N ,1(t) = e−t SN ,1(0)

and, for l ≥ 2,

S̃N ,l(t) = exp
((

−l + l(l − 1)

pN + qN

)
t
)[

SN ,l(0)

+ l

pN + qN

∫ t

0
exp

((
l − l(l − 1)

pN + qN

)
s
)(

2aNbN (l − 1)S̃N ,l−1(s)

− (1 − b2N )a2N (l − 1)S̃N ,l−2(s) + Na2N (1 − b2N )

l−2∑

k=0

S̃N ,k(s)S̃N ,l−2−k(s)

− N
l−2∑

k=0

S̃N ,k+1(s)S̃N ,l−1−k(s) − 2bN NaN

l−2∑

k=0

S̃N ,k(s)S̃N ,l−1−k(s)

)
ds

]
.

(3.6)

As the SN ,l(0) (l ≥ 0) tend to the corresponding moments of μ, we conclude by
induction on l, that the S̃N ,l(t) converge to some functions Sl(t) for l ≥ 0 and t ≥ 0.
Moreover, these limits satisfy

S0 ≡ 1, S1(t) = S1(0)e
−t ,

Sl(t) = e−lt

(
Sl(0) + 4l(1 + C)−3

∫ t

0
els

l−2∑

k=0

Sk(s)Sl−2−k(s) ds

)
(3.7)

for l ≥ 2.We now prove that the Sl(t) satisfy (3.2) with some constant R (instead of γ )
and thus the Carleman condition (3.1) for t > 0 so that there are unique μt ∈ M1(R)

with (Sl(t))l as moment sequences. For this we first notice that (3.2) for l ∈ {0, 1}
holds for R sufficiently large. Moreover, by induction we have for l ≥ 2 and t ≥ 0
that
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|Sl(t)| ≤ e−lt |Sl(0)| + e−lt4l(1 + C)−3
∫ t

0
els

l−2∑

k=0

|Sk(s)| |Sl−2−k(s)| ds

= e−lt |Sl(0)| + 4l(1 + C)−3
∫ t

0
e−ls

l−2∑

k=0

|Sk(t − s)| |Sl−2−k(t − s)| ds

≤ (γ l)l + 4(1 + C)−3(Rl)l−2 ≤ (γ l)l + Rl−2ll .

(3.8)

For R large enough (depending on γ ) we can bound the RHS of (3.8) by (Rl)l as
claimed. We thus conclude that the measures μN ,t/(pN+qN ) tend weakly to some
probability measures μt .

To identify the μt we employ a PDE for the corresponding Cauchy and R-
transforms. We set

G(t, z) := Gμt (z) = lim
N→∞GμN ,t/(pn+qN )

(z).

We now use the PDEs (2.7) and interchange derivatives w.r.t. t, z with the limits
N → ∞. This interchangeability can be proved via the Laurent series for G,GN as
in Proposition 2.9 of [39]. In this way, we obtain that G satisfies the PDE

Gt (t, z) = zGz(t, z) + G(t, z) − 8(1 + C)−3G(t, z)Gz(t, z), G(0, z) = Gμ(z).

Using

R(t,G(t, z)) = z − 1/G(t, z)

Rz(t,G(t, z)) = 1/Gz(t, z) + 1/G2(t, z)

Rt (t,G(t, z)) = −Gt (t, z)/Gz(t, z) . (3.9)

for the R-transforms R(t, z) := Rμt (z), we see that

Rt (t, z) = −R(t, z) + 8(1 + C)−3z − Rz(t, z)z, R(0, z) = Rμ(z). (3.10)

As R(t, z) = e−t Rμ(ze−t ) + 4(1 + C)−3(1 − e−2t )z solves (3.10), it follows
from (3.4) and the properties of the R-transform above that μt = (e−tμ) �(√

1 − e−2tμsc,4(1+C)−3/2

)
as claimed. �


Remark 3.2 The exchange of the pN , qN in our dynamical systems corresponds to a
sign change (and thus a reverse numbering) of all particles in [−1, 1]. In this way
we may assume w.l.o.g. that C := limN→∞ pN/qN ∈ [0, 1] holds in Theorem 3.1.
Moreover, the degenerated case C = ∞ corresponds to the degenerated case C = 0
and is thus also included in Theorem 3.1 in principle.

In order to understand themeaning of Theorem3.1, consider the following example:
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Example 3.3 The easiest possible scaling inTheorem3.1 is the choice pN = qN = N δ ,
for δ > 1, aN = N (δ−1)/2, bN = 0, xN = 0. Then, all μN ,0 = δ0 and μ0 = δ0. The
theorem now states that the limiting measures μt from (3.5) are simply the rescaled
semicircle laws

√
1 − e−2tμsc,

√
2 for t > 0.

More generally: Let pN , qN , aN , bN be given as in Theorem 3.1, and take xNi :=
bN for all i, N . In this case, the measures μt from (3.5) are the semicircle laws√
1 − e−2tμsc,4(1+C)−3/2 for t > 0.

These measures describe the deviation of the particles xNi (t) at time t/(pN + qN )

from the numbers bN ∈]−1, 1[ locally w.r.t. to the space scalings aN . Notice that this
even makes sense for the degenerated case C = 0 where limN→∞ bN = −1 holds.

Theorem 3.1 is a local limit result which describes the behaviour of the system
around the numbers bN for small times. It is therefore astonishing that in (3.5) a
stationary behaviour appears which is available on the global scale on [−1, 1]. This
picture appears also in the degenerated case C = 0 in Theorem 3.4(1). However,
this stationarity disappears if we use scalings in space and time of higher orders; see
Theorem 3.4(2) and (3).

Theorem 3.4 Let μ ∈ M1(R) satisfy (3.2), and let (xN )N∈N = ((xN1 , . . . , xNN ))N∈N
be starting vectors xN ∈ AN such that all moments of the empirical measures

μN ,0 := 1

N

N∑

i=1

δaN (xNi −bN )

tend to those ofμ for N → ∞. Let xN (t) be the solutions of (1.6) with xN (0) = xN for
N ∈ N. For some given sequence (sN )N∈N ⊂]0,∞[ consider the empirical measures

μN ,t/sN = 1

N

N∑

i=1

δaN (xNi (t/sN )−bN ).

(1) If limN→∞ pN/N = limN→∞ qN/N = ∞ and C := limN→∞ pN/qN = 0, and

if we put aN :=
√
qN√
N
, bN := pN−qN

pN+qN
, sN := pN + qN , then for all t > 0, all

moments of μN ,t/sN tend to those of e−tμ.
(2) Let pN , qN > N − 1 for N ∈ N and (bN )N∈N ⊂] − 1, 1[ such that B :=

lim bN ∈ [−1, 1] exists. Let (sN )N∈N ⊂]0,∞[ such that limN→∞ pN+qN√
NsN

= 0.

Let aN := √
sN/N. Then, for t > 0, all moments of μN ,t/sN tend to those of

μ � μ
sc,2

√
2(1−B2)t

.

