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Abstract

We consider stochastic differential equations (SDEs) with (distributional) drift in
negative Besov spaces and random initial condition and investigate them from two
different viewpoints. In the first part we set up a martingale problem and show its
well-posedness. We then prove further properties of the martingale problem, such as
continuity with respect to the drift and the link with the Fokker—Planck equation. We
also show that the solutions are weak Dirichlet processes for which we evaluate the
quadratic variation of the martingale component. In the second part we identify the
dynamics of the solution of the martingale problem by describing the proper associ-
ated SDE. Under suitable assumptions we show equivalence with the solution to the
martingale problem.
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1 Introduction

In this paper we study the stochastic differential equation (SDE)

dXt Zb(t,Xl)dt+dW[, X()’\"I,L, (]1)
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where X; € RY, the process (W;) is a d-dimensional Brownian motion, p is any
probability measure and the drift b(z, -) is an element of a negative Besov space
C=P*, see below for the precise definition. SDE (1.1) is clearly only formal at this
stage, because the drift b cannot even be evaluated at the point X;, and one first needs
to define a notion of solution for this kind of SDEs. We tackle this problem from two
different viewpoints. In the first part we set up a martingale problem and show its
well-posedness. In the second part we identify the dynamics of the solution of the
martingale problem.

The first steps in the study of the SDE in dimension 1 (and with a diffusion coefficient
o) were done in [13, 14, 22]. In dimension d > 1 we mention the work [12] where the
authors introduced the notion of virtual solution whose construction depended a priori
on a real parameter A. Also, the setting was slightly different because the function
spaces were negative fractional Sobolev spaces H, F and not Besov spaces. Other
authors have studied SDEs with distributional coefficients; afterwards, we mention
in particular [1, 5, 7, 29]. The main idea in all these works, which is the same we
also develop in the first part of the present paper, is to frame the SDE as a martingale
problem; hence, the main goal is to find a domain D that characterises the martingale
solution in terms of the quantity

t
f, X)) — f(, Xo)—/o L{(s, X;)ds, (1.2)

for all f € Dy, where L is the parabolic generator of X formally given by Lf =
of+ %A f + V f b. This is made rigorous using results on the PDE
{Ef =8
f () = fr,
developed in [18].

Our framework in terms of function spaces is slightly different than all the works
cited above. In the first part of the article, the only difference is that we allow the
initial condition X to be any random variable, and not only a Dirac delta in a point x.
Well-posedeness of the PDE L{ = g allows to give a proper meaning to the martingale
problem. Various regularity results on the PDE together with a transformation of the
solution X into the solution Y of a ‘standard’ (Stroock—Varadhan) martingale problem
(see Sect.3) allow us to show existence and uniqueness of the solution X to the
martingale problem, see Theorem 4.5. We also prove other interesting results such as
Theorem 4.2 where we show that the law density of the solution X satisfies the Fokker—
Planck equation, which is a PDE with negative Besov coefficients. Furthermore, we
show in Theorem 4.3 some tightness results for smoothed solutions X" when the
negative Besov coefficients are smoothed.

The main novelty of this paper is the second part, where we study the SDE
X; = Xo + fé b(s, Xs)ds + W, from a different point of view, in particular we
look into the dynamics of the process itself. One natural question to ask, which is

well understood in the classical Stroock—Varadhan case where b is a locally bounded
function, is the equivalence between the solution to the martingale problem and the
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solution in law (i.e. weak solution) of the SDE. In the case of SDEs with distri-
butional coefficients, the first challenging problem is to define a suitable notion of
solution of the SDE and then to study well-posedness of that equation. To this aim,
we start in Sect.5 by showing that the solution to the martingale problem is a weak
Dirichlet process, for which we identify the martingale component in its canonical
decomposition, see Proposition 5.11 and Remark 5.12. We then introduce in Sect.
6 our notion of solution for the SDE, involving a ‘local time’ operator which plays
the role of the integral fot b(s, X5)ds and involving weak Dirichlet processes. Under
further mild assumptions on b, for example if it has compact support, in Theorem
6.5 we show that a solution to the martingale problem is also a solution to the
SDE. In a slightly more restricted framework, in Proposition 6.12 we obtain the con-
verse result, hence providing the equivalence result of SDEs and martingale problems
for distributional drifts, see Corollary 6.13. Those results extend [22, Propositions
6.7 and 6.10] stated in dimension 1 and in the case of time-homogeneous coeffi-
cients.

A typical example of drift b for which all our results are valid, arises when b is a
quenched realisation of an independent noise By (w), which is a generalised random
field whose trajectories are the divergence of a (1 — g)-Holder continuous functions
X — By(w) for some B € (0, %), cut with a smooth function with compact support.
These models arise when describing the motion of particles propagating in an irreg-
ular medium, see [27] and references therein. The class of these noises is large, and
in dimension d = 1 it includes for instance (bi)fractional, multi-fractional Brown-
ian ones, etc., with Hurst index greater than %, to be cut so that they have compact
support.

A result connected to ours is provided by [6], where the authors study the case
when the driving noise is a Lévy «-stable process and the distributional drift lives
in a general Besov space B;z. In particular, they formulate the martingale problem
and a quite different notion of SDE (for which, in d = 1 they even study pathwise
uniqueness, extending in this way [22, Corollary 5.19], stated for Brownian motion)
and prove that a solution to the martingale problem is also a solution to their SDE.
However, they do not prove the converse result; hence, they do not have any equiva-
lence.

The paper is organised as follows. In Sect. 2 we introduce the framework in which we
work, in particular the various functions spaces appearing in the paper and many useful
results from the companion paper [18]. In Sect. 3 we introduce the martingale problem
and transform it into a classical equivalent Stroock—Varadhan martingale problem. In
Sect.4 we show existence and uniqueness of a solution to the martingale problem and
various other properties. In Sect. 5 we show that the solution to the martingale problem
is a weak Dirichlet process and identify its decomposition. In Sect. 6 we introduce
the notion of solution to the SDE and show its equivalence to the martingale problem.
Finally, in Appendix A we state a useful result on solutions of (classical) PDEs that
we use in the paper.
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2 Setting and Preliminary Results

2.1 Function Spaces

Let us denote by C;;tzc = C,i;fc([O, T] x R?) the space of all C"? real functions
such that the function and its gradient in x are bounded, and the Hessian matrix and
the time-derivative are bounded and uniformly continuous. Let us denote by CCI’2 =
CL! ’2([0, T] x ]Rd) the space of cl2([0, T x Rd) with compact support. Let us denote
by C;’Q = C;’Z([O, T] x ]Rd) the space of C!2-functions that are bounded with
bounded derivatives. We also use the notation C%! := C%1([0, T] x R?) to indicate
the space of real functions with gradient in x uniformly continuous in (¢, x). Let
CX:=C® (R?) denote the space of all smooth real functions with compact support.
We denote by C. = C..(R?) the space of R-valued continuous functions with compact
support. Let S = S(R?) be the space of real-valued Schwartz functions on R? and
S’ = S'(R?) the space of Schwartz distributions. The corresponding dual pairing will
be denoted by (-, -).

For y € R we denote by C? = C”(R?) the Besov space (or Holder-Zygmund
space), endowed with its norm | - ||,,. For more details see [2, Section 2.7, pag 99]
and also [18], where we recall all useful facts and definitions about these spaces. If
y € RT\N then the space coincides with the classical Holder space. If y < 0 then
the space includes some Schwartz distributions. We have C¥ C C* for any y > «.
Moreover, it holds that L c C° (see [17] for a proof in the case of anisotropic Besov
spaces). We denote by C7CY the space of continuous functions on [0, 7] taking values
in C7, that is C7C” := C([0, T]; C?). For any given y € R we denote by C¥* and
CY~ the spaces given by

CVF i=Ug=yC% €77 i= Ny C°.

Note that C¥* is an inductive space. We will also use the spaces CyCY*t :=
C([0, T1; C¥™), which is equivalent to the fact that for f € CrC?™ there exists
a > y such that f € CrC?, see for example [19, Appendix B]. Similarly, we use the
space C7C”?~ := C([0, T]; C¥7), meaning that if f € CrCY~ then for any ¢ < y
we have f € C7C*. We denote by C/ = C/ (RY) the space of elements in C¥ with
compact support. Similarly when y is replaced by y+ or y—. When defining the
domain of the martingale problem, we will work with spaces of functions which are
the limit of functions with compact support, so that they are Banach spaces. More
precisely, let us denote by C/ = C/ (R¥) the space

C/ :={f € C” such that 3(f,) c €} and f, — finC"}.
As above we denote the inductive space and intersection space as
crt = Ua=yCY  CL7 = Ngey C2.

The main reason for introducing this class of subspaces is that C/ *are separable, as
proved in [18, Lemma 5.7], unlike the classical Besov spaces C? and C¥™ which are
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not separable. Similarly as above, we use the space CTCVJr = C([0, T]; Cy+) in
particular we observe that if f € CrC!™ then for any ¢ < y we have f € CTC"‘ by
[19, Remark B.1, part (ii)]. Moreover, in [18, Corollary 5.8] we show that CTCZ
separable. Note that if f is continuous and such that V f € C7C%t then f € Co*l.

Note that for all function spaces introduced above we use the same notation to
indicate R-valued functions but also R¢- or R?*¢-valued functions. It will be clear
from the context which space is needed. When f : RY — R™ is differentiable, we
denote by V f the matrix given by (V f); ; = 0; f;. In particular, when f : RY > R
then V f is a column vector and we denote the Hessian matrix of f by Hess(f).

For y € (0, 1) we define space DCY as

DCY :={h: R? — R differentiable function s.t. Vi € Ccry,

and by C7 DC? := C([0, T]; DC?). Note that the following inclusion holds C'** ¢
DC“. Analogously as for the C¥*-spaces, for y > 0 we also introduce the spaces

DC’" :=Uy=, DC*,  DC’™ := Mgy DCY.

We will also use the spaces C DCY™ := C([0, T]; DC? ™). For more details on these
spaces, see [18, Sect. 3].

2.2 Some Tools and Properties

The following is an important estimate which allows to define the pointwise product
between certain distributions and functions, which is based on Bony’s estimates. For
details see [4] or [16, Sect. 2.1]. Let f € C* and g € C# witha — B > 0 and
@, B > 0. Then the ‘pointwise product’ f g is well-defined as an element of C~# and
there exists a constant ¢ > 0 such that

Ifgll-g =clfllallgl-p- 2.1)

Remark 2.1 Using (2.1) it is not difficult to see that if f € C7C* and g € C7C~# for
a > B > 0 then the product is also continuous with values in C —# and

If gllcrc-p < cll flicreeligle - (2.2

Below we recall some results on a class of PDEs with distributional drift in negative
Besov spaces that will be used to set up the martingale problem for the singular SDE
(1.1). All results are taken from [18]. In [18], as well as in the present work, the main
assumption concerning the distribution-valued function b is the following.

AssumptionAl Let 0 < B < 1/2 and b € CyCAT(RY). In particular b €
CrC—P(R?). Notice that b is a column vector.

We start by the formal definition of the operator L.
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Definition 2.2 (Definition 4.3, [18]) Let b satisfy Assumption A1. The operator L is
defined as

L: DOL — {&’-valued continuous functions}
f = Lf=f+3Af+Vfb,

where
DY = CrDCP N C' ([0, T S).

Here f : [0, T] x R4 — R and the function f : [0, T] — S’ is the time-derivative of
f.Note also that V f b := V f - b is well-defined using (2.1) and Assumption Al and
moreover it is continuous. The Laplacian A is intended in the sense of distributions.

