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Abstract
We consider a Markovian model of an SIR epidemic spreading on a contact graph that
is drawn uniformly at random from the set of all graphswith n vertices and given vertex
degrees. Janson, Luczak and Windridge (Random Struct Alg 45(4):724–761, 2014)
prove that the evolution of such an epidemic is well approximated by the solution to a
simple set of differential equations, thus providing probabilistic underpinnings to the
works of Miller (J Math Biol 62(3):349–358, 2011) and Volz (J Math Biol 56(3):293–
310, 2008). The present paper provides an additional probabilistic interpretation of
the limiting deterministic functions in Janson, Luczak andWindridge (Random Struct
Alg 45(4):724–761, 2014), thus clarifying further the connection between their results
and the results of Miller and Volz.

Keywords SIR epidemic process · Random graph with given degree sequence ·
Configuration model
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1 Introduction

TheMarkovian SIR epidemic process is a simplemodel for a disease spreading around
a finite population inwhich each individual is either susceptible, infective or recovered.
Individuals are represented by vertices (nodes) in a graph (network) G, with edges
corresponding to potentially infectious contacts. Infective vertices become recovered
at rate ρ ≥ 0 and infect each susceptible neighbour at rate β > 0; those are the only
possible transitions, i.e. recovered vertices never become infective.
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There have been a number of studies of SIR epidemics on random graphs with a
given degree sequence: Volz [8], Miller [7], Decreusefond, Dhersin, Moyal and Tran
[3], Barbour and Reinert [1], Janson, Luczak and Windridge [4], Janson, Luczak,
Windridge and House [6]. The present note builds on the work of Janson, Luczak and
Windridge [4], who prove that the evolution of such an epidemic is well approximated
by the solution to a simple set of differential equations; we give a probabilistic inter-
pretation of the results in [4], as well as alternative formulae for the limiting functions
derived in that paper.

The analysis in [4] is based on the configuration model for random graphs with a
given degree sequence, which we explain in detail later. The half-edges in the model
are paired only as needed to determine how the epidemic spreads. In the present paper,
we provide a new probabilistic interpretation of the asymptotic probability θt that a
given half-edge does not transmit infection by time t , used in [4]. We also derive new
formulae, easier to interpret, for the numbers of free recovered and infectious half-
edges. The equations we obtain should lead to a better understanding of the results in
[4], and possibly enable more general results in the future. It is also reasonable to hope
that our new equations might enable an alternative, more intuitive, proof of the results
of [4] (although it is unlikely that considerable technical details could be avoided).

2 Model, Notation, Assumptions and Summary of Results from
Janson, Luczak andWindridge [4]

Let us recall some notation and assumptions from Janson, Luczak and Windridge [4].
For n ∈ N and a sequence (di )n1 of non-negative integers, let G = G(n, (di )n1) be a

simple graph (i.e. with no loops or double edges) on n vertices, chosen uniformly at
random from among all graphs with degree sequence (di )n1. (It is tacitly assumed that
there is some such graph, so

∑n
i=1 di must be even, at least.)

Given the graph G, the SIR epidemic evolves as a continuous-time Markov chain.
At any time, each vertex is either susceptible, infected or recovered. Each infective
vertex recovers at rate ρ ≥ 0 and also infects each susceptible neighbour at rate β > 0.

There are initially nS, nI, and nR susceptible, infective and recovered vertices,
respectively. Further, it is assumed that, for each k ≥ 0, there are respectively nS,k , nI,k
and nR,k of these vertices with degree k. Thus, nS+nI+nR = n and nS = ∑∞

k=0 nS,k ,
nI = ∑∞

k=0 nI,k , nR = ∑∞
k=0 nR,k . We write nk to denote the total number of vertices

with degree k; thus, for each k, nk = nS,k + nI,k + nR,k .
Note that all these parameters, as well as the sequence (di )n1, depend on the number

n of vertices, although we omit explicit mention of this in the notation. The parameters
do not have to be defined for all integers n; a subsequence is enough. We consider
asymptotics as n → ∞, possibly through the subsequence where the parameters are
defined.