(3) Assume that limN→∞(pN +qN )/N = ∞. Let (bN )N∈N ⊂]−1, 1[ such that B :=
lim bN ∈ [−1, 1] exists, and let (sN )N∈N ⊂]0,∞[ such that limN→∞ pN+qN√

NsN
≥

0. Put aN := √
sN/N and c := limN→∞ aN (pN − qN − bN (pN + qN )) /sN .

Then, for t > 0, all moments ofμN ,t/sN tend to those ofμ�μ
sc,2

√
2(1−B2)t

� δct .
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Proof The proof is analogue to that of Theorem 3.1 where the limits Sl(t) :=
limN→∞ SN ,l(t/sN ) now satisfy different recurrence relations, which lead to slightly
different PDEs for the Cauchy- and R- transforms. We just remark the following:
The limit in (1) can be interpreted as (e−tμ)� (

√
1 − e−2tμsc,0)where the semicircle

law degenerates into μsc,0 = δ0. In (2) we have

S0 ≡ 1, S1(t) = S1(0),

Sl(t) = Sl(0) + l(1 − B2)

∫ t

0

l−2∑

k=0

Sk(s)Sl−2−k(s) ds (l ≥ 2), (3.11)

such that the computations in Section 2 of [39] (see the proofs of Lemma 2.4 and
Theorem 2.10 there) lead to the claim. (3) can be obtained in the same way. �

Remark 3.5 The limits in Theorem 3.4(2) and (3) correspond to results for the Bessel
processes and their frozen versions in Sections 2 and 3 of [39], where here the condi-
tions on the parameters pN , qN , bN are more flexible. We also remark that this result
admits an analogue for Jacobi processes on noncompact spaces; see Sect. 5.

In the next step, we combine the ideas of the proof of Theorem3.1with Theorem 1.1
which says that the vectorswith the ordered zeros of corresponding Jacobi polynomials
form stationary solutions of (1.6). This leads to the following result which was derived
in [13] by different methods:

Theorem 3.6 Let (pN )N∈N, (qN )N∈N ⊂]0,∞[ with limN→∞ pN/N = ∞ and
limN→∞ qN/N = ∞ such that C := limN→∞ pN/qN ≥ 0 exists. Define

aN := qN√
NpN

, bN := pN − qN
pN + qN

(N ∈ N).

Let −1 < zN1 < . . . < zNN < 1 be the ordered zeros of the Jacobi polynomials

P(qN−N ,pN−N )
N . Then, all moments of

μ̃N := 1

N

N∑

i=1

δaN (zNi −bN )

tend to those of μsc,4(1+C)−3/2 . In particular, the μ̃N tend weakly to μsc,4(1+C)−3/2 .

Proof Consider the solutions of the ODEs (1.6) as in Theorem 3.1 with the initial
conditions xN := (bN , . . . , bN ) ∈ AN , i.e. with μ = δ0 and SN ,l(0) = 0 for l ≥ 1.
We show that for the moments S̃N ,l(t) from the proof of Theorem 3.1 the limits
S̃N ,l(∞) := limt→∞ S̃N ,l(t) exist. In fact, this is clear for l = 0, 1, and (3.6) and
dominated convergence show inductively for l ≥ 2 that

S̃N ,l(∞) = l

pN + qN
lim
t→∞

∫ t

0
exp

(
−
(
l − l(l − 1)

pN + qN

)
(t − s)

)
HN ,l(s) ds
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= l

pN + qN
lim
t→∞

∫ t

0
exp

(
−
(
l − l(l − 1)

pN + qN

)
s
)
HN ,l(t − s) ds

= 1

pN + qN − l + 1

(
2aNbN (l − 1)S̃N ,l−1(∞)

− (1 − b2N )a2N (l − 1)S̃N ,l−2(∞) + Na2N (1 − b2N )

l−2∑

k=0

S̃N ,k(∞)S̃N ,l−2−k(∞)

− N
l−2∑

k=0

S̃N ,k+1(∞)S̃N ,l−1−k(∞) − 2bN NaN

l−2∑

k=0

S̃N ,k(∞)S̃N ,l−1−k(∞)

)

(3.12)

where HN ,l(s) is the term in the big brackets in the last 3 lines of (3.6). On the other
hand, Theorem 1.1 yields that the S̃N ,l(∞) are the moments of the measures μ̃N . Fur-
thermore, similar to (3.7), we see that for all l the limits Sl(∞) := limN→∞ S̃N ,l(∞)

exist with S0(∞) = 1, S1(∞) = 0, and

Sl(∞) = 4l

(1 + C)3

l−2∑

k=0

Sk(∞)Sl−2−k(∞) (l ≥ 2).

As this is just the recurrence for theCatalan numbers up to some rescaling (see e.g. Sec-
tion 2.1.1 of [2]), it follows readily that the Sl(∞) are the moments of μsc,4(1+C)−3/2 .

�

We next turn to the case of Marchenko–Pastur distributions, which is motivated by

Corollary 2.5 of [13]. We here assume that the pN , qN satisfy

lim
N→∞ pN/N =: p̂ ∈ [1,∞[, lim

N→∞ qN/N = ∞ (3.13)

and use the norming constants

bN := −1, aN := qN/N . (3.14)

We then obtain limits which involve Marchenko–Pastur distributions μMP,c,t ∈
M1([0,∞[) which, for c ≥ 0, t > 0, are the probability measure with μMP,c,t = μ̃

for c ≥ 1 and μMP,c,t = (1− c)δ0 + cμ̃ for 0 ≤ c < 1, where for x± := t(
√
c± 1)2,

the measure μ̃ on ]x−, x+[ has the density
1

2πxt

√
(x+ − x)(x − x−). (3.15)

We recall (see Exercise 5.3.27 of [2]) that the R-transforms of the μMP,c,t are given
by

RMP,c,t (z) = ct

1 − t z
. (3.16)
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This in particular implies the well-known relation

μMP,a,t � μMP,b,t = μMP,a+b,t (a, b, t > 0). (3.17)

The following local limit theorem of stationary type corresponds to Theorem 3.1.

Theorem 3.7 Let pN , qN , aN , bN as in (3.13) and (3.14), and μ ∈ M1([0,∞[) with
(3.2). Let (xN )N∈N = ((xN1 , . . . , xNN ))N∈N be associated starting vectors with xN ∈
AN as in Theorem 3.1.

Let xN (t) be the solutions of (1.6) with xN (0) = xN for N ∈ N, t ≥ 0. Then, for
t > 0, all moments of the measures μN ,t/(pN+qN ) = 1

N

∑N
i=1 δaN (xNi (t/(pN+qN ))−bN )

tend to those of

μ(t) :=
(
μ
SC,2

√
2(1−e−t )

�
(√

e−tμ
)

even

)2
� μMP, p̂−1,2(1−e−t ). (3.18)

Proof As in the proof of Theorem 3.1, induction on l shows that the SN ,l(t/(pN +qN ))

converge to some functions Sl(t) for l ≥ 0, t ≥ 0. These limits satisfy

S0 ≡ 1, S1(t) = e−t (S1(0) − 2 p̂
) + 2 p̂,

Sl(t) = e−lt

(
Sl(0) + 2l

∫ t

0
els

(
p̂Sl−1(s) +

l−2∑

k=0

Sk(s)Sl−1−k(s)

)
ds

)
, l ≥ 2.