Next we recall some results on certain PDEs, all driven by the operator £. These
results are all proved in the companion paper [18]. There are three equations of interest,
all related but slightly different. The first PDE is

Lv=yg
{ v(T) =vr. (2.3)

We know from [18, Remark 4.8] that if vy € C1+A+ and g € C7CPA)7 then there
exists a unique (weak or mild) solution v € CrCU*A+ In [18, Lemma 4.17 and
Remark 4.18] we prove a continuity result, namely that if the terminal condition vr in
(2.3) is replaced by a sequence (v7%.) that converges to vy in C (1+A)+  the terms b and g
are replaced by two sequences (b") and (g"), respectively, both converging in C7C~#,
then also the corresponding unique solutions (v"*) will converge to v in C7C1+A)*,

We can solve PDE (2.3) also under weaker conditions on vr, in particular we allow
functions with linear growth. The space that characterises this behaviour is denoted
by DCP, which is the space of differentiable functions whose gradient belongs to C#.
Notice that in [18] we introduce two concepts of solution, weak and mild, which are
defined for functions in Cy DCP. We prove in [18, Proposition 4.5] that the notions of
weak and mild solution of the PDE are equivalent. In [18, Remark 4.8] we show that
if vz € DCP* then there exists a unique solution v € C7 DCPT. Continuity results
for PDE (2.3) in the spaces DCP+ also hold, as we prove in [18, Remark 4.18 (i)],
that is if g" — gin C7C~#,b" — bin C7C~P and v — vr in DCPY then v" — v
in CrDCPt. As a special case we show in [18, Corollary 4.10] that the function
id; (x) = x; solves PDE (2.3) with v(T') = x; and g = b;, that is Lid; = b;.

Let & > 0. The second PDE to consider is

Lo = r(p; —id;)
. 2.4
{@(T) = id;, @4
which has a unique (weak or mild) solution ¢; for i = 1,...,d in the space

CrDCU—P- (uniqueness holds in Cr DC’?) by [18, Theorem 4.7 (i)]. In [18, Propo-
sition 4.15] we show that ¢; € DOE and ¢; € CrCP~ foralli = 1,...,d. We
denote by ¢ the column vector with components ¢;, i = 1,...,d. We show in [18,
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Proposition 4.16] that there exists A > 0 large enough such that ¢ (¢, -) is invertible
for all ¢+ € [0, T'], and denoting such inverse with

Yt ) =o', ). 2.5)

In the same proposition we also show that ¢, ¥ € C 0.1 and moreover that V¢ €
CrCU" P~ and Vi (¢, ) € =P~ forall ¢ € [0, T] and sup, (o 71 V¥ (¢, )|l for
alla < 1 — B. From now on, let (") be the sequence defined in [19, Proposition 2.4],
so we know that " — b in CrC~ P, b" € CyCY for all y > 0 and b" is bounded
and Lipschitz. Here and in the rest of the paper A > 0 is fixed and independent of n,
chosen such that

e
A =[C(B, &) max{sup [|b"[|c,c-p+e, 1Dl cpc-p+e 1T, (2.6)
n

accordingto [18, Lemma4.19], where ¢ > Oissuchthatf := 1”% < land C(B, &)
is a constant only depending on 8 and €. Notice with this choice of X the corresponding
inverse " of ¢", see (2.5) is well-defined according to [18, Proposition 4.16 (ii)]. In
[18, Lemma 4.19] we show that ¢ — ¢ and " — v uniformly on [0, 7] x R? and
Ve oo + [¢" (0, 0)] is uniformly bounded in 7.

Finally, in [18, Theorem 4.14] we show that the function ¢ is equivalently defined

as ¢ =id+u, whereu = (uy, ..., ug) and u; is the unique solution of the third PDE,
that is
Lu; = Au; — b;
{u,-(T) —0 2.7

in the space C7C®~#)~. For the latter PDE there are also continuity results proven
in [18, Lemma 4.17], namely u! — u; in CrC? A~ Moreover, we have uniform
convergence of u" — u, Vu" — Vu by [18, Lemma 4.19]. With X chosen as in (2.6)
we have | V" ||oo < % by [18, Proposition 4.13 and bound (4.34)].

2.3 Probabilistic Notation

In the sequel we will consider generic measurable spaces (€2, F). On them we will
consider various probability measures denoted by P. We will make use of the notation
(X,P)or (Y, P), where X or Y will denote continuous stochastic processes indexed by
t € [0, T] defined on the probability space (€2, F, IP), without recalling it explicitly.
The filtrations considered, if not explicitly mentioned, will be the canonical filtrations
generated by X or Y (which will be the same in our applications).

Once the probability space (2, F, P) is fixed, we will denote by € the linear space
of continuous processes on [0, 7] with values in R? endowed with the metric of
uniform convergence in probability (u.c.p.).

The canonical space of continuous functions from [0, 7] with values in R4 will be
denoted by Cr, and it will be endowed with the sigma algebra of Borel sets B(C7). For
s € [0, T'] we will use the notation C; for the space of continuous functions defined on
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[0, s]. Thus, for a given couple (X, P), the law of X under P will be a Borel probability
measure on the measurable space (Cr, B(Cr)).

3 A Zvonkin-type Transformation

In the study of SDEs with low-regularity coefficients, like (1.1), one successful idea
is to apply a bijective transformation that changes the singular drift and produces a
transformed SDE whose drift has no singular component and which can thus be solved
with standard techniques. The idea goes back to Zvonkin [30], and in the present case
a transformation that does the job is the unique solution ¢ of the PDE (2.4). The
analysis that we do here can shed some light on what kind of transformations, aside
from ¢, of the martingale problem fulfilled by X will lead to different, but equivalent,
transformed martingale problems fulfilled by a new process Y.

Let us start by introducing a class of function, denoted by D, that is the domain
of the martingale problem

Dp = {f € CrCI*+A* : 3g € C7C* such that

- 3.1
f is a weak solution of L f = g and f(T) € C§1+ﬂ)+}, @D

where £ has been defined in Definition 2.2.

Definition 3.1 We say that a couple (X, P), where X is a continuous process indexed
by ¢ € [0, T] and IP is a probability on some measurable space, is a solution to the
martingale problem with distributional drift b and initial condition p (for shortness,
solution of MP with distributional drift » and i.c. n) if and only if for every f € D

1
f, Xy) = (0, Xo) —/0 (LS)(s, Xs)ds (3.2

is a local martingale under P, and X ~ p under P, where the domain D/ is given by
(3.1) and £ has been defined in Definition 2.2.

We say that the martingale problem with distributional drift b admits uniqueness if
for any two solutions (X!, P') and (X2, P?) with Xé ~ w,i =1, 2, then the law of
X! under P! is the same as the law of X2 under P?.

Remark 3.2 Since C_L(.Hﬂ )+ C c'3+ C CP)*  then there exists a unique weak solution
f € CrCU+AT for the PDE appearing in D, see Sect. 2.2. Moreover, by [18, Remark
4.4] we have D C DY..

Proposition 3.3 The domain Dy defined in (3.1) equipped with its graph topology is
separable.

Proof By [18, Lemma 5.7 (i)] with y = 0 we know that ég+ is separable; hence, there
exists a dense subset Dy of C_g+, and by [18, Corollary 5.8] we know that CTC_(’;3 tis

separable; thus, there exists a dense subset Dg of CTC_f *_ Let us denote by D the set of
all f, € CrCUHP* such that L f, = gu; fu(T) = f,I where g, € Do and £ € Dyg.
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Clearly, D is countable, because D¢y and Dg are countable and D C D.. Moreover,
by continuity results on the PDE (2.3), see Sect.2.2, we have that if fnT — f(T) in
CU+P+ and g, — g in C7COF, then f, — f in C7CUHA T which proves that the
set D isdense in D . m|

Next, we introduce the transformed SDE studied here, which is

t

t t
Y =Yy + )\./ Yids — )»/ v(s, Yy)ds +/ Vo (s, v(s, Yy))dWy, (3.3)
0 0 0

where ¢ is the unique solution of (2.4) and v is its (space-)inverse given by (2.5) with
A > 0 chosen large enough (see Sect. 2.2). Notice that this SDE is formally obtained by
applying the transformation ¢ to X as in Definition 3.1, that is, setting Y; = ¢ (¢, X;)
and using that ¢ is invertible with inverse y.

Denoting by Y the solution of (3.3), by It6’s formula for all f € Clifc([o, T]x RY)
we know that

t
Fe vy = 70,10 = [ vods
0
is a martingale under P. Here the operator L is the generator of ¥, which is defined by

-~ - - 1 -
Lf:=8f+AVfGid—y)+ ETr[(Vqs oY) Hessf(Vpoy)l.  (3.4)

In particular, (Y, IP) verifies the classical Stroock—Varadhan martingale problem with
respect to L. We recall that this notion is equivalent to the one of weak solution for
SDEzs, see [20, Proposition 4.11 in Chapter 5]. To avoid confusion with the notion of
weak solution for PDEs, in this paper we use the terminology solution in law instead
of weak solution when referring to SDEs.

Remark 3.4 Note that the coefficients in £ belong to C%" for any v < 1 — B, see
Appendix A for the definition of CYV, Indeed, f eC ,lfc, ¥ has linear growth since
|V is uniformly bounded and the coefficient is V¢ o ¥ belongs to C%V for any
v < 1 — B because

Vo, ¥ (t, NIy =sup Vo (r, ¥ (L, x))]
Vo, ¥(t, x2)) = Vo, ¥ (2, x2))|

lxg — x2]?

+  sup

X[,X2, X] #X2

< sup [[Vo(t, )l

1€[0,T]
Vo, ¥(t, x2)) = Vo, ¥ (1, x2))|
+ sup sup
1€[0,T] x1,72, X1 %72 [, x1) — ¥, x2)|
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[V, x1) — ¥, x2)]"

|x1 — x|V

= sup |[Ve(@, Illoo + IVOlcre VY oo
1€[0,T]

Here we have also used Remark A.1.

It will be useful later on to consider a domain for the operator L obtained as the
image of D, through ¢. Let us define

ﬁi :={f = f o forsome f € Dy and v defined in (2.5)}. 3.5)

The choice of the SDE (3.3) and of the domain D  is natural since we use the trans-
formed process Y; = ¢ (¢, X;).

Lemma3.5 Letg, h: RY — R withh € C' withVh € CP* and g € CYTP*. Then
goh € CUP* Ifmoreover g, — g in C11P* then g, oh — g oh in C1HAT,

Proof To prove that g o h € CU+P+ s equivalent to prove that f = g(h(")) is
bounded and that there exists & > B such that Vf € C%, i.e. Vf is bounded and
a-Holder continuous. The first claim is obvious by boundedness of g. The gradient
V f(-) = Vh(-)Vg(h(-)) is bounded because it is the product of two bounded matrices
since Vi, Vg are bounded by assumption on g, 4.

To show that V f is a-Holder continuous, it is enough to show that it is the product
of two functions in C¥ (note that boundedness of the factors is crucially used). We
have Vi € C* for some o > S by assumption. On the other hand it is immediate to
show that the term Vg (4 (-)) is in C%, because it is bounded, and e-Holder continuity is
proved using that Vg € C* and 4 is Lipschitz because by assumption V# is bounded.

To show convergence, let us denote f,, := g, oh. Since f,,(0) — £(0), itis enough
to show the convergence of V f,, in C%. We use the same properties as above to get
IVfu =V flla = IVhllsollgn —8lla +11V8n — V& lloo I Alle, and the proof is complete.