In order to obtain results about the behaviour of the process in the limit as n → ∞,
we need some regularity conditions on the asymptotics of the degree sequence and of
the initial conditions (for instance that the proportion of initially susceptible vertices
of each fixed degree k tends to a limit). The following conditions are imposed in [4]:
all limits are as n → ∞.
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D1 The fractions of initially susceptible, infective and recovered vertices converge to
some αS, αI, αR ∈ [0, 1], i.e.

nS/n → αS, nI/n → αI, nR/n → αR. (2.1)

Further, αS > 0.
D2 The degree of a randomly chosen initially susceptible vertex converges to a prob-

ability distribution (pk)∞0 , i.e.

nS,k/nS → pk, k ≥ 0. (2.2)

Further, this limiting distribution has a finite and positive mean

λ :=
∞∑

k=0

kpk ∈ (0,∞). (2.3)

D3 The average degree of a randomly chosen susceptible vertex converges to λ, i.e.

∞∑

k=0

knS,k/nS → λ. (2.4)

D4 The average degree over all vertices converges to μ > 0, i.e.

∞∑

k=0

knk/n =
n∑

i=1

di/n → μ, (2.5)

and, in more detail, for some μS, μI, μR,

∞∑

k=0

knS,k/n → μS, (2.6)

∞∑

k=0

knI,k/n → μI,

∞∑

k=0

knR,k/n → μR. (2.7)

D5 The maximum degree of the initially infective vertices is not too large:

max{k : nI,k > 0} = o(n). (2.8)

D6 Either p1 > 0 or ρ > 0 or μR > 0.

Clearly, αS + αI + αR = 1 and μS + μI + μR = μ. Further, assumptions D1–D3
imply

∑∞
k=0 knS,k/n → αSλ, and so μS = αSλ.
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Let G∗(n, (di )n1) be the random multigraph with given degree sequence (di )n1
defined by the configuration model: we take a set of di half-edges for each vertex
i and combine half-edges into edges by a uniformly random matching (see e.g. Bol-
lobás [2]). Conditioned on the multigraph being simple, we obtain G = G(n, (di )n1),
the uniformly distributed random graph with degree sequence (di )n1.

Janson, Luczak and Windridge [4] first prove their results for the SIR epidemic on
G∗, and, by conditioning on G∗ being simple, they deduce that these results also hold
for the SIR epidemic on G. Their argument relies on the probability that G∗ is simple
being bounded away from zero as n → ∞. By the main theorem of Janson [5], this
occurs provided the following condition holds.

G1 The degree of a randomly chosen vertex has a bounded second moment, i.e.

∞∑

k=0

k2nk = O(n). (2.9)

The authors of [4] study the SIR epidemic on the multigraphG∗, revealing its edges
dynamically while the epidemic spreads. The process analysed in [4] works as follows.
A half-edge is said to be free if it is not yet paired to another half-edge. A half-edge is
called susceptible, infective or recovered according to the type of vertex it belongs to.

At time 0, there are di half-edges attached to vertex i , for each i , and all half-edges
are free. Subsequently, each free infective half-edge chooses a free half-edge at rate β,
uniformly at random from among all the other free half-edges. Together the pair form
an edge, and are removed from the pool of free half-edges. If the chosen half-edge
belongs to a susceptible vertex, then that vertex becomes infective, and thus all of its
half-edges become infective also. Infective vertices also recover at rate ρ.

The process stops when there are no free infective half-edges, at which point the
epidemic stops spreading. Some infective vertices may remain but they will recover
at i.i.d. exponential times without affecting any other vertex, and are irrelevant from
of the point of view of the epidemic. Some susceptible and recovered half-edges may
also remain, and these are paired off uniformly at time ∞ to reveal the remaining
edges in G∗. This step is unimportant for the spread of the epidemic, but is performed
for the purpose of transferring the results from the multigraph G∗ to the simple graph
G.