(3.19)

Once more, by the same arguments as in the proof of Theorem 3.1, we see that the
Sl(t) satisfy the Carleman condition (3.1) for t > 0. Thus, by themoment convergence
theorem there exist unique μt ∈ M1(R) with (Sl(t))l as sequences of moments.
To identify the μt we again derive a PDE for the Cauchy and R-transforms of the μt .
We set

G(t, z) := Gμt (z) = lim
N→∞GμN ,t/(pn+qN )

(z).

The PDEs (2.7) here lead to the PDE

Gt (t, z) =zGz(t, z) + G(t, z) − 2(G(t, z)2 + 2zG(t, z)Gz(t, z) − Gz(t, z)) − 2 p̂Gz(t, z)

=(z − 2( p̂ − 1) − 4zG(t, z))Gz(t, z) + G(t, z) − 2G(t, z)2 . (3.20)
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Using (3.9), we obtain

−Rt (t,G(t, z)) = Gt (t, z)

Gz(t, z)

= (R(t,G(t, z)) + 1

G(t, z)
)(1 − 4G(t, z)) − 2( p̂ − 1)

+ (G(t, z) − 2G(t, z)2)(Rz(t,G(t, z)) − 1

G(t, z)2
)

= −4G(t, z)R(t,G(t, z)) − 2( p̂ − 1) − 2

+ (G(t, z) − 2G(t, z)2)Rz(t,G(t, z)) + R(t,G(t, z))

and thus

0 = Rt (t, z) − (2z2 − z)Rz(t, z) − (4z − 1)R(t, z) − 2 p̂.

If φ(z) := R(0, z), the method of characteristics (see e.g. [35]) leads to the solution

R(t, z) = e−t (1 − 2z(1 − e−t ))−2φ(e−t z(1 − 2z(1 − e−t ))−1)

+ 2(1−e−t )
1−2(1−e−t )z + 2( p̂−1)(1−e−t )

1−2(1−e−t )z . (3.21)

The third summand on theRHSof this equation corresponds to the second�-summand
in (3.18).We thus only have to investigate the first two summands on theRHSof (3.21).
For this we fix s > 0 and define the function φ̂(z) := e−sφ(e−s z). We also define

f (t, z) := (1 − t z)−2φ̂

(
z

1 − t z

)
+ t

1 − t z
(z ∈ C \ R, t > 0).

One can check that f solves the PDE

ft (t, z) = 1 + 2z f (t, z) + z2 fz(t, z), f (0, z) = Rexp(−s)μ(z). (3.22)

Theorem 4.8 in [39] and (3.4) now imply that

f (t, z) = R(
μSC,2

√
t�

(√
exp(−s)μ

)

even

)2(z) for t > 0.

This and the formula Rμ�ν = Rμ + Rν for the R-transform now complete the proof.
�


Remark 3.8 If we take the starting distribution μ = μMP,r ,s for r ≥ 0, s > 0, then,
with the notations above, φ̂(z) = RμMP,r ,s (z) = rs

1−sz .Apartial fractiondecomposition
here leads to

f (t, z) = (1 − t z)−2φ̂

(
z

1 − t z

)
+ t

1 − t z
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= rs

(1 − t z)(1 − (t + s)z)
+ t

1 − t z
= r(t + s)

1 − (t + s)z
+ (1 − r)t

1 − t z
.

Hence,

R(
μSC,

√
t�(

√
μMP,r ,s)even

)2(z) = r(t + s)

1 − (t + s)z
+ (1 − r)t

1 − t z
, r , s, t ≥ 0

which generalizes (4.14) in [39] slightly.

We now consider a variant of Theorem 3.7 with a different scaling in space and
time where the limit loses its stationary behaviour, and where the limit corresponds to
the results for the Bessel processes of type B and their frozen versions in Sections 4
and 5 of [39].

Theorem 3.9 Let (pN )N∈N, (qN )N∈N with pN , qN > N − 1 for N ≥ 1 and
limN→∞ pN/N = p̂. Let (sN )N∈N ⊂]0,∞[ be time scalings with limN→∞(pn +
qN )/sN = 0. Define the space scalings aN := sN/N, bN := −1 (N ∈ N). Let
μ ∈ M1([0,∞[) satisfy (3.2) and (xN )N∈N starting vectors as in Theorem 3.7. Let
xN (t) be the solutions of the ODEs (1.6) with xN (0) = xN for N ∈ N. Then, for all
t > 0, all moments of the empirical measures

μN ,t/sN = 1

N

N∑

i=1

δaN (xNi (t/sN )−bN )

tend to those of
(
μsc,2

√
2t �

(√
μ
)
even

)2
� μMP, p̂−1,2t .

Proof As in the proof of Theorem 3.1, our starting conditions and induction show that
the S̃N ,l(t) tend to some functions Sl(t) with

S0 ≡ 1, S1(t) = S1(0) + 2 p̂t,

Sl(t) = Sl(0) + 2l
∫ t

0

(
p̂Sl−1(s) +

l−2∑

k=0

Sk(s)Sl−1−k(s)

)
ds (3.23)

for l ≥ 2 and t ≥ 0. The computations in Section 4 of [39] (see the proofs of Lemma
4.3 and Theorem 4.8 there) then yield the claim. �


A slight modification of the proof of Theorem 3.7 in combination with the assertion
about the stationary case in Theorem 1.1 leads to the following limit result on the zeros
of the Jacobi polynomials; see also [13]. As the proof is analogous to that of Theorem
3.6, we skip it.

Theorem 3.10 Consider pN , qN with limN→∞ pN/N =: p̂ ∈ [1,∞[ and
limN→∞ qN/N = ∞. and define the norming constants bN := −1, aN := qN/N.
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Let −1 < zN1 < . . . < zNN < 1 be the ordered zeros of the P(qN−N ,pN−N )
N . Then,

all moments of the empirical measures μ̃N := 1
N

∑N
i=1 δaN (zNi −bN ) tend to those of

(
μSC,2

√
2

)2
� μMP, p̂−1,2 = μMP, p̂,2. (3.24)

In particular, the μ̃N tend weakly to μMP, p̂,2.

4 Almost Sure Limit Theorems for Jacobi Processes

In this section, we study the empirical measures of the renormalized Jacobi processes
(X̃t )t≥0 on AN from the introduction. Recall that these processes satisfy

d X̃t,i =
√
2√
κ

√
(1 − X̃2

t,i ) dBt,i

+
⎛

⎝(pN − qN ) − (pN + qN )X̃t,i + 2
∑

j : j �=i

1 − X̃t,i X̃ t, j

X̃ t,i − X̃t, j

⎞

⎠ dt (4.1)

for i = 1, . . . , N with fixed κ > 0.
Let aN ⊂]0,∞[ and bN ⊂ R. As in Sect. 3 we investigate the empirical measures

μN ,t := 1

N

N∑

i=1

δaN (X̃t/sN ,i−bN )

for appropriate scalings aN , bN , sN . We begin with the following a.s. version of
Theorem 3.1:

Theorem 4.1 Assume that limN→∞ pN/N = ∞ and limN→∞ qN/N = ∞ such that
C := limN→∞ pN/qN ≥ 0 exists. Define

aN := qN√
NpN

, bN := pN − qN
pN + qN

(N ∈ N).