O

Lemma3.6 If f € C;;AZC and ¢ is the unique solution to PDE (2.4), then f o ¢ €
CTC(H‘[})*_

Proof Let us set f := f o ¢. We first prove that f(r) € C!HA* forall r € [0, T].
This is a consequence of Lemma 3.5 with g = f (t,-)and h = ¥ (¢, -). The hypothesis
on g is satisfied since g € C;Iﬁ, and hence g(¢) € C'*)* for any y € (0, 1). The
hypothesis on / is satisfied since Vi € C'=#)~ implies Vi € CAT.

For the (uniform) time-continuity with values in C'+#)% since g is not an integer,
we have to control

1f @) = f oo +NVF@) =V f($)lla (3.6)

for some o > B and for small |t — s|, where we recall f(¢) = f(t, ¢(t,-)), having
used the equivalent norm [18, (2.3)]. The first term in (3.6) is obvious from the fact
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that f € C ;MZC and
¢, x) —p(s,x) =u(t,x) —u(s,x), whereu € crclte, 3.7

see Sect.2.2.

For the second term in (3.6), setting H := Vlf o¢,wecan write Vf = HV¢. We
note that V¢p € CrC¥, see Sect.2.2, and since H € CpC* (proved below) then the
product is also in C7C* and the proof is concluded.

It remains to show that H € C7C?. For the sup part of the norm (see [18, (2.2)]),
we notice that

IH ) — H($)lloo < IVF(t, 0t ) — VI d(s. )
H IV p(s.)) = Vs, (s, Nloo
< [[Hess()lloollp(r. ) — B (s, oo
+ IV, ¢(s,9) = VIs. (s, Dloos (3.8)

and the first term is bounded as above using (3.7), while the second term is controlled
because f € Cgfc.

We observe that H € C%! and VH = (Hess(f) o ¢)Ve¢p. We will use below that
V H is uniformly continuous, which we see by showing that each term of the product
is bounded and uniformly continuous (buc). V¢ is buc because V¢p € C7C*. The term
Hess(f) o ¢ is similar to (3.8) but using that Hess(f) is buc and (3.7).

Concerning the a-seminorm (see [18, (2.2)]), for x1, x2 such that |x] —x2| < 1 we
have

|H(t, x1) — H(t,x3) — (H(s, x1) — H(s, x2)) |
lxg — x2]®

1
< / IVH(t, 1 +a(xs — x1)) — VH(s, 1 +axs — x1))] dals — x1]'
0
< wvy (|t —s]),

where wvy g (+) denotes the continuity modulus of V H. This concludes the control of
the second term in (3.6). O

Lemma 3.7 Let f € C;;fc and ¢ be the unique solution of PDE (2.4). Setting f = fo¢
we have f € D% and

(Lfyop=Lf

in CrCOF, thatis f isasolutionof L f = gwithg := (L f)op € CrCOT. Equivalently,
we have [:f = (Lf) o, where r is the space-inverse of ¢ defined in (2.5).

If moreover f has compact support, then f(T) and g also have compact support,
in which case f € Dp.
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Proof We start by proving that f € DOE so that we can then calculate £ f. Notice that
f e CrCU*+P+ by Lemma 3.6. To show that f € C'([0, T], S’), we compute the
time-derivative f.Recall that f € C};% by assumption, and that ¢ : [0, T]x R — RY
and f, f 1[0, T] x RY — R. We have

. d
te ft) = ft. ¢ )+ Y f@. ot NGt ). 3.9)
k=1
where the dot ~ denotes the time-derivative and d; := adi We show that the right-

hand side of equation (3.9) is in CrS&'. For the first term in (3.9) clearly we have the
claim because f o ¢ is uniformly continuous in ¢, x. The second term in (3.9) has
products of the form (O f o @) where ¢ € CrCP)~ see Sect.2.2 and & f o ¢ €
CrCP*. Hence, the product is well-defined and continuous by (2.2). This shows that
f€C'([0,T]; S') and hence f € DY..

We now apply £ to f so we need to calculate the spatial derivatives of f. The first
space derivative of f with respect to x; is

d
0 ft, ) =) f(t, ¢, Ndgr(t,),1 €[0,T]

k=1

and the second derivative is

d d
i f(t, )=y [Z(aZkf(t, G, N (1, Nhir(t, ) + K [, $t, ) igu -)}

k=1 Li=1

d
= (V)T (Hess(f) 0 9)V6) (1) + Y2 00 (0. Dot ).t € 0.1,

k=1

Note that 9; f (¢, -) for all ¢+ € [0, T] is a well-defined object in C (=P)~ because it is
actually a function in C#* by Lemma 3.6. The second derivative d;; f (¢, -) is made of
two terms: the first one is a bounded function, and the second one is well-defined in
C=P)~ again by means of the pointwise product (2.1), where for all € [0, T'] the
distributional term 09;; ¢ (¢, -) is in C=A~ since i (t, ) € C1=B) = see Sect.2.2.
Using these we calculate £{:
2 1 d ~
(L) =) +5 D (Vo) (Hess()) 0 9)V8) (1)

£ i
i=1

d d
- . 1
+ ) % ft b, ) [ma, Vo3 D Bkt ) + B, it ~>} 1 €[0. 7],
k=1 i=1
(3.10)

where the last term 8y £ (¢, ¢ (¢, -))3;px (¢, )b (¢, -) is well-defined in C—A)+ by (2.1)
used twice. Thus, equality (3.10) holds in the space C‘~#)~. Now we observe that
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Lo = My — idg) because ¢y is solution of PDE (2.4), see Sect.2.2. Thus, the
equality above becomes

) d
LA =0 660+ 5D ((V9) (Hess(H op)Ve) (1,

4 i
i=1

d
+ ) 0 p (e DA, ) — ide)

k=1
B 1 -
=t ¢t ) + 3Tr (V) (Hess(f) 0 $)V9) (1)
+ AV (L, ¢(t, N(P(t,-) —id), t € [0, T]. (3.11)

On the other hand, by direct definition (3.4) of L applied to f € C;’uzc and then
composed with ¢ and using ¥ (¢, ¢ (¢, -) = id, one easily gets

o~ 1 -
(LF)@.9.) =F 1.9 + 5T (V) (Hess(f) 0 9)V) (. )
+ AV, ¢, NP, ) —id), 1 € [0, T]. (3.12)

Now using (3.11) and (3.12) we gett — (Lf) = (ﬁf)(t, ¢(t,-))in C([0,T]; S)).
We observe that the right-hand side of (3.12) belongs to C7C7. Setting g := (Lf)og
we can conclude that £ f = g € C7C*. Given that both sides are functions, we can
compose them with ¥ to get £~f =(Lf)o.

Finally, we show that if f has compact support, then g = £ f)o¢ also has compact
support. First notice that L f has compact support; thus, there exists M > 0 such that
for all (¢, x) with |(#, ¢ (¢, x))| > M then g(¢, x) = 0. To show that g has compact
support it is enough to find N > 0 such that if |(¢, x)| > N, then |(¢, ¢ (¢, x))| > M.
This is equivalent to showing that

A=A{t,x) |, ¢, x))| = M} C{(r,x) : [(t,x)] = N} =: B,

for some N. To show the above inclusion, let (r,x) € A. We write (f,x) =
(t, ¥ (¢, ¢ (t, x))) and using that Vi is uniformly bounded, see Sect.2.2, we get

[(t, )| =@, y(t, ¢(t,x)) — ¥(,0) + (2, 0))]
SClt, ¢, x)|+ 1, ¥(z,0))]
<CM+ sup |(t,¥(t,0)]=:N,

1€[0,T]

which shows that (t, x) € B. We conclude by noting that f (7, -) also has compact
support, following the above computations but fixing the time 7 = T  and replacing
Lf with f. O

Lemma3.8 We have C* C D.
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Proof By Definition of 155 we have to show that if f € Ccl’2 then f := fo¢ € D,
where D is given in (3.1). First, we note that by Lemma 3.6 we have f € CrCU+A+,
Next we show that £{ = g for some g € CTC£+. We define g := L f o¢. By Lemma
3.7 we have £ f = g and since f has compact support, then f € D, by Lemma 3.7
again. O

We can finally state the main result of this section, namely the equivalence between
the original martingale problem and the Zvonkin-transformed martingale problem.

Theorem 3.9 Let Assumption Al hold.

(i) If (X, P) is a solution to MP with distributional drift b and i.c. u then (Y, P)
is a solution in law to (3.3), where Y; := ¢(t, X;) and Yo ~ v, where v is the
pushforward measure of v given by v := (¥ (0, -)).

(ii) If (Y, P) is a solution in law to (3.3) with Yo ~ v then (X, P) is a solution to
MP with distributional drift b and i.c. u, where X; := ¥ (t,Y;) and W is the
pushforward measure of v given by 1= v(¢(0, -)).

Proof Item (i). Let (X, P) be a solution of MP. For any f € CX wedefine f := fod,
where ¢ is the unique solution of PDE (2.4). By Lemma 3.7 f € D . Setting Y, :=
¢(t, X;), by Lemma 3.7 we have

. . o t
f) — f(Yo) —/0 (L)(s, Ys)ds = f(t, Xi) — £(0, Xo) _/o (LS)(s, Xs)ds,

which is a local martingale under P for all fec ° by Definition 3.1 since f € D.
It follows that the couple (Y, IP) satisfies the Stroock—Varadhan martingale problem;
therefore, (Y, IP) is a solution in law of SDE (3.3).

Item (ii). Let (Y, IP) be a solution in law of SDE (3.3). We define X; := ¥ (¢, Y3),
where 1 is the (space-)inverse of ¢ defined in (2.5). To show that (X, IP) is a solution
to MP with distributional drift b, we need to show that for all f € D, the quantity

t
J@, Xy) = (0, Xo) —/0 (LS)(s, Xs)ds

is a local martingale under PP. Since f € D, then there exists g € C7C%F (so there
exists v € (0,1) with g € C7rC") such that Lf = g. We define g := g o ¥,
Sfri=f(T,¥(T,"))and f} := fr * py, where p, = p1 with p; the heat kernel. We

see that § € C*V, see Appendix A for the explicit definition of the space. Indeed g is
in C([0, T] x Rd) because g and i are, and it is easy to obtain the bound

sup sup y < sup [lgDlev IV 5.
1€[0,T] x £y lx — yl 1€[0,T]

using the fact that g € C7C" and ¢ € C%! with gradient Vi uniformly bounded,
see Sect.2.2. Moreover, f; € C Z+v (for explicit definition of these spaces and its
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inclusion in other spaces, see Appendix A) and by Remark 3.4 the coefficients of L
are in C%V. So by [21, Theorem 5.1.9] (which has been recalled in Theorem A.3 in
the Appendix for ease of reading) we know that for each n there exists a function
f n e Ch2Hv([0, T] x RY) (see Appendix A for the definition of this space and its
inclusion in other spaces) which is the classical solution of

Lfr=3
~ - 3.13
{f"(T) - 7. G139

Therefore, f " ¢ C1? and thus by It6’s formula

t

Fr. ) — F70, Yo) — /O 305, Yy)ds

is a local martingale under . Here we used that (L fn) (s, Ys) = g(s, Yy) by construc-
tion. Setting f” := f" o ¢, we also have that

t

J@ Xe) — (0, Xo) —/O g(s, Xy)ds (3.14)

is a local martingale under P. Usin% the definition of g, the fact that f" is a classical
solution of PDE (3.13) and f" € C -2 (see Remark A.2) by Lemma 3.7 we know that

buc
g=gop=Lf"ogp=LSf",

in C7C" and thus in particular f” is a weak solution of

Lf'=g
{f,,(T):f;l’ (3.15)

where i := f"(T) o ¢(T, ).