Clearly, if all the pairings are completed then the resulting graph is the multigraph
G∗. Moreover, the quantities of interest (numbers of susceptible, infective and recov-
ered vertices at each time t) have the same distribution as if we were to reveal the
multigraph G∗ first and run the SIR epidemic on G∗ afterwards.

For t ≥ 0, let St , It and Rt denote the numbers of susceptible, infective and
recovered vertices, respectively, at time t . Thus St is decreasing and Rt is increasing.
Also S0 = nS, I0 = nI and R0 = nR.

For the dynamics described above (with half-edges paired off dynamically, as
described), for t ≥ 0, let XS,t , XI,t and XR,t be the number of free susceptible,
infective and recovered half-edges at time t , respectively. Thus XS,t is decreasing,
XS,0 = ∑∞

k=0 knS,k , XI,0 = ∑∞
k=0 knI,k and XR,0 = ∑∞

k=0 knR,k .
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For the uniformly random graph G with degree sequence (di )n1, the variables XS,t ,
XI,t and XR,t , for t ≥ 0, are defined as above conditioned on the final multigraph G∗
being a simple graph.

It is shown in [4] that, upon suitable scaling, the processes St , It , Rt , XS,t , XI,t , XR,t

converge to deterministic functions. The limiting functions are written in terms of a
parameterisation θt ∈ [0, 1] of time solving an ordinary differential equation given
below. In [4], the function θt is interpreted as the limiting probability that a given
initially susceptible half-edge has not been selected for pairing with a (necessarily
infective) half-edge by time t . Let

vS(θ) := αS

∞∑

k=0

pkθ
k, θ ∈ [0, 1], (2.10)

so the limiting fraction of susceptible vertices is vS(θt ) at time t (since the events of
being selected for pairing will be approximately independent for different half-edges,
when n is large). Similarly, for susceptible half-edges, the limiting function is

hS(θ) := αS

∞∑

k=0

kθk pk = θv′
S(θ), θ ∈ [0, 1]. (2.11)

For the total number of free half-edges, let

hX (θ) := μθ2, θ ∈ [0, 1]. (2.12)

For the numbers of half-edges of the remaining types, for θ ∈ [0, 1], let

hR(θ) := μRθ + μρ

β
θ(1 − θ), (2.13)

hI(θ) := hX (θ) − hS(θ) − hR(θ). (2.14)

Thus hX (θ) = hS(θ) + hI(θ) + hR(θ). Note that

vS(1) = αS, (2.15)

hS(1) = αSλ = μS, hR(1) = μR, hI(1) = μ − μS − μR = μI. (2.16)

The analysis in [4] covers two separate cases.
The first is whereμI > 0, meaning that the limiting proportion of initially infective

individuals is positive. It is shown in [4] that there is a unique θ∞ ∈ (0, 1) with
hI(θ∞) = 0. Further, hI is strictly positive on (θ∞, 1] and strictly negative on (0, θ∞).
Defining the ‘infective pressure’

pI(θ) := hI(θ)

hX (θ)
, (2.17)
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there is a unique solution θt : [0,∞) → (θ∞, 1] to the differential equation

d

dt
θt = −βθtpI(θt ), (2.18)

subject to the initial condition θ0 = 1.
Furthermore, there is a unique solution Ît to

d

dt
Ît = βhI(θt )hS(θt )

hX (θt )
− ρ Ît , t ≥ 0, Î0 = αI. (2.19)

Defining also R̂t := 1−vS(θt )− Ît , Theorem 2.6 in [4] states that, for the epidemic
on the multigraph G∗, under conditions D1–D6, uniformly on [0,∞),

St/n
p−→ vS(θt ), It/n

p−→ Ît , Rt/n
p−→ R̂t , (2.20)

XS,t/n
p−→ hS(θt ), XI,t/n

p−→ hI(θt ), XR,t/n
p−→ hR(θt ), (2