Let μ ∈ M1(R) satisfy (3.2) and let (xN )N∈N = ((xN1 , . . . , xNN ))N∈N starting
vectors xN ∈ AN such that all moments of the measures

μN ,0 := 1

N

N∑

i=1

δaN (xNi −bN )

tend to those of μ for N → ∞. Let (X̃ N
t )t≥0 be the solutions of the SDEs (4.1) with

start in X̃ N (0) = xN for N ∈ N, t ≥ 0. Then, for all t > 0, all moments of the
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empirical measures

μN ,t/(pN+qN ) = 1

N

N∑

i=1

δaN (X̃ N
t/(pN+qN ),i−bN )

tend to those of the probability measures (e−tμ)�
(√

1 − e−2tμsc,4(1+C)−3/2

)
almost

surely.

Before proving this theorem with the specific scaling there, we first proceed as
in Sect. 2 and investigate arbitrary affine shifts of X̃t first. For this, define Yt :=
aN (X̃t/((pN+qN )) − bN ) and

μN ,t = 1

N

N∑

i=1

δYt,i , SN ,l(t) = 1

N

N∑

i=1

Y l
t,i

which fits to the notation in our theorem. For abbreviation, we suppress the dependence
of p, q, a, b on N . Then, by Itô’s formula

dYt,i =
√

2

κ(p + q)

√
a2 − (Yt,i + ab)2 dBt,i

+
⎡

⎣a

(
p − q

p + q
− b

)
− Yt,i + 2

p + q

∑

j : j �=i

a2(1 − b2) − Yt,i Yt, j − ab(Yt,i + Yt, j )

Yt,i − Yt, j

⎤

⎦ dt .

(4.2)

Furthermore, for l ∈ N we define

Ml,t := l

N

√
2

κ(p + q)

∫ t

0

N∑

i=1

Y l−1
s,i

√
a2 − (Ys,i + ab)2 dBs,i . (4.3)

Note that |Yt,i | ≤ a(1 + |b|) for all i, t ensures that the (Ml,t )t≥0 are continuous
martingales (w.r.t. the usual filtration). The first empirical moment now satisfies

SN ,1(t) − SN ,1(0) =
∫ t

0

(
−SN ,1(s) + a

(
p − q

p + q
− b

))
ds + M1,t .

This is a linear stochastic differential equation of the form

f (t) − f (0) =
∫ t

0
(λ f (s) + g(s)) ds + h(t), (4.4)
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with λ = −1, f (t) = SN ,l(t), g(t) = a
(
p−q
p+q − b

)
, and h(t) = M1,t . As the solution

of (4.4) is

f (t) = eλt
(
f (0) +

∫ t

0
e−λs (g(s) + λh(s)) ds

)
+ h(t), (4.5)

we have

SN ,1(t) = e−t
(
SN ,1(0) +

∫ t

0
es

(
a

(
p − q

p + q
− b

)
− M1,s

)
ds

)
+ M1,t . (4.6)

By another application of Itô’s formula the higher empirical moments satisfy

SN ,l(t) − SN ,l (0) = l

N

√
2

κ(p + q)

N∑

i=1

∫ t

0
Y l−1
s,i

√
a2 − (Ys,i + ab)2 dBs,i

+ l

N

N∑

i=1

∫ t

0
Y l−1
s,i

⎡

⎣a

(
p − q

p + q
− b

)
− Ys,i + 2

p + q

∑

j : j �=i

a2(1 − b2) − Ys,i Ys, j − ab(Ys,i + Ys, j )

Ys,i − Ys, j

⎤

⎦ ds

+ l(l − 1)

N

N∑

i=1

2

κ(p + q)

∫ t

0
Y l−2
s,i

(
a2 − (Ys,i + ab)2

)
ds

= Ml,t +
∫ t

0

(
Cl SN ,l (s) + fl(SN ,1(s), . . . , SN ,l−1(s))

)
ds , (4.7)

with

Cl := −l

(
1 + l − 1

p + q

(
2

κ
− 1

))
(4.8)

and, using the calculations leading to (2.4) and (2.3),

fl(SN ,1, . . . , SN ,l−1)

:= − l

(
−a

(
p − q

p + q
− b

(
1 + 2(l − 1)

p + q

(
2

κ
− 1

)))
SN ,l−1

−a2(1 − b2)(l − 1)

p + q

(
2

κ
− 1

)
SN ,l−2

−Na2(1 − b2)

p + q

l−2∑

k=0

SN ,k SN ,l−2−k + N

p + q

l−2∑

k=0

SN ,k+1SN ,l−1−k

+2bNa

p + q

l−2∑

k=0

SN ,k SN ,l−1−k

)
.

123



Journal of Theoretical Probability

Hence, by (4.5),

SN ,l(t) = eCl t
(
SN ,l(0) +

∫ t

0
e−Cls

(
fl(SN ,1(s), . . . , SN ,l−1(s)) + ClMl,s

)
ds

)

+Ml,t . (4.9)

For the proof of Theorem 4.1 and further limit theorems the following observation is
crucial.

Lemma 4.2 Let T > 0. Let pN , qN , aN , bN as in Theorem 4.1 or Theorem 4.3 below.
Assume that limN→∞ SN ,l(0) exists for all l ∈ N. Then, for all l ∈ N the martingales
(Ml,t )t≥0 from (4.3) converge uniformly to 0 on [0, T ] a.s.
Proof In afirst stepwe show that the sequence (E[|SN ,l(t)|])N∈N is uniformlybounded
on [0, T ]. Here we first study the case l ∈ 2N. By (4.9) and our assumptions on
p, q, a, b it holds, that there are non-negative bounded sequences d1(N ), . . . , d5(N )

of numbers such that

E(SN ,l(t))

≤ eCl t
(
SN ,l(0) +

∫ t

0
e−Cls

(
d1E

[|SN ,l−1(s)|
] + d2

[|SN ,l−2(s)|
]

+d3

l−2∑

k=0

E
[|SN ,k(s)SN ,l−2−k(s)|

]

+d4

l−2∑

k=0

E
[|SN ,k+1SN ,l−1−k(s)|

] + d5

l−2∑

k=0

E
[|SN ,k(s)SN ,l−1−k(s)|

]
)

ds

)
.

Moreover, by the triangle inequality and Jensen’s inequality,

|SN ,l−1(s)| ≤ 1

N

N∑

i=1

|Ys,i |l−1 ≤
(
1

N

N∑

i=1

Y l
s,i

) l−1
l

≤ 1 + SN ,l(s). (4.10)

By the same reasons, we also have

|SN ,k(s)SN ,l−1−k(s)| ≤
(
1

N

N∑

i=1

|Ys,i |l−1

) k
l−1

(
1

N

N∑

i=1

|Ys,i |l−1

) l−1−k
l−1

≤ 1 + SN ,l(s),

|SN ,k(s)SN ,l−2−k(s)| ≤ SN ,l−2(s) ≤ 1 + SN ,l(s) and |SN ,k+1(s)SN ,l−1−k(s)| ≤
SN ,l(s). Thus, there exist non-negative bounded sequences d̃1(N ), d̃2(N ) of numbers
such that

e−Cl t E[SN ,l(t)] ≤ SN ,l(0) +
∫ t

0
e−Cls

(
d̃1 + d̃2E[SN ,l(s)]

)
ds.
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By Gronwall’s inequality we conclude that

e−Cl t E[SN ,l(t)] ≤
(
SN ,l(0) +

∫ t

0
d̃1e

−Cls ds

)
· exp

(
d̃2t

)

where the Cl from (4.8) remain bounded. Thus (E[SN ,l(t)])N∈N remains uniformly
bounded for t ∈ [0, T ] in the case of even l. Finally, by (4.10) this also holds for l
odd.
In a second step we now show the claim of the lemma. The quadratic variation of Ml,t

is given by

[Ml ]t = 2

N 2κ(p + q)

N∑

i=1

∫ t

0
l2Y 2l−2

s,i

(
a2 − (Ys,i + ab)2

)
ds.