Now we claim that f” is the unique mild solution to (3.15) in C7CU A+ and
that /" — f uniformly on compacts (these claims will be proven later). By this
convergence and taking the limit of (3.14) where we replace g = L f, we get that

t
1 X0) — £(0, Xo) — /0 (Lf)(s, X,)ds

is a local martingale under PP, thanks to the fact that the space of local martingales is
closed under u.c.p. convergence.

It is left to prove that f" is the unique mild solution to (3.15) in C7C!*A+ and
that " — f uniformly on compacts, which we do in three steps.

Step 1: we prove that f" is the unique mild solution to (3.15) in CrCU+A+ To do

s0, first we show that f" € C7CU+A* indeed 1" := f" o ¢ with f" € C;I’fc and ¢
solution of PDE (2.4), so by Lemma 3.6 we have f" € CrC!*A)* In Sect.2.2 it is
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recalled that weak and mild solutions are equivalent therefore f” is the unique (mild)
solution in C7CUI+A+,

Step 2: we prove that it — fr = f(T)inC"*P)* Recall that ! = flop(T, ),
so by Lemma 3.6 again we have f € CUTA* Moreover, fr = f(T) € C1A+
because f € D,.Now we notice that fT e P+ by Lemma 3.5 using the definition
fr = froy(T, "), where fy € CItA+ by definition of Dz and ¥/(T', -) € C! with
VY (T, ) € C17P~ see Sect.2.2. Since fT = fr * p, and the convolution with the
mollifier p,, maintains the same regularity of fT by [18, Lemma 2.4], then fT — fT
in CU1+A+ | see Sect.2.2. Finally, again by Lemma 3.5 we have fi o ¢(T,) —
fr o (T, ) in CIHA* as wanted.

Step 3: we prove that f* — f uniformly, in particular uniformly on compacts. From
Step 1 we have that " is the unique solution of (3.15) in C7C!*#)* Moreover, we
recall that f is the unique mild solution in the same space of L f = g with terminal
condition the value of the function itself, fr = f (7). We can now apply continuity
results on the PDE (3.15), see Sect. 2.2, to conclude that f* — f in CCU A+, This
clearly implies that f* — f uniformly, as wanted. O

Remark 3.10 Itis possible to define an equivalent MP by a transformation different than
the one used in Theorem 3.9. Indeed, it is enough to consider a generic transformation
¢ € CrDCP* which is space-invertible with inverse v, and under which one has
the equivalence between (X, IP) solving the MP with respect to £ and (¢ (X), IP)
solving the MP with respect to L, where Lf := Lf o . The issue going further
would be to interpret L f g as a PDE, which would need to be considered in
the mild sense and will presumably require some regularity of ¢. Well-posedness of
such an equation would be based on Schauder-type estimates for the time-dependent
semigroup generated by the diffusive component of the operator L, which are far from
being straightforward.

From now on, let (b") be the sequence defined in [19, Proposition 2.4], so we know
that »* — b in CrC~#, b" € CyCY for all y € R and b" is bounded and Lipschitz.
Recall that A > 0 has been fixed and independent of n, chosen such that (2.6) holds.
To conclude the section, we prove a continuity result for the transformed problem for
Y that will be useful when we will prove analogous continuity results for the original
problem for X. Let us denote by Y” the strong solution of

t t t
Y = ¢(0, Xo) + A/ Yi'ds — X/ Y (s, Yds +/ Vo' (s, ¥" (s, Y]")d Wy,
0 0 0
(3.16)

which is the counterpart of (3.3) when one replaces b with b".

Remark 3.11 We notice that the drift and the diffusion coefficient of (3.16) are uni-
formly bounded in n. Indeed the drift is given by A(y — ¥" (s, y)) = Au" (s, ¥" (s, ¥))
and the diffusion coefficient is V@' (s, ¥" (s, y)) = Vu" (s, ¥" (s, y)) + I;. Thanks
[18, Lemma 4.9], for every fixed @ € (8, 1 — B) we have

"l cpcert < RCIB" Nl cpe-2I 10" | cpe-s < Rau(sup 16" I, c-6) sup 16" lepc-s
n n
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where R), is an increasing function. Thus, u, and Vu, are uniformly bounded in 7.

Lemma 3.12 Let Y" be the solution of SDE (3.16). Then the sequence of laws of (Y")
is tight.

Proof According to [20, Theorem 4.10 in Chapter 2] we need to prove that

lim supP(|Yy| > n) =0 (3.17)
=00,
and that for every ¢ > 0
lim sup]P’( sup [Y" — Y| > e) —0. (3.18)
8—0,>1 N 1e0,T]
ls—r]<é

We know that Y = ¢"(0, X¢) and X¢ ~ . By continuity results on the PDE (2.4),
see Sect. 2.2, we have that ¢" — ¢ uniformly and that

a :=sup||V¢"|leoc <00 and b :=sup|¢p"(0,0)| < oco.

n>1 n>1

So the first condition (3.17) for tightness gives

PY" ()] > n) =P(1¢" (0, Xo)| > n)
< P(19"(0,0)| + [IV$"llcc| Xo| > 1)
= P(a +b[Xo| > n).

Noticing that a + b|Xy| is a finite random variable (independent of n) then we have
(3.17).

Concerning the second bound (3.18) for tightness, we first observe that the classical
Kolmogorov criterion

E()y; — Y"1 < Clt — s|? (3.19)

holds for some positive constant C independent of n. The proof of this bound works
exactly as the proof in [12, Step 3 of Proposition 29]: indeed, the process Y” therein
has the same form as Y” given by (3.16). By Remark 3.11 we have that the drift and
diffusion coefficients are uniformly bounded in n, so that [12, Step 3 of Proposition
29] allows to show (3.19).

Now we apply Garsia—Rodemich—Rumsey Lemma (see e.g. [3, Sect. 3]) and we
know that for every 0 < m < 1 there exists a constant C’ and a random variable T,
such that

Y" -yt < Ct—sI"T,
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with
1 2—m
ET) <cC——T"", (3.20)
1—m
where c¢ is a universal constant. Consequently, for every ¢ > 0 and for every n > 1

1 m 1
IP’( sup |Y" — Y| >s) =]P’<£< sup [Y" — Y7 SC/ZSTF;,‘)
s,t€[0,T] s,t€[0,7T]
[s—t]<s ls—t] <5

1 m 1
< P(e < C’ZS?F,;‘)

by Chebyshev inequality. So, using (3.20) we have that sup,,- IF’( sups,sef0,71 1Y) —

ls—t]<8

Yl > 8) — 0 as 6 — 0 and (3.18) is established. O

Remark 3.13 When Yy = y is a deterministic initial condition, we know that (3.3)
admits existence and uniqueness in law by [28, Theorem 10.2.2], because the drift
and diffusion coefficient are bounded by Remark 3.11 and the diffusion coefficients is
continuous 1since V¢ and ¢ are continuous and it is uniformly non-degenerate since

[Vulloo < 3, see Sect.2.2.

4 The Martingale Problem for X

In this section we solve the martingale problem for the process X, which formally
satisfies an SDE of the form

t

Xi = Xo +/ b(s, Xs)ds + Wi,
0

where W is a d-dimensional Brownian motion, the drift 4 is an element of C7C A+
that satisfies Assumption A1l and the initial condition X is a given random variable.
To do so, we first solve the problem for a deterministic initial condition and then we
use this to extend the result to any initial condition. We also derive some properties
about said solution, such as its link to the Fokker—Planck equation and continuity
properties.

We start with the case when the drift 4 is a function, by comparing the notion of
solution to the singular MP with the notion of solution in law of SDEs, and with the
Stroock—Varadhan Martingale Problem, see [28, Sect. 6.0]. We recall that (X, P) isa
solution to the Stroock—Varadhan Martingale Problem with respect to L if for every
fece
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"1
f(X1) = f(Xo) — fo GAS(Xs) + VF(Xs)b(s, Xs))ds 4.1

is a local martingale.

Lemma4.1 Let b € C7COF. Let (2, F,P) be some probability space. Let Xo ~ .
Then the following are equivalent.

(i) The couple (X, P) is solution to the MP with distributional drift b.
(ii) The couple (X, P) is solution to the Stroock—Varadhan Martingale Problem with
respect to L.

(iii) There exists a Brownian motion W such that the process X under P is a solution
Odet = b(t, Xt)dt + th

Proof (ii) <= (iii). This follows from the Stroock—Varadhan classical theory, see
[28, Chapter 8]. We sketch the proof for completeness. If the Stroock—Varadhan
Martingale Problem is fulfilled, i.e. if (ii) holds, then in fact (4.1) also holds for
f € C2. Choosing f(x) = x and fx) = xixi,1 < i, Jj < d, one can show
that M; = X; — X¢o — fot b(s, X)ds is a local martingale with covariation matrix
(X%, x7 1)i,; being the identity. The process M is then a standard d-dimensional
Brownian motion by Lévy’s characterisation theorem. Vice versa if X fulfils the SDE
(iii) then (ii) follows by It6’s formula.

(i) = (ii). For this it is enough to show that for every f € CZ° (4.1) holds. This
is true since C° C Dy in this case.

(iii) = (i). We will make use of the spaces C%V([0, T] x R¢) and C!->*" for
v € (0, 1), which have been defined in Appendix A. Since b € CrCo, by [18,
Remark 4.12] we know that the unique solution u € C7C!*A* of PDE (2.7) is also
the classical solution as given in Theorem A.3, hence u € C 1.2 We set ¢ =id + u,
which thus belongs to C1? so by It6’s formula applied to ¥ = ¢ (¢, X;) where X is a
solution to dX; = b(¢, X;)dr + dW; we get that Y solves (3.3) with initial condition
Yo ~ v := u@(,-)), where ¢ is the inverse of ¢. Thus, Theorem 3.9 implies that
(X, P) is a solution to the MP with (distributional) drift » and i.c. i, as wanted. 0O

Next we show the link between the law of the solution to the MP and the Fokker—
Planck equation, in particular we show that the law of the solution to the martingale
problem with distributional drift satisfies a Fokker—Planck equation.

Theorem 4.2 Let Assumption Al hold. Let (X, P) be a solution to the martingale
problem with distributional drift b and initial condition u with density vo. Let v(t, -)
be the law density of X, and let us assume that v € CyCP¥. Then v is a weak solution
of the Fokker—Planck equation, that is for every ¢ € S we have

t l t
(@, v(®)) = (o, vo)+/0 (EA% v(S)>dS+/O (Vo, v(s)b(s))ds, 4.2)
forallt € [0, T].

Notice that the product v(s)b(s) appearing in the last integral is well-defined using
pointwise products (2.1). We remark that the solution v is the unique solution of (4.2)
by [19, Theorem 3.7 and Proposition 3.2].
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Proof It is enough to show the claim for all ¢ € CZ°. Indeed CZ° is dense in S. Since
peCXC DY, then we can apply the operator £ defined in Definition 2.2 to ¢, and
we define Lo =: g. Clearly ¢ is a weak solution of the PDE Ly = g with terminal
condition ¢. Moreover, the function ¢ is time independent by construction. Using the
definition of £ we get for all s € [0, T'] that

(Lo)(s) = 300 + Vo b(s) (4.3)

in C# (having used the regularity of ¢ and the pointwise product (2.1)). In fact since
t — b(t,-) € C~Pisacontinuous function of time by (2.2) we have that Lo € C7C~#.

We now construct a sequence (g") € CrC°* that converges to g in C7C~# and that
is compactly supported. Let (b") be the sequence defined before (2.6), in particular
it converges to b in C7C~# and let us define g" := %Agﬂ + Vo b". Then clearly
g" € CrC%* (in fact it is more regular) and

g — &"llcrc-s = IVe (b = b))l c-8 = IV@lcpesllb = bl cpe-s

and the right-hand side goes to 0 as n — 0o. Moreover, denoting by K the compact
support of ¢, we have that also g” is supported on K.

Let us denote by u" the mild solution of Lu" = g", u”(T) = ¢, which exists and
is unique in C7CU+A*, see Sect.2.2. Such function belongs to D, by definition of
the domain D, see (3.1). Since u”* € D, and (X, P) is a solution to the martingale
problem with distributional drift » and initial condition u with density vg, then we
know that

t
u (¢, X;) —u" (0, Xo) — / Lu" (s, Xs)ds
0

is a local martingale under P, but also a true martingale since u” and Lu" are bounded.
We denoted by v(z, -) the law density of X;; thus, taking the expectation under P we
have

t
/ u”(l,x)v(l,x)dx—/ u"(O,x)vo(x)dx—/ / (L™ (s, x)v(s, x)dxds = 0.
R4 R4 0 JRA
“4.4)

We now consider a smooth function xx € CZ° such that xx = 1 on K. Since g" is
compactly supported on K and LI = g", we can rewrite the double integral in (4.4)
as

t t
/ / (LMY (s, x)v(s, x)dxds =/ / (LMY (s, x)v(s, x) xg (x)dxds
0 JRd 0 JRd

t
_ fo (LT (5)v(s), xk)ds,
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where the dual pairing is in S, S’. By continuity properties of the PDE Lu" = g" with
terminal condition u™(T) = ¢ (see Sect.2.2) we know that since g" — g in C7C~P
then u” — ¢ in CrC1+A)* since ¢ is the unique solution of Lo = g with terminal
condition u(T) = ¢. Thus, taking the limit as n — oo of the above dual pairing, we
get

t t
nlinéo/() ((ﬁﬂ")(S)v(S),XK)dSZ/O ((Lo)(s)v(s), xk)ds
1
=/0 (FA9v(s). xx) + (Vo b(s)v(s). xx)ds

t 1 t
=/0 <§A¢,U(S))ds+/0 (Vo b(s)v(s), xk)ds.
4.5)

Now we prove that the latter dual pairing in (4.5) can be rewritten as

(Vo b(s)v(s), xx) = (Ve, b(s)v(s)), (4.6)

forall s € [0, T]. Indeed, the LHS of (4.6) is well-defined because xx € CZ° and for
every s € [0, T'] the distribution Vg b(s)v(s) is actually an element of C —P because
of the pointwise product (2.1) and of the regularity v(s) € C#* and b(s) € C™#. The
RHS of (4.6) is also well-defined, but now the test function is Vg € CZ° and the
distribution is b(s)v(s). To show that (4.6) holds we observe that by the continuity
of the product (2.2) we have b"(s)v(s) — b(s)v(s) in C~# (in fact uniformly in
s € [0, T']) and thus we can write

(Vo b(s)v(s), xk) = lim (Ve b" (s)v(s), xk)

= lim ) Vo (x)b" (s, x)v(s, x) xx (x)dx

n—o00 R

n—o00

= lim Vo (x)b" (s, x)v(s, x)dx
R4

= lim (Vo, b"(s)v(s))
(Vo, b(s)v(s)),

for all s € [0, T'], which proves (4.6).
To conclude it is enough to take the limit as n — oo in (4.4) and use (4.5) and (4.6)
to get (4.2). O
The following is a continuity result for the martingale problem. Recall that (") is
the sequence defined before (2.6) in Sect.2.2, so we know that b — b in C7C —B,
b" € CrC” for all y € R and b" is bounded and Lipschitz. We denote by X" the
(strong) solution to the SDE

t
X" = X, +/ b (s, X")ds + W, %))
0
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where X¢o ~ u.

Theorem 4.3 Let Assumptions Al hold. Let (b") be a sequence in CC™P* con-
verging to b in CtC~P. Let (X, P) (respectively (X", P")) be a solution to the MP
with distributional drift b (respectively b" ) and initial condition . Then the sequence
(X", P") converges in law to (X, P). In particular, if b" € CrC* and X" is a strong
solution of

t
X = X0+/ b" (s, X{)ds + W;,
0

then X" converges to (X, P) in law.

Proof The proof is identical to that of [12, Proposition 29]. In particular Step 4 therein
deals with the convergence in law of Y, which is the solution of SDE (3.16), and Step
5 with the convergence in law of X”. Notice that the drift b therein lives in a different
space than ours (Bessel potential spaces instead of Holder-Besov spaces), and the
initial condition in [12] is deterministic, but the setting is otherwise the same. The
only tools used in Step 4 and 5 are the tightness of the sequence of laws of Y”, which
we proved in Lemma 3.12, and the uniform convergence of u” — u, Vu" — Vu and
Y™ — ¥, see Sect.2.2. Finally, setting X, := ¢ (¢, Y;) for ¢t € [0, T], then (X, P)
is the unique solution to the martingale problem with distributional drift » and initial
condition u by Theorem 3.9, because (Y, PP) is the unique solution to (3.3) with initial
condition Yy ~ v where v is the pushforward measure of u through ¢.

It remains to prove the last claim of the theorem, which follows because X" is also
a solution to the MP with distributional drift 5" by Lemma 4.1, so the first part of the
theorem can be applied. O

The first existence and uniqueness result is for the solution to the MP with distri-
butional drift » and deterministic initial condition Xo = x. We will extend the result
to any random variable in Theorem 4.5.

Proposition 4.4 The martingale problem with distributional drift b and i.c. 8y, for
x € RY, admits existence and uniqueness according to Definition 3.1.

Proof Let (X, P) be a solution to the MP. Setting ¥; = ¢(¢, X;) and Yy = y =
¢ (0, x), by Item (i) of Theorem 3.9 we have that (¥, IP) is a solution in law to (3.3).
By Remark 3.13 the solution (Y, P) is unique; hence, the law of X under IP is uniquely
determined.

Existence follows from the fact that equation (3.3) with Yy = y has a solution in
law, say (Y, P), again by Remark 3.13. Then setting X; := (¢, ¥;) by Item (ii) of
Theorem 3.9, we know that (X, IP) is a solution in law to MP with distributional drift
bandi.c. dy. O

Next we extend the existence and uniqueness result of Proposition 4.4 to the general
case when the initial condition X is arandom variable rather than a deterministic point.

Theorem 4.5 Let Assumption Al hold and let ju be a probability measure on R¢. Then
there exists a unique solution (X, P) to the martingale problem with distributional
drift b and initial condition L.
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Proof Existence. The idea is to use a superposition argument in order to glue together
the solutions of MP with a deterministic initial condition x, for all possible initial
conditions x. This is implemented using the process Y; = ¢ (¢, X;).

We have the measure 1 on (R?, B(R)) which is the law of the initial condition X
and we define a new measure v on the same space given by v(B) = u (¥ (0, B)) for
any B € B(R?). Notice that v is the pushforward of y through the function ¢, where
¥ = ¢! has been defined in (2.5); thus, v plays the role of the initial condition for
the process ¢ (¢, X;). Let Y be the canonical process and P¥ be a law of the canonical
process on Cr such that (Y, PY) is the unique weak solution to (3.3) with Yo = y.
Then it is known by [28, Theorem 7.1.6] that (v, C) + PY(C) is a random kernel for
y € R? and C € B(Cr); hence, the probability P given by

P(C) := [IP’y(C)v(dy) (4.8)

is well-defined. Setting X; := (¢, Y;), our candidate solution to the MP with dis-
tributional drift b and initial condition p is (X, P). First, we observe that for any
C € B(Cr) of the form C = {w : wy € B} with some B € B(R?), we have
PY(C) =P (w e C) =P’ (Yy € B) = 15(y), 4.9)
having used that PY-a.s. the canonical process Y is such that Yy = y. This will allow
us to show that the initial condition X has law w. Indeed, for any A € B (R?) we set
B = ¢(0, A) and we calculate
P(Xo € A) =P (0, Yy) € A) =P(Yy € ¢(0, A)) =P(Yy € B). (4.10)

Now using the definition (4.8) of P and setting C = {Yy € B} we have P(Yy € B) =
P(C) = f PY(C)v(dy) and by (4.9) we have

P(Yy € B) = /B v(dy) = v(B) = v(¢(0, A)). .11

Finally, using the definition of v and the fact that i is the inverse of ¢ we have
P(Xo € A) = P(C) = u(A) as wanted.
Next we show that for every f € D, the process

Ml (X) == f(u. Xu) = (0. Xo) _fo (Lf)(r, Xp)dr, (4.12)

is a martingale under P, that is for every f € D, and F; bounded and continuous
functional on Cy (see Sect.2.3) we have

E[M] (X)F,(X)] = E[M] (X) Fy(X)],

forall 0 < s <t < T. Indeed, we notice that under P¥ we have Yy ~ §,; hence,
Xo ~ 8y(0,y) =: 0x. Moreover, (Y, P?) is a solution of (3.3) withi.c. Yo = y; hence,
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by Theorem 3.9 part (ii) we have that (X. := ¥ (-, Y.), P?) is a solution to the MP with
distributional drift b and i.c. X¢ ~ §y; thus, by the definition of P given in (4.8) we
get

E[(M] (X) — M{ (X))F,(X)] = / E[(M] (X) — M{ (X)) F,(X)]v(dy) =0,

where we denoted by EY the expectation under P”.

Uniqueness. Here the idea is to use disintegration in order to reduce the MP to MPs
with deterministic initial condition. We proceed by stating and proving two preliminary
facts.

Fact 1 Let E! be a dense countable set in C.(R), EZ be a dense countable set in
Dy and E Cs be a countable set of bounded continuous functionals such that
for every bounded continuous functional Fy; € C; there exists a sequence
(F) C EC such that F}' — Fj in a pointwise uniformly bounded way, see
(4.17). A couple (X, IP) is a solution to the MP with distributional drift » and
initial condition Xy if and only if

E[M] (X)F,(X)g(X0)] = E[M{ (X) Fy(X)g(Xo)], (4.13)

forevery f € E2, F; € ECs, g€ Elands <t withs,tr € QN [0, T], where
M,{(X) is given by (4.12).
This fact can be seen as follows. First, we notice that, since M I are bounded
processes, if M fis a local martingale, then it is also a true martingale, and
hence, the MP with distributional drift is equivalent to (4.13) for all f € D,
FyeCyandg € C.and s < t withs,t € [0, T].
Next, one can show that this is equivalent when choosing s < f,s,f €
Q N [0, T]. Indeed for any bounded and continuous functional F; on Cj,
for a sequence of rational times s, | s with s < 5, < f, we can asso-
ciate a sequence of bounded and continuous functionals F, on Cy, by setting
Fy,(n) := Fs(nljo,s)) forn € Cy,.
This allows to replace the condition s € Q N [0, T] with s € [0, T]. In
order to replace t € QN [0, T] with ¢ € [0, T'], we choose a rational sequence
ty € (s, T]suchthatt, — ¢ and use the fact that the local martingale t — M ,f
is continuous and Lebesgue dominated convergence theorem.
Finally, we use again Lebesgue dominated convergence theorem to see the
validity of (4.13) for all f € Dy, F; € C; and g € C. and s < t with
s,t € QNIO,T].
We remark that E! exists because C.. is separable by [18, Lemma 5.7 (ii)], E 2
exists because D/ is separable by Proposition 3.3 and E Cs exists by Lemma
4.6, whose statement and proof has been postponed at the end of this section.
Fact 2 Let (X, IP) be a solution to the MP with distributional drift b and i.c. . There
exists a random kernel P* such that P = [P*du(x), where for p-almost
all x € R9, P* lives on {w € Q : Xo(w) = x} and for any bounded and
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continuous functional G : C[0, T] — R we have
E(G(X)) = /Rd E*(G(X))du(x), (4.14)

where E and E* stand for the expectation under IP and P* respectively.
This follows from the disintegration theorem in [8, Chapter III, nos. 70-72].