By the Chebyshev inequality and the Burkholder-Davis-Gundy inequality there is a
constant c > 0 independent from N such that

P

(
sup

0≤t≤T
|Ml,t | > ε

)

≤ 1

ε2
E

[
sup

0≤t≤T
|Ml,t |2

]
≤ c

ε2
E [[Ml ]T ]

= 2cl2

N 2κ(p + q)

N∑

i=1

∫ T

0
E

[
Y 2l−2
s,i

(
a2 − (Ys,i + ab)2

)]
ds

≤ 2cl2(a2(1 − b2) + 2a)

Nκ(p + q)

∫ T

0
E

[
1 + SN ,2l−2(s)

]
ds.

If we choose p, q, a, b as in Theorem 4.1 or Theorem 4.3 we have a2(1−b2)+2a
N (p+q)

∈
O(N−2). By the first part of the proofwe thus conclude that P

(
sup0≤t≤T |Ml,t | > ε

) ∈
O(N−2) for each ε > 0. The claim now follows by the Borel–Cantelli lemma. �


We now turn to the specific scaling in Theorem 4.1:

Proof of Theorem 4.1 We again suppress the dependence of p, q, a, b on N . We define

μt := (e−tμ) �
(√

1 − e−2tμsc,4(1+C)−3/2

)

with the moments cl(t) := ∫
R
xl dμt (x). By the proof of Theorem 3.1, we have

c1(t) = e−t c1(0) and

cl(t) = e−lt

(
cl(0) + 4l(1 + C)−3

∫ t

0
els

l−2∑

k=0

ck(s)cl−2−k(s) ds

)
, l ≥ 2.
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By induction we will show that the limits Sl(t) := limN→∞
∫
R
xl dμN ,t/(p+q)(x),

l ∈ N, exist and satisfy the same recursion as the cl(t).
Let l = 1. By (4.6), our choice of bN and Lemma 4.2 we have S1(t) :=
limN→∞ SN ,1(t) = e−t cl locally uniformly in t a.s.
Let l ≥ 2. Note that Cl in (4.9) converges to −l. We now calculate the limit of
fl(SN ,1(t), . . . , SN ,l−1(t)). For this note that

lim
N→∞

4l(l − 1)ab

κ(p + q)
= 0, lim

N→∞
2l(l − 1)a2

κ(p + q)
= 0,

lim
N→∞ a

(
p − q

p + q
− b

(
1 + 2(l − 1)

p + q

(
2

κ
− 1

)))
= 0,

lim
N→∞

(1 − b2)a2(l − 1)

p + q

(
2

κ
− 1

)
= 0, lim

N→∞ N/(p + q) = 0, lim
N→∞

2bNa

p + q
= 0,

lim
N→∞

Na2(1 − b2)

p + q
= 4(1 + C)−3.

Hence, by our induction assumption, we have a.s. locally uniformly in t that

lim
N→∞ fl(SN ,1(t), . . . , SN ,l−1(t)) = 4l(1 + C)−3

l−2∑

k=0

Sk(t)Sl−2−k(t).

Thus by (4.9) and Lemma 4.2, the limit Sl(t) = limN→∞ SN ,l(t) exists and satisfies

Sl(t) = e−lt

(
Sl(0) + 4l(1 + C)−3

∫ t

0
els

l−2∑

k=0

Sk(s)Sl−2−k(s) ds

)
a.s.,

so that the Sl(t) satisfy the same recursion as the cl(t).
This proves the claim in the same way as in the proof of Theorem 3.1. �


By using the same technique, we also readily get the following stochastic version
of Theorem 3.7; please notice that here also Lemma 4.2 is available.

Theorem 4.3 Consider pN , qN , aN , bN as in (3.13) and (3.14). Let μ ∈ M1([0,∞[)
satisfy (3.2).Moreover, let (xN )N∈N = ((xN1 , . . . , xNN ))N∈N beanassociated sequence
of starting vectors x N ∈ AN as the preceding results.

Let X̃ N
t be the solutions of the SDEs (4.1) with start in X̃ N (0) = xN for N ∈ N,

t ≥ 0. Then, for all t > 0, all moments of the empirical measures

μN ,t/(pN+qN ) = 1

N

N∑

i=1

δaN (X̃ N
t/(pN+qN ),i−bN )

tend almost surely to those of the probability measures

(
μ
SC,2

√
2(1−e−t )

�
(√

e−tμ
)

even

)2
� μMP, p̂−1,2(1−e−t ), t > 0. (4.11)
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Remark 4.4 The methods of the proof above also lead to stochastic versions of Theo-
rems 3.4 and 3.9. This means that in these theorems the moment convergence holds
a.s. for the rescaled Jacobi process X̃t instead of the solution x(t) of (1.6).

For some parameters κ, p, q, the solutions (X̃t )t≥0 of the SDEs (4.1) admit interpre-
tations in terms of dynamic versions ofMANOVA-ensembles over the fieldsF = R,C

byDoumerc [14] as follows. Let d = 1, 2 be the real dimension ofF. Consider Brown-
ianmotions (Zn

t )t≥0 on the compact groups SU (n,F)with some suitable time scalings.
Now take positive integers N , p with N ≤ p ≤ n, and denote the N × p-block of a
square matrix A of size n by πN ,p(A). Moreover, let σ(B) be the ordered spectrum
of some positive semidefinite matrix B. It is shown in [14] that then

(
X̃t := 2 · σ

(
πN ,p(Z

N
t )πN ,p(Z

N
t )∗

)
− 1

)

t≥0

is a diffusion on AN satisfying the SDE (4.1) with the parameters p ≥ N , q := n− p,
and κ = d/2. Clearly, all of the preceding limit results in Sect. 4 can be applied in
this case for suitable sequences pN , nN of dimension parameters depending on N .
Moreover the limiting regime aN , bN , pN/N , qN/N ∼ const. has been studied in
this context by free probability methods using projections of free unitary Brownian
motion; see e.g. [8, 11].

This geometric interpretation includes the interpretation for n = p + N , i.e. q =
N , where the Jacobi processes are suitable projections of Brownian motions on the
compact Grassmann manifolds with the dimension parameters N , p over F. We also
remark that this even works for the field of quaternions with κ = d/2 = 2; see [18]
for the analytical background.

5 Limit Theorems in the Noncompact Case

The Jacobi processes on compact alcoves in the preceding section admit analogues
in a noncompact setting, namely the so-called Heckman–Opdam Markov processes
associated with root systems of type BC introduced in [32, 33]. Due to the close con-
nections with the Jacobi processes on compact alcoves above, we call these processes
Jacobi processes in a noncompact setting. For some parameters, these processes are
related to Brownian motions on noncompact Grassmann manifolds overR,C, and the
quaternions similar to the comments above. For the general background we refer to
the monographs [17, 18] and references therein.

We here derive analogues of the main results of Sects. 2, 3 and 4 in this noncompact
setting. For this, we first introduce these processes in a similar way as in the compact
case. We fix some dimension N ≥ 2 and parameters k1, k2 ∈ R and k3 > 0 with
k2 ≥ 0 and k1 + k2 ≥ 0. We define the (noncompact) Heckman–Opdam Laplacians
of type BC on the Weyl chambers

C̃N := {w ∈ R
N : 0 ≤ w1 ≤ . . . ≤ wN }
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of type B by

Ltrig,k f (w) := � f (w) +
N∑

i=1

(
k1coth (wi/2) + 2k2coth (wi )

+ k3
∑

j : j �=i

(
coth (

wi − w j

2
) + coth (

wi + w j

2
)
))

fxi (w) (5.1)

for functions f ∈ C2(RN ) which are invariant under the associated Weyl group. By
[32, 33], the Ltrig,k are the generators of Feller diffusions (Wt )t≥0 on CN where the
paths are reflected on the boundary. We next use the transformation xi := coshwi

(i = 1, . . . , n) with

x ∈ CN := {x ∈ R
N : 1 ≤ x1 ≤ . . . ≤ xN }.

The diffusions (Wt )t≥0 on C̃N then are transformed into Feller diffusions (Xt )t≥0 on
CN with reflecting boundaries and, by some elementary calculus, with the generators

Lk f (x) :=
N∑

i=1

(x2i − 1) fxi xi (x)

+
N∑

i=1

(
(k1 + 2k2 + 2k3(N − 1) + 1)xi + k1 + 2k3

∑

j : j �=i

xi x j − 1

xi − x j

)
fxi (x).

(5.2)

As in the introduction, we redefine the parameters by

κ := k3 > 0, q := N − 1 + 1 + 2k1 + 2k2
2k3

, p := N − 1 + 1 + 2k2
2k3

(5.3)

with p, q > N − 1 and rewrite (5.2) as

Lk f (x) :=
N∑

i=1

(x2i − 1) fxi xi (x)

+κ

N∑

i=1

(
(q − p) + (q + p)xi + 2

∑

j : j �=i

xi x j − 1

xi − x j

)
fxi (x). (5.4)

Moreover, we also consider the transformed processes (X̃t := Xt/κ )t≥0 with the
generators 1

κ
Lk which then are the unique strong solutions of the SDEs
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d X̃t,i =
√
2√
κ

√
X̃2
t,i − 1 dBt,i +

(
(q − p) + (q + p)X̃t,i + 2

∑

j : j �=i

X̃ t,i X̃ t, j − 1

X̃t,i − X̃t, j

)
dt

(5.5)

for i = 1, . . . , N , and starting points x0 in the interior of CN .
For κ = ∞ and p, q > N − 1, these SDEs degenerate to the ODEs

d

dt
xi (t) = (q − p) + (q + p)xi (t) + 2

∑

j : j �=i

xi (t)x j (t) − 1

xi (t) − x j (t)
(i = 1, . . . , N ).

(5.6)

The RHS of (5.6) is the negative of the RHS of (1.6) where the solutions now exist on
some different “complementary” domain. Theorem 1.1 here has the following form;
see Appendix Section.

Theorem 5.1 Let N ∈ N and p, q > N − 1. Then, for each x0 ∈ CN the ODE
(5.6) has a unique solution x(t) for t ≥ 0, i.e. there is a unique continuous function
x : [0,∞) → CN with x(0) = x0 such that for t > 0, x(t) is in the interior of CN

and satisfies (5.6).

For the solutions of (5.6), we have the following local Wigner-type limit theorem
which is completely analogous to Theorem 3.4 (2).

Theorem 5.2 Consider (pN )N∈N, (qN )N∈N ⊂]0,∞[ with pN , qN > N − 1 for N ≥
1. Let (bN )N∈N ⊂]1,∞[ such that B := lim bN ∈ [1,∞] exists, and let (sN )N∈N ⊂
]0,∞[ be time scalings with

lim
N→∞

pN + qN√
NsN

= 0.

Define the space scalings aN := √
sN/N.

Let μ ∈ M1(R) satisfy (3.2), and let (xN )N∈N be associated starting vectors with
xN ∈ CN as in the preceding limit results.

Let xN (t) be the solutions of the ODEs (1.6) with xN (0) = xN for N ∈ N. Then, for
t > 0, all moments of the measures μN ,t/(pN+qN ) = 1

N

∑N
i=1 δaN (xNi (t/sN )−bN ) tend

to those of μ � μ
sc,2

√
(B2−1)t

.

Proof As the RHSs of (5.6) and (1.6) are equal up to a sign, the computations in Sect. 2
and in the proof of Theorem 3.4 (2) imply that for l ≥ 0 and t ≥ 0, the moments
S̃N ,l(t) of the empirical measures μN ,t/sN converge for N → ∞ to functions Sl(t)
which satisfy

S0 ≡ 1, S1(t) = S1(0),

Sl(t) = Sl(0) + l(B2 − 1)
∫ t

0

l−2∑

k=0

Sk(s)Sl−2−k(s) ds (l ≥ 2). (5.7)
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The claim now follows in the same way as in Theorem 3.4 (2). �

The stationary local limit Theorem3.1 does not seem to have ameaningful analogue

in the noncompact setting, as the assumptions on the pN , qN , aN , bN in Theorem 3.1
imply that bN ∈] − 1, 1[ holds for all N such that the rescaled empirical measures
for t = 0 in the assumptions of Theorem 3.1 cannot converge. On the other hand,
we have the following variants of Theorems 3.7 and 3.9 which involve Marchenko–
Pastur distributions. Due to the time-inversion, the analogue to Theorem 3.7 is now
non-stationary:

Theorem 5.3 Consider sequences (pN )N∈N, (qN )N ⊂]0,∞] with

lim
N→∞ pN/N = ∞ and lim

N→∞ qN/N = q̂.

Define aN := pN/N, bN := 1 (N ∈ N). Let μ ∈ M1([0,∞[) satisfy (3.2), and let
(xN )N∈N be associated starting vectors xN ∈ CN as before. Let xN (t) be the solutions
of the ODEs (5.6) with start in xN (0) = xN for N ∈ N, t ≥ 0. Then, for t > 0, all
moments of the measures

μN ,t/(pN+qN ) = 1

N

N∑

i=1

δaN (xNi (t/(pN+qN ))−bN )

tend to those of the measures

μ(t) :=
(
μ
SC,2

√
2(et−1)

�
(√

etμ
)

even

)2
� μMP,q̂−1,2(et−1), t > 0. (5.8)

Proof The proof is analogous to the one of Theorem 3.7. We just give the main steps.
The moments SN ,l(t/(pN + qN )) of the empirical measures μN ,t/(pN+qN ) tend to
functions Sl(t) which satisfy

S0 ≡ 1, S1(t) = et
(
S1(0) − 2q̂

) + 2q̂,

Sl(t) = elt
(
Sl(0) + 2l

∫ t

0
e−ls

(
q̂ Sl−1(s) +

l−2∑

k=0

Sk(s)Sl−1−k(s)

)
ds

)
, l ≥ 2.

(5.9)

One then can deduce that the corresponding R-transform satisfies

0 = Rt (t, z) − (z + 2z2)Rz(t, z) − 2q̂ − (4z + 1)R(t, z), R(0, z) =: φ(z),

which is solved by

R(t, z) = et (1 − 2z(et − 1))−2φ(et z(1 − 2z(et − 1))−1)

+ 2(et − 1)

1 − 2z(et − 1)
+ 2(q̂ − 1)(et − 1)

1 − 2z(et − 1)
. (5.10)
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Finally one concludes as in the proof of Theorem 3.7 by using the time change s �→ −s
in the definition of φ̂. �


The following result also follows in the same way by the methods of the proof of
Theorem 3.9.

Theorem 5.4 Let pN , qN > N − 1 for N ≥ 1 with limN→∞ qN/N = q̂ ∈ [1,∞[.
Let (sN )N∈N ⊂]0,∞[ be time scalings with limN→∞(pn + qN )/sN = 0. Define the
space scalings aN := sN/N, bN := 1 (N ∈ N). Let μ ∈ M1([0,∞[) satisfy (3.2)
and let (xN )N∈N associated starting vectors as before. Let xN (t) be the solutions of
the ODEs (5.6) with xN (0) = xN for N ∈ N. Then, for t > 0, all moments of the
empirical measures

μN ,t/sN = 1

N

N∑

i=1

δaN (xNi (t/sN )−bN )

tend to those of
(
μsc,2

√
2t �

(√
μ
)
even

)2
� μMP,q̂−1,2t .

The corresponding stochastic limit results from Sect. 4 can be also transferred to
the noncompact setting. We skip the details.
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Appendix: Solutions of ODEsWith Start on the Singular Boundary

In this section, we prove Theorems 1.1 and 5.1.
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We first study the ODE (1.6), i.e.

d

dt
xi (t) = (p − q) − (p + q)xi (t) + 2

N∑

j : j �=i

1 − xi (t)x j (t)

xi (t) − x j (t)
, i = 1, . . . , N .

(6.1)

In order to prove parts of Theorem 1.1, it is useful to interpret this ODE as a gradient
system; see e.g. Section 9.4 of [20] on the background. However, it can be easily
checked that (6.1) is not a gradient system. In order to obtain a gradient system, we
use the transformation xi =: cos τi with π ≥ τ1 ≥ . . . ≥ τN ≥ 0 which is motivated
by the theory of Heckman–Opdam hypergeometric functions in [17, 18] (see also the
introduction), and which is also useful in [19] for nice covariance matrices for some
freezing limits. In fact, by elementary calculus, (6.1) is equivalent to

d

dt
τi (t) = (q − p) cot

(
τi (t)

2

)
+ 2(p + 1 − N ) cot(τi (t))

+
∑

j : j �=i

(
cot

(
τi (t) − τ j (t)

2

)
+ cot

(
τi (t) + τ j (t)

2

)) (6.2)

for i = 1, . . . , N which is a gradient system. In fact, if V (τ ) := ln Ṽ (τ ) with

Ṽ (τ ) :=
(

N∏

i=1

sin(τi/2)

)2(q−p)

·
(

N∏

i=1

sin(τi )

)2(p+1−N )

·

∏

i, j : i< j

(
sin

(
τi − τ j

2

)
sin

(
τi + τ j

2

))2

, (6.3)

then (6.2) has the form d
dt τ(t) = grad V (τ (t)) with τ = (τ1, . . . , τN ).

We next search for a maximum of Ṽ . For this we observe that, with some constant
C ,

Ṽ (τ ) = C ·
N∏

i=1

((1 − xi )
q+1−N (1 + xi )

p+1−N ) ·
∏

i, j : i< j

(xi − x j )
2.

A classical result of Stieltjes (see Section 6.7 of [37]) now shows that for π > τ1 >

. . . > τN > 0, this expression has a unique maximum for x = z where the vector z
consists of the ordered roots of P(q−N ,p−N )

N . Therefore, Section 9.4 of [20] yields the
following part of Theorem 1.1:

Lemma 6.1 Let N ∈ N and p, q > N − 1. For each x0 ∈ int AN the ODE (6.1) has
a unique solution x(t) with x(t) ∈ int AN for all t ≥ 0. Moreover, limt→∞ x(t) = z
where z ∈ int AN is the vector consisting of the ordered roots of P(q−N ,p−N )

N .
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In order to complete the proof of Theorem 1.1, we prove the following theorem
which is an adaptation of the corresponding results for the Hermite and Laguerre case
in [40].

Theorem 6.2 Let N ∈ N and p, q > N − 1. For each x0 ∈ ∂AN the ODE (6.1) has a
unique solution x(t) for all t ≥ 0 in the following sense: For each x0 ∈ ∂AN there is
a continuous function x : [0,∞) → AN with x(0) = x0 such that x(t) ∈ int AN for
all t > 0 and x : (0,∞) → int AN satisfies (6.1). Moreover, limt→∞ x(t) = z with
z ∈ AN as above.

Proof We use of the elementary symmetric polynomials emn (n = 0, . . . ,m) in m
variables which satisfy

∏m
j=1(z − x j ) = ∑m

j=0(−1)m− j emm− j (x)z
j for z ∈ C, x =

(x1, . . . , xm). Consider themap e : AN → R
N , e(x) = (eN1 (x), . . . , eNN (x)). Then, e :

AN → e(AN ) is a homeomorphism, and e : int AN → e(int AN ) is a diffeomorphism.
We will use the following notation: Let x ∈ R

N and S ⊆ {1, . . . , N } a nonempty set.
Denote by xS ∈ R

|S| the vector with coordinates xi , i ∈ S, in the natural ordering on
S. With this convention we have

N∑

i=1

eN−1
k−1 (x{1,...,N }\{i}) = (N − k + 1)eNk−1(x),

n∑

i=1

eN−1
k−1 (x{1,...,N }\{i})xi = keNk (x),

and

eN−1
k−1 (x{1,...,N }\{i}) − eN−1

k−1 (x{1,...,N }\{ j}) = −(xi − x j )e
N−2
k−2 (x{1,...,N }\{i, j}).

Hence,

∑

i, j=1: i �= j

eN−1
k−1 (x{1,...,N }\{i})

xi − x j
=

∑

i, j=1: i< j

eN−1
k−1 (x{1,...,N }\{i}) − eN−1

k−1 (x{1,...,N }\{ j})
xi − x j

= −
∑

i, j : i< j

eN−2
k−2 (x{1,...,N }\{i, j})

= − (N − k + 2)(N − k + 1)

2
eNk−2(x)

and

∑

i, j=1: i �= j

eN−1
k−1 (x{1,...,N }\{i})xi x j

xi − x j
=

∑

i, j=1: i< j

eN−1
k−1 (x{1,...,N }\{i}) − eN−1

k−1 (x{1,...,N }\{ j})
xi − x j

xi x j

= −
∑

i, j=1: i< j

eN−2
k−2 (x{1,...,N }\{i, j})xi x j

= −k(k − 1)

2
eNk (x).
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By transforming (6.1) with the homeomorphism e, we get the ODEs

d

dt
eN1 (x(t)) =

N∑

i=1

d

dt
xi (t) = N (p − q) − (p + q)eN1 (x(t)) ,

d

dt
eNk (x(t)) =

N∑

i=1

eN−1
k−1 (x{1,...,N }\{i}(t))

⎛

⎝(p − q) − (p + q)xi (t) + 2
∑

j=1: j �=i

1 − xi (t)x j (t)

xi (t) − x j (t)

⎞

⎠

= k(−(p + q) + k − 1)eNk (x(t)) + (N − k + 1)(p − q)eNk−1(x(t))

− (N − k + 2)(N − k + 1)eNk−2(x(t)) , k ∈ {2, . . . , N } . (6.4)

These are linear differential equations of the type f ′(t) = λ f (t) + g(t) with the

solutions f (t) = eλt
(
f (0) + ∫ t

0 e
−λsg(s) ds

)
. Thus,

eN1 (x(t)) = e−(p+q)t
(
eN1 (x0) − N

p − q

p + q

)
+ N

p − q

p + q
and

eNk (x(t)) = eck t
(
eNk (x0)

+
∫ t

0
e−cks

(
(N − k + 1)(p − q)eNk−1(x(s))

−(N − k + 2)(N − k + 1)eNk−2(x(s))
)
ds

)
, (6.5)

where ck = k(−(p + q) + k − 1) < 0, k ∈ {2, . . . , N }. By induction we see that
each eNk (x(t)) is a linear combination of terms of the form ert , r ≤ 0. Thus the limits
êk := limt→∞ eNk (t) exist. We claim that ê = e(z). For this we observe from Lemma
6.1 that this holds for all starting points x0 ∈ int AN . As ê depends continuously on
x0 by (6.5), we obtain ê = e(z) also for x0 ∈ ∂AN .

We now turn to the case x0 ∈ ∂AN . Clearly, as e is injective there exists at most one
solution of (6.1). For the existence we claim that the inverse mapping of e transforms
solutions of (6.4) back into solutions of (6.1). For this, we prove that for any starting
point x0 ∈ ∂AN in (1.6) and its image e(x0) the solution ẽ(t), t ≥ 0, of the ODEs
(6.4) with ẽ(0) = e(x0) satisfies ẽ(t) ∈ e (int AN ) for all t > 0. It then follows that
the preimage of (ẽ(t))t≥0 under e solves (6.1).

To prove this, we recapitulate that for each starting point in e (int An) the solution
ẽ of (6.4) satisfies ẽ(t) ∈ e (int An) for all t ≥ 0, and that for all fixed t ≥ 0 the
solutions ẽ(t) depend continuously on arbitrary starting points in R

N by a classical
result on ODEs. Hence, for each starting point ẽ(0) ∈ e(AN ) we have ẽ(t) ∈ e(AN )

for t ≥ 0. Assume that there is a starting point x0 ∈ ∂AN and some t0 > 0 such that
the solution (ẽ(t))t≥0 of (6.4) with start at e(x0) satisfies

ẽ(t) /∈ e (int An) , t ∈ [0, t0]. (6.6)
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For x = (x1, . . . , xn) ∈ R
N we define the discriminant

D(x) :=
N∏

i=1

(1 − x2i ) ·
∏

i, j=1,...,N ,i �= j

(x j − xi ). (6.7)

D is a symmetric polynomial in x1, . . . , xN and thus, by a classical result on elementary
polynomials, a polynomial D̃ in eN1 (x), . . . , eNN (x). By (6.6) we thus deduce

ẽ(t) ∈ e(∂AN ) ⊆ Y := {y ∈ R
N : D̃(y) = 0}, t ∈ [0, t0].

We obtain that D̃(ẽ(t)) = 0 for t ∈ [0, t0]. As D̃(ẽ(t)) is a linear combination of
terms of the form ert with r ≤ 0 it follows that D̃(ẽ(t)) = 0 for all t ≥ 0. As
Y ∩ e (int An) = ∅, we conclude that ẽ(t) /∈ e (int An) for all t ≥ 0. But this is a
contradiction to limt→∞ ẽ(t) = e(z) ∈ e (int An). Hence, ẽ(t) ∈ e (int An) for t > 0
as claimed. This completes the proof. �


We finally turn to Theorem 5.1. We proceed as above and notice first that xi =
cosh τi (i = 1, . . . , N ) transforms the ODEs (5.6) again into some gradient system.
As for Lemma 6.1, we obtain:

Lemma 6.3 Let N ∈ N and p, q > N − 1. For each x0 ∈ intCN the ODE (5.6) has
a unique solution x(t) with x(t) ∈ intCN for t ≥ 0.

Proof Wehave to check that the system is not explosive in finite time. For this we again
use the elementary symmetric polynomials emn and the homeomorphism e : CN →
e(CN ) ⊂ R

N with e(x) = (eN1 (x), . . . , eNN (x)) as in the proof of Theorem 6.2. As the
RHSs of the ODEs (1.6) and (5.6) are equal up to a sign change, the proof of Theorem
6.2 (in particular (6.5)) shows that

eN1 (x(t)) = e(p+q)t
(
eN1 (x0) − N

p − q

p + q

)
+ N

p − q

p + q
,

eNk (x(t)) = eck t
(
eNk (x0)

+
∫ t

0
e−ck s

(
(N − k + 1)(p − q)eNk−1(x(s)) − (N − k + 2)(N − k + 1)eNk−2(x(s))

)
ds

)
,

(6.8)

with ck = k((p + q) + 1 − k) < 0 for k = 2, . . . , N . In summary, e(x(t)) satisfies
some linear ODE and exists thus for all t ≥ 0. The claim now follows by a transfer
back to intCN . �


To complete the proof of Theorem5.1, we prove the following analogue of Theorem
6.2.

Theorem 6.4 Let N ∈ N and p, q > N − 1. For each starting value x0 ∈ ∂AN the
ODE (5.6) has a unique solution x(t) for t ≥ 0 in the sense as described in Theorem
6.2.
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Proof We use the notations of the proof of Lemma 6.3 and consider some starting
point x0 ∈ ∂CN . For the existence of a solution we claim that the inverse mapping
of e transforms the functions in (6.8) back into solutions of (5.6), i.e. that ẽ(t) :=
(eN1 (x(t)), . . . , eNN (x(t)) ∈ e (int AN ) for all t > 0. For this, we check ẽ(t) /∈ e(∂AN )

for t > 0.
Assume that for some x0 ∈ ∂AN and t0 > 0wehave ẽ(t) /∈ e (int An) for t ∈ [0, t0].

We now use the discriminant D from (6.7) as well as D̃ there. We see from the proof
of Theorem 6.2 that D̃(ẽ(t)) = 0 for t ∈ [0, t0] implies that D̃(ẽ(t)) = 0 for all
t ∈ R. We now recapitulate that the solutions (6.8) and (6.5) of the corresponding
ODEs are equal up to the transform t �→ −t for equal starting points ẽ(0), and that
these solutions obviously depend analytically from ẽ(0). We thus conclude from the
limit assertion in Lemma 6.1 that limt→−∞ ẽ(t) = e(z) holds where D(z) �= 0 holds.
As this is a contradiction to D̃(ẽ(t)) = 0 for t ∈ R, the theorem follows from Lemma
6.3. �
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