We now proceed with the proof of uniqueness. Let (X 1 P)) and (X2, P;) be two
solutions to the MP with distributional drift » and initial condition Xy ~ . Without
loss of generality we can suppose that X! = X? = X is the canonical process on
Q = Cr. Since (Xi, P;),i =1, 2 is a solution of the MP, then by Fact 1 we have

E (M (X) — M{ (X)) Fy(X)g(Xo)] = 0,

forall0 <s <t <T,s,te€QgekE' feE*andF, € ESandi =1,2. We
now apply Fact 2 to both P; and PP,, and in particular (4.14) with G(n) = (M,f n) —
M,f (7)) Fs(n)g(no) to rewrite the above equality as

/Rd ES[(M] (X) = M{ (X)) Fy(X)g(X0)ldp(x) = 0, (4.15)

foral0 <s <t <T,s,t€Q,geE' feE*andF, € E andi = 1,2. Now
we recall that for p-almost all x, we have Xo(w) = x, P}-a.s.; thus, equation (4.15)
becomes

/R 8 (OE] [(M] (X) — M (X))F(X)ldu(x) =0,

forevery0 <s <t <T,s,t €Q,ge E',feE*and F; € ES andi = 1,2.
Since g is arbitrarily chosen in a dense set of C.(R), then we have

BN (X) — M{ (X)F.(X)] =0 peae., (4.16)

forevery 0 < s <t <T,s,t €Q, f € EZ and F; € EC andi = 1, 2. Note
that (4.16) is true because the sets Q N [0, T'], E 2 and ES are countable. By Fact 1
this means that the couple (X, IP’?) is a solution to the MP with distributional drift »
and initial condition §,, for i = 1,2 for w-almost all x. By Proposition 4.4 we have
uniqueness of the MP with deterministic initial condition &, ; hence, for p-almost all
x we have P} = P}. Thus, recalling the disintegration P; = [P¥du(x) fori = 1,2
from Fact 2, we conclude P; = IP; as wanted. O

We conclude the section with the proof of a technical result used in Fact 1 in the
proof of Theorem 4.5.

Lemma 4.6 There exists a countable family D of bounded and continuous func-
tionals from C([0, T]; R9) to R such that any bounded and continuous functional
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F : C([0, T1; RY) — R can be approximated by a sequence (F,) C D in a pointwise
uniformly bounded way, that is

F, — F pointwise

sup sup |F,(n)] < o0. “4.17)
" peC([0,T];RY)

Proof We set T = 1 without loss of generality. Let n € C([0, 1]; RY). By [18, Lemma
5.5] we know that the function ¢ — F(n(¢)) can be approximated by F,(n(-)) :=
F(B,(n, ")), where (B,) are the R¢-valued Bernstein polynomials defined for any
function n € C ([0, 1]; Rd) by

Bu(n.0) = Y n(D)/(1 =1y~ (’;)

j=0

Notice that the convergence is uniform in ¢. Now for fixed n and yg, y1, ..., y, € R?
we consider the function f on R?+D9 defined by

j=0

so that F, () = f(n(2), n(). ..., n(%)). Notice that sup, ccjo.77 1 Fn (D) < | F | so-
We have thus reduced the problem to approximating any continuous bounded func-
tion f : R®+Dd _ R We further reduce the problem to continuous functions
on [—M ,M]<”+])d by restriction, for some M > 0. Indeed, a function f
[—M, M]®+tD4 5 R can be naturally extended to a bounded continuous function
f on ROTD4 by setting for x € RO+

f)y=faiV(=M)AM,...,x(ni1a V (—=M) A M).
One can see that C([—M, M]"TD4) is separable by Stone—Weierstrass theorem. We
denote by D, 5, the dense set in the set of bounded and continuous functions from

R(n+1)d - R.
The proof is concluded by setting D := U, enDj,, where

D, = {F LCU0 1R — R: Fp) = f(D.n(2). ... n(2)),
n € C([0, 1]; ]Rd) for some f € Dn’ﬁn},

which is a countable set of bounded functions. Then for any bounded and continuous
functional F : C([0, 1]; RY) — R we construct the sequence (F},) that converges to
F pointwisely by choosing the appropriate element F,, € D,. Since the convergence
in C([—M, M]""+D4) is uniform, we also have sup,, SUP,cc((0.13:Rdy | Fa ()] < 00.0
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Remark 4.7 One could also define the domain D, of the martingale problem as a
subset of the smaller space C7C>~#)~ instead of the larger space C7C!+#)*_ On the
other hand, one could enlarge the domain by choosing functions with linear growth,
namely in C7 DCP*. In both cases the analysis of the resulting MP is similar and
should lead to an equivalent problem to the one studied in the present paper. We leave
these details to the interested reader.

5 The Solution of the MP as Weak Dirichlet Process

In this section we focus on the weak Dirichlet decomposition property of the solution
of the MP, which will be useful in Sect. 6 to characterise it as a solution of a generalised
SDE. We notice that a solution to the martingale problem with distributional drift b is
not a semimartingale in general. Indeed already in the fully studied case of dimension
d =1, see [14, Corollary 5.11], one sees that the solution is a semimartingale if and
only if b is a Radon measure. We can, however, discuss and investigate other properties
of this process, which turns out to be a weak Dirichlet process, and we identify the
martingale component of the weak Dirichlet decomposition.

We start with the definition of weak Dirichlet process, that can be found in [15],
see also [10, 11].

Definition 5.1 Let X be a continuous stochastic process on some probability space
(2, F,P) and let F X denote its canonical filtration.

e A process < is said to be an FX-martingale orthogonal process if [N, o/] = 0
for every FX-continuous local martingale N.

e The process X is said X -weak Dirichlet if it is the sum of an FX -local martingale
M and an FX -martingale orthogonal process <.
When 7 = 0 a.s., we call X = M + o/ the standard decomposition.

Remark 5.2 e The two equalities in the statement of Definition 5.1, that is [N, &/] =
0 and X = M + &/, are meant up to indistinguishability with respect to IP.
e The standard decomposition of a F*-weak Dirichlet process is unique.

In the remainder of the section, we let (X, P) be the solution to the martingale
problem with distributional drift » and initial condition , with P being a probability
measure on some measurable space (€2, F) that will be fixed throughout. We will
make use of the space of processes ¢, introduced in Sect.2.3. Let Assumption Al
hold.

Proposition 5.3 Ler f € CO1([0, T] x RY). Then f(t, X;) is an FX-weak Dirichlet
process. In particular, X is an FX-weak Dirichlet process.

Proof We recall that by Theorem 3.9 X = (¢, ¥;) where ¢ € C%!and (Y;)isan FX-
semimartingale. Then f (z, X;) = (foy)(¢, Y;)isaC 0.1 function of a semimartingale;
hence, it is a weak Dirichlet process by [15, Corollary 3.11]. O

From now on we denote by f(z, X;) = M/ + ,Qf,f the standard decomposition of
the weak Dirichlet process f (¢, X;) for f € C%1.
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In what follows, we compute the covariation process between two martingale parts
M/ and M" for two functions f, h € C%!. To do so we first need some preparatory
lemmata dealing with functions in some subspace of D. We denote by D7 the space
given by

D} :={f suchthat3f € C}?and f = f 0§}, (5.1

which is obviously and algebra. Moreover, it is a linear subspace of D, by Lemma
3.8.

Proposition 5.4 For f, h € D we have
L(fh) =L+ (Lh)f +V[fVh. (5.2)

Proof Let f,h € Dj. and let us compute the time derivative of the product fh. We
have

0 (fh) = ho, f + foh, (5.3)
which makes sense as we see below. Indeed, 40, f is well-defined because h €
CrC*A* and 8, f = Lf — §Af — Vb is an element of C7C#~DF. The lat-
ter holds because Lf € CrC™*, Af e CrC#=D* and Vfb € CrCP, with

(B — 1) < —p. Similarly for fo;h.
We also calculate the Laplacian of fh

1
IA(fh) = 5 BAS +2V VR + [ Ah), (5.4)
where we recall that V fVh := V f - Vh, and we calculate the transport term
bV(fh)y =bVfh+DbVhf, (5.5)

which are well-defined by similar arguments. Collecting (5.3), (5.4) and (5.5) then
equality (5.2) follows. O

Lemma5.5 Let f,h € DZ. Then

t
(M7, M", = /0 (V£)(s, X5)(VR)(s, X;)ds. (5.6)

Proof By Proposition 5.4, fh € D}. C D, so using the martingale problem, Propo-
sition 5.3 (and considerations below) together with the uniqueness of the standard
weak Dirichlet decomposition we have

t
(Fh)(t, X)) = MT" +/ L(fh)(s, Xs)ds, (5.7)
0
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having incorporated the initial condition ( £/)(0, Xo) in the martingale part M/" so
that ,;szh = fo L(fh)(s, X;)ds; hence, ,fo = 0 as required. It holds also

t
ft, X)) = M,f+f Lf(s, Xy)ds (5.8)
0
t
h(t, X;) = M +/ Lh(s, X;)ds. (5.9)
0
Integrating by parts (fh)(t, X;) and using (5.8) and (5.9), we have

t t
(fh)(t, X;) :/o f(s,Xs)dh(S,Xs)+/0 h(s, Xo)d f (s, Xs) + [f(, X), h(-, X))

t t
=M, + / f(s. X)(LO G, Xy)ds + / h(s, X)(L{) (s, X;)ds + M7, M"];,
0 0
(5.10)
where () is some local martingale. Equations (5.7) and (5.10) give two decompo-

sitions of the semimartingale ( f/)(¢, X;). By uniqueness of the decomposition and
taking into account Proposition 5.4, the conclusion (5.6) follows. O

Remark 5.6 We notice that both sides of (5.6) are well-defined also for f, h € C%1.
Lemma 5.7 DZ is dense in C%1([0, T] x RY).

Proof Let x : R — R4 be a smooth function such that

0 x>0
xx)y=41 x < -1
€ (0,1) x € (—1,0).

We set x, : RY — Ras x,(x) := x(Jx| — (n + 1)). In particular

0 x| >n+1
Xn(x) =11 x| <n
€ (0, 1) otherwise.

Let f € C9%1, Let us define f = foy € CY%1 and fn = fxn. Since fn — fin
CO%'also f, := fnop — f in C®!; hence, we reduce to the case where f = f o
has compact support.

We set

» +
fm(t, x) = m/ (f*pm) (s, x)ds,
t

where py, is a sequence of molhﬁers with compact support and * denotes the space-
convolution. Then f,, € CL*([0, T] x RY) and f,, — £ in C%!; hence, f,, :=
fm o¢p — finC%!, O
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Theorem 5.8 Let f,h € C%1. Then

t
[Mf,Mh],zfo (V)(s, X5)(VR)(s, X;)ds. (5.11)

Proof First, we notice that (5.11) holds forevery f, h € DZ by Lemma 5.5. Each side
of (5.11) is well-defined for f, h € co-1, by Remark 5.6. Moreover, by Lemma 5.7
Dy C €% is a dense subspace.

Next we show that, for fixed & € Dz, the map f — [M I, M"] is continuous
and linear from C%! to C. For this we make use of Banach—Steinhaus theorem for
F-spaces, see e.g. [9, Theorem 2.1]. Indeed, the space C%! is clearly an F-space, and
so is the linear space of continuous processes 4 equipped with the u.c.p. topology. Let
M/, M) denote the e-regularisation of the bracket [M I, M™", see [26, Definition
4.2] or [24, Sect. 1] for a precise definition. Let 7 € DSL be fixed. The operator
T : f — [M7, M")¢ is linear and continuous from C%! to %. Finally, (M7, MM
is well-defined as a u.c.p.-limit of [Mf, Mh]g, see [24, Proposition 1.1]. Thus, by
Banach—Steinhaus the map f — [M I, M"] is continuous from C%!. Since both
members of (5.11) are continuous and linear, then (5.11) extends to all f € C%! and

h € D5..

L
Finally, let f € CY! e fixed. By the same reasoning as above we extend (5.11) to
hec%l O

Corollary 5.9 The map f +— /7 is continuous (and linear) from C%' 10 €.

Proof Since f, — 0in C%!, then f,(-, X) — O u.c.p. By Theorem 5.8 [M /] — 0,
and taking into account [20, Chapter 1, Problem 5.25] we have that M/» — 0 u.c.p.
Using the decomposition f;, (-, X) = M/ + o/ /» we have «/f* — 0 u.c.p. and the
proof is concluded. O

Remark 5.10 Let id;(x) = x;. Then id; € C%'. Setting M4 = (Mmidr, . . Mida)T
then by Theorem 5.8, we have

(MY M9, = §;;1.

Hence, by Lévy characterisation theorem this implies that M4 — X is a standard
d-dimensional Brownian motion. We denote this Brownian motion by WX.

Proposition 5.11 For f € C%1([0, T] x R?), we have
t .
M} = 1, Xo)+/0 V£(s, Xy) - dM9.

Proof Recall that we write
@, X0 =M+, (5.12)
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where the right-hand side is the standard (unique) decomposition of the left-hand side,
as an F¥-weak Dirichlet process. In particular <7/ is an FX -orthogonal process with
%f = 0and M/ is the martingale component. We define <7/ so that

t

£ X) = f(O. Xo)—l—/ Vs Xy) - dMY 4 )
0

We will prove later that

[«//, N] = 0 for all continuous local X -martingales N. (5.13)

From (5.13) we have that &7/ is an FX -martingale orthogonal process with ;a%f =
f(0, Xo)— (0, Xo) = 0; thus, by uniqueness of the decomposition of weak Dirichlet
processes it must be &7/ = o7/ and therefore

[ .
Ml = £0. Xo) + /0 Vf(s. X,) - dM9,
as wanted. It remains to prove (5.13). By definition of o7 and (5.12) we have

(7 N1, = Lf (2 X0, N, — [ fo V (s, X,) - dMI9, N,

t
=M/, N, —/ V£(s, Xy) - dIM'Y, N, (5.14)
0

having used the weak Dirichlet decomposition f(-, X) = M/ + &/, where o7/ is
an FX -martingale orthogonal process. Regarding N, now we observe that by Kunita—
Watanabe decomposition there is an FX -progressively measurable process & and an
orthogonal local martingale O such that

t
N, =N0+/ £ -dMY + 0.
0
Thus, the covariation with M9 gives
. . . . t
(M4, N, = (M, / £ - dM9, = f uds,
0 0

since [Mid", Midf]t = §; ;jt by Remark 5.10. We calculate [Mf, NT; using Theorem
5.8 to get

. t t
!, N, = (M7 / £ - M9, = / &AM/, M), = / £ -V (s, X,)ds.
0 0 0
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Plugging these two covariations into (5.14), we get

t t
[/, N1, = / £ -V f(s, Xg)ds — / Vf(s, X;) - £ds = 0,
0 0

which is (5.13) as wanted. O

We conclude this section with some final remarks.

Remark 5.12 (i) We recall that D). C Dy C C 0.1 Thus, for f € Dy by uniqueness
of the weak Dirichlet decomposition and by the martingale problem we have
Mtf = fé (L f)(s, Xs)ds. Therefore, we have that f +— <7/ is the continuous
linear extension of f fot (L f)(s, Xy)ds taking values in €.

(ii) We recall that the function id; solves PDE (2.3) so we have £id; = b', see Sect.2.2.
Hence, taking f = id; for some i € {1, ..., d} one gets X = M'% 4+ o7'9i where
formally

ﬁldl — “/ bi(S, Xs)ds",
0

by the first point in this Remark. Putting all components together one would get
indeed

'Y= () = / b(s, X;)ds".
0

Plugging this into the decomposition id(X;) = M, tid + ;zftid and using Remark 5.10
gives the (formal) writing

!
X, =Xo+ WX+ / b(s, Xs)ds"
0

as expected. Notice, however, that in general id; ¢ D, since b € CrC~* so
in general b ¢ C TC?*. This is why the writing above is only formal. We will
introduce an extended domain in the next section to make this argument rigorous.

6 Generalised SDEs and their Relationship with MP

In this final section we investigate the dynamics of the process X which formally solves
the SDE dX; = b(¢, X;)dt + dW; and compare it to the solution to the martingale
problem. First, we define a notion of solution for the formal SDE, a definition that
amongst other things involves weak Dirichlet processes. We show that any solution
to the MP is also a solution of the formal SDE and a chain rule holds (Theorem 6.5).
Finally, we close the circle by showing that, under the stronger assumption for X to
be a Dirichlet process, X being a solution to the formal SDE is equivalent to being a
solution to the MP (Corollary 6.13). We recall that X is an F X _Dirichlet process if it
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is the sum of an X -local martingale plus an adapted zero quadratic variation process.
In this section there is always an underlying measurable space (2, F).

We make a further technical assumption on the support of the singular drift b. This
assumption is a standing assumption until the end of the paper.

Assumption A2 Let b € C7CL P,

As mentioned above, the idea of the current section is inspired by Remark 5.12 and
consists in further investigating to which extent our solution to the martingale problem
is the solution of an SDE of the form

1
X[ =XO+WZX+“/ b(S,XS)dS“,
0

where Xg ~ w. We note that if b = [ were a function, the interpretation of
“fot I(s, X;)ds" would indeed be the integral fot I(s, X;)ds. In particular, fot I(s, X;)ds
is well-defined for any [ € CTC_£+. We will study various properties of [
fot I(s, Xy)ds for a reasonable class of distributions / (which includes for example

be crc'ﬁ"f’ * from Assumption A2), proceeding similarly to [22].

Definition 6.1 Let [P be a probability measure on (€2, F). We say that a process X
fulfils the local time property with respect to a topological vector space B O C TC?+
if C7C0* is dense in B and the map from C7C%* with values in % defined by

t
lr—>/ I(s, X;)ds
0

admits a continuous extension to B (or equivalently it is continuous with respect to
the topology of B) which we denote by AX-5.

Notice that this notion has been first defined in a different context in [22, Definition
6.1], see also [22, Remark 6.2] for the links to local time. Using the local time property
we now introduce a notion of solution to SDE which is different from the martingale
problem. We will then study its properties and links to the solution to the martingale
problem.

Definition 6.2 Let PP be a probability measure on (2, F). Given b € B C S'(R?), we
say that X is a B-solution to

t

Xi=Xo+ W, +/ b(t, X,)ds,
0

if there exists a Brownian motion W = WX and

(a) X fulfils the local time property with respect to B;
(b) b e B;

© X, =Xo+ WX+ A o)

(d) X is an FX-weak Dirichlet process.
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Remark 6.3 Some examples of B are B = C7C2 and B = CrCPT Indeed, o+
is dense in C_é_ﬁH since by [18, Lemma 5.4 ()] S C C_?+ and S is dense in c‘é‘f”*.
Finally, by [19, Remark B.1] we conclude that CTC_?Jr is dense in CTc'é‘ﬁ”.

Below we will investigate B-solutions for B = C TC_é_’3 )* . We denote by
DB ::[feD%suchthatg::CfeB]. 6.1)

Remark 6.4 Let B = cTc'é‘f‘)*. Notice that f =id € Dg and Lid = b, in the sense
that £id; = b' foralli = 1, ..., d as recalled in Remark 5.12 item (ii).

Theorem 6.5 Let B = Cré§75)+. Let (X, IP) be the solution to the martingale problem
with distributional drift b and i.c. y. Then there exists a Brownian motion W with
respect to P such that X is a B-solution of

t
X, =Xo+ W/ —I—/ b(s, Xs)ds,
0

~ B I
where Xo ~ w. Moreover, for every f € D we have the chain rule

t

f @, X)) = f(0, Xo) +/O (VI)(s, X) - dWX + ASP L p), (6.2)
and the equality
AXEwLp = 6.3)

Remark 6.6 Notice that point (c) in Definition 6.2 provides the standard decomposition
of the weak Dirichlet process X, where the local martingale component is given by
X + WX and the martingale orthogonal process is given by A,X’B b) = sztid in view
of (6.3) and Remark 6.4.

Proof of Theorem 6.5 For ease of notation we write A% in place of AX-5.

Let (X, P) be the solution to the martingale problem with distributional drift b and
i.c. . We have to show that the four conditions of Definition 6.2 are satisfied. Clearly,
b € B which is point (b) of Definition 6.2. By Proposition 5.3, for every f € C%! we
have that f (¢, X;) isan F X _weak Dirichlet process; hence, X is also a weak Dirichlet
process (point (d) of Definition 6.2) with decomposition

fa.x0)=M +/.

Next we check the local time property, which is point (a) of Definition 6.2. We
use that X solves the martingale problem for every f € Dy < C%! (thus
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f, X)) — fé (L f)(s, Xs)ds is alocal martingale) and uniqueness of the weak Dirich-
let decomposition to get

o) = /.(Ef)(s, X;)ds = AX (L), (6.4)
0

where the second equality holds because Lf € CTC_E,”. We want to show that AX

extendstoall g € B = cTc'ﬁ‘ﬁ”. Let us denote by 7' the map

T:CrCPT & crDCPF
g = T(g) =,

where v is the unique solution in C7C1+#+ of PDE

Lv=g
W(T) =0,

which is PDE (2.3) with vz = 0, see Sect.2.2. It is clear that for f € D, and
g=Lf¢€ CTC?+ we have T'(g) = f so that (6.3) writes

T = A% (g).

Now we recall that g — T'(g) € CrC1HA+ < €% is continuous, see Sect.2.2, in
particular when g, — g in CTC_C_/S then f, = T(g,) — T(g) = f in CpCUHA+
C%!. Moreover, by Corollary 5.9 also the map f — <7/ is continuous from C%! to
%. Now we use the density of C T(f?* in C T(fc(_ﬁ )" to conclude that the local time
property holds and also (6.3) holds. Point (c) in Definition 6.2 follows from the chain
rule (6.2) (shown below) for f = id using Remark 6.4.

It is left to prove that the chain rule (6.2) holds. We define wX .= mMd_x 0, which
is a Brownian motion by Remark 5.10. First, we prove that (6.2) holds for f € D,.
Indeed, by Proposition 5.11 we know that M/ = £(0, Xo) + fot V1H)is, Xy) - dWSX
so using that X is a solution to the martingale problem we easily get that (6.2) holds
for f € Dz. In order to extend it to f € D&, we use the operator T and rewrite the
chain rule (6.2) as

t
(Te)(t, X;) — (Tg)(0, Xo) — /0 V(Tg)(s, Xy) -dW, = Af(g), (6.5

forallg e B=C TC_E_'8 )* Notice that (6.5) holds for g € C TC_Q+ since (6.2) holds
for f € Dy with £{ = g. The left-hand side of (6.5) is continuous from B to €
because it is the composition of continuous operators. The right-hand side of (6.5)
extends from g € CTC_?+ to g € B by the local time property (a). Since CTC_gJr is
dense in B, then (6.5) extends to B, which is (6.2) as wanted. O
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Remark 6.7 Notice that if, in the previous proof, we defined the solution operator T
using a different terminal condition vy € CU+A* vr £ 0, it would have led to
the same operator AX-8_ This can be seen by noticing that the operator is the unique
extension of the integral operator / — fé I(s, Xy)ds.

‘We now introduce a refined notion of B-solution, which will be used later.

Definition 6.8 Let P be a probability measure on (€2, F). We say that X is a reinforced
B-solution of

t
X, = Xo+ WX +f b(t, X;)ds
0

if
(i) itis a B-solution of the SDE in the sense of Definition 6.2;
(i1) forany f € C;’Z’B, where

.1 5
Cy* " = (f € C;% suchthat f + SAf € CrCl* and V fb € B),

then
t
/ (V)s, Xy)-d"AXB () = ASE (v fb), (6.6)
0

where the forward integral d~ A is the one given in [23] in the one-dimensional
case, which can be straightforwardly extended to the vector case. In particular, for
a locally bounded integrand process Y and a continuous integrator process X we
denote

! d
/Ys-d—XFZf yid~xi.
0 i /o

Remark 6.9 (i) Whenb € CrC* and f € C,* then V fb € CrCO+ because we can
choose the approximating sequence b, — b with compact support to construct the
approximating sequence V fb,, — V fb. In this case equality (6.6) holds because
both members are equal to f(; (Vfb)(s, Xs)ds. Thus, it is natural to require the
condition (6.6).

(i) In the case B = CTC_L(_'6 )+, we notice that the condition V fb € B is always
satisfied. Indeed, Vf € CrCP* and b € B; thus, by (2.2) Vfb € C7CP+,
Finally, Vfb € CTé‘(fﬁ '* because we can construct the compactly supported
sequence by considering V fb,, where b, is the compactly supported sequence

that converges to b in CTC_’ﬁ_ﬁH, using again (2.2). Thus, C;’Z’B reduces to

. 1 _
{f € C}* such that f + SAf € CrCo*)
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and does not depend on B.

Next we want to consider the case when X is an FX-Dirichlet process. In this case
we show that the notion of solution of the martingale problem with distributional drift
is equivalent to the one of the reinforced B-solution. Let us start with a remark.

Remark 6.10 If X is a B-solution which is an FX-Dirichlet process, then [X, X]; =
t14. Indeed, by Remark 6.6 we have that X; = WtX + A,X’B (b) is the standard decom-
position of the weak Dirichlet process X, and by the uniqueness of the weak Dirichlet
decomposition and the fact that X is an FX-Dirichlet process then A,X’B(b) is a zero
quadratic variation process and so [X, X];, = t];.

Proposition 6.11 Let B = CTC_C(_ﬂ)+. If (X, P) satisfies the martingale problem with
distributional drift b and X is an FX-Dirichlet process, then X is a reinforced B-
solution according to Definition 6.8.

Proof First, we notice that point (i) of Definition 6.8 is satisfied by Theorem 6.5.
Next we check point (ii) and we write A% instead of AX-8 for ease of notation. Let

feC ;’Z’B. Using the weak Dirichlet decomposition since f € C 2’2, we have
£ X) =M + Al
t
= 0. X0+ [ (V10X - aw + AT 6.7
0

having used Proposition 5.11 to express the martingale component part.

On the other hand, it easily follows that f € DZ defined in (6.1), because L f =
Vfb+ g, where g := f + %Af € CTC_£+ C B by assumption, and V fb € B as
seen in Remark 6.9, item (ii). Since X is a B-solution and an F*-Dirichlet process,
by Remark 6.10 we have [X, X], = 1. So, by ap%)lying a slight adaptation of Itd’s
formula [24, Theorem 2.2] to f (¢, X;) for f € C ,i we have

t ¢
f, X)) =f(0, Xo)+/0 V), Xr) -dW,X+fO (VA X)) -d"AX (D)
! 1
+/ o f + EAf)(r, X, )dr
0
t t
=10 X0+ [ (VP00 aWE o+ [0 XAk
x 1
+ A7 (O f + EAf)' (6.8)
We recall that o, f + %Af S CTC_?+ since f € C;’Z’B, and so A[X(B,f + %Af) is
trivially well-defined. On the other hand 9; f +%A f=Lf-=VfbwhereLf,Vfbe
B as noticed in Remark 6.9 item (ii); thus, we can write

1
Af @ f + SAN = ANLf =Vfb) =ASL) — ANV D).

@ Springer



Journal of Theoretical Probability

Plugging this into (6.8) and comparing with (6.7), we get

t
Al = / (V). X,) - d= A
0
+AS(Lf) = A (V [ b);
hence, applying (6.3) we conclude. O

The next result is the converse statement of Proposition 6.11.

Proposition 6.12 Let B = CTC_L(f’g)Jr and b € B. Let P be a probability measure on
(2, F). Let X be a reinforced B-solution according to Definition 6.8, which is also an
FX_Dirichlet process. Then (X, P) solves the martingale problem with distributional
drift b.

Proof We need to show that for every f € D,
t
7.0 = 10.X0) = [ €D X0
0

is an FX-local martingale under P. Since f € D, we know that there exists [ € CTC_?+
suchthat £ f = [. By the density of S into c‘é‘ﬂ”, see [18, Lemma 5.4] and using [19,
Remark B.1] we see that C7S is dense in CT(fL(._ﬁH_. Thus, we can find a sequence
(by) such that b, € CrC* and b, — bin CrC A Let Lou = du+ 1 Au+Vub,
and let us consider the PDE L, f, = [ and f,,(T) = f(T). By [18, Remark 4.12] we
know that the unique solution f, € C7C1*A)* is also the classical solution as given in
[21, Theorem 5.1.9]; hence, f;, € Cg‘z. We recall that X is a B-solution in the sense of
Definition 6.2 and it is an X -Dirichlet process with decomposition X = WX 4+ AX.B
by Remark 6.10. By Itd’s formula [25, Theorem 6.1], taking into account the linearity
of A%-B and the fact that b, € C7C*, we have

t t

Falt, X0) =10, Xo>+f0 <an)(s,xs)-dwx+/o (Vf)(s, X,) - 4™ AXE b — by)
+/0[<an>(s,xs>bn<s,Xs>ds+%/Ot(Afn)(s,Xs>ds+/0[(asfn)(s,xs>ds

=72 (0, Xo) + /Otw_fn)(s, X,) - dW, + /Otwfn)(s, X;)-d” AP (b — b
+/0[l(s,Xs)ds, 6.9)

AX’B

having used L, f;, = [ in the last equality. Using again the linearity of , we have

t
/ (V) (s, Xs) -d"AXB (b — by)
0
t t
=/ (vm(s,xs)-d*Af’B(b)—/ (Vfi)(s, Xs) - dAXB(by).  (6.10)
0 0
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The second integral on the RHS is equal to A,X’B (V fn by) by Remark 6.9 item (i)
since f, € C 2’2 and b, € C TC_S"’. Since X is a reinforced B-solution, by (6.6) the first

integral on the RHS of (6.10) gives AIX’B (V fu b) so by additivity we rewrite (6.10)
as

t
f (V). Xs) -d"AXB (b — b,y = ASB(Vfub =V fuby).  (6.11)
0

Plugging (6.11) into (6.9), we have

1
Jn(t, X)) — fu(0, Xo) — AtX’B(an b=V fubn) — / I(s, X5)ds
0
t
= / (Vfu)(s, Xs) - dWs. (6.12)
0

Since b, — b in C7C~#, we then have f, — f in C7CUtA T and Vf, — Vf in
C7CP* by continuity results for PDE (2.3), see Sect.2.2. Thus, the right-hand side
of (6.12) converges u.c.p. to fé (Vf)(s, Xy) - dWy, which is a local martingale under
P. Moreover, the left-hand side of (6.12) converges u.c.p. to f (¢, X;) — f(0, Xo) —
fot I(s, Xs)ds and since [ = L f we conclude. O

As a consequence, we get a characterisation property for solutions of the SDE in
terms of solutions to martingale problem.

Corollary 6.13 Let B = CTC_C(.fﬁ)Jr and b € B. Let P be a probability measure on
(2, F). Suppose that X is an FX -Dirichlet process. Then X is a reinforced B-solution
of the SDE

t

X; =X0~|-W,+/ b(t, X;)dt
0

if and only if (X, P) solves the martingale problem with distributional drift b and
initial condition Xqo ~ L.

Proof Combine Proposition 6.11 and Proposition 6.12. O
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Appendix A. Some Useful Results from the Literature

In this Appendix we recall a useful theorem from [21] on existence and regularity
results of parabolic PDEs. Before stating the theorem, we recall the notation used in
the book, see [21, Chapter 5].

The classical Holder space C>*"(R?) for 0 < v < 1 was introduced in Sect. 2. For
functions of two variables (¢, x) € [0, T] x R4 , we consider the spaces introduced in
[21, Sect. 5.1]

COV(I0, TI x RY) :={f e CU0, T1 x RY) : f(z,-) e C"(RY) Vvt € [0, T,
sup || f(z, )ller < oo},
t€l0,7T]

with norm

I fllcov o, 71xray == sup [1f(z,)ller
1€[0.7]

and

C1’2+V([0, T] % Rd)
={f € C"2(0, TIx RY) 1 8 f, Oy, f € COV([0, TIx RY), Vi, j = 1,....d}

with norm
d d

£ llerzo o rixrey =0 Floo + D118 Flloo + 19 Flloo + D, 1357 £l cow o, 71xRe)-
i=1 i,j=l1

Remark A.1 Note that the following is an equivalent norm in C”

sup | f(x)|+  sup M’

X1,X2 X1 7#X2 |X] _x2|1)
namely we can freely choose not to restrict x1, x> to a bounded interval.

Remark A.2 Note that if f € C7C" then trivially we have f € C%"([0, T] x R¢) and
if f e b2 ([0, T] x R?) then trivially f € Cj2.
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Leta; j, bi,c, f : [0, T] x RY — R be uniformly continuous and belonging to
COv([0,T] x RY) with 0 < v < 1. Let a satisfy the uniform ellipticity condition
Z?,,-=1 a; j(t, x)&E; > AE|* fort € [0,T], x,& € RY, for some A > 0. Let ug €
C2+v (Rd)

Let us consider the second-order operator

d d
At x) = Y ai j(t, ), + Y bit, X)dy; + (2, x)

ij=1 i=1

and the PDE

{ du(t, x) = A, x)u(t, x) + f(t,x), (t,x) € [0,T] x R? A1)

u(0,x) =up(x), x € R,

Theorem A3 (Theorem 5.1.9 in [21]) Let a; j, b;, c, f,ug be as above. Then PDE
(A.1) has a unique solution u € C"21V([0, T] x RY) and

||M||C1-2+v([o,r]><]1gd) = C(||140||02+V(]Rd) + ||f||c0,V([0,T]XRd)),

for some C > 0.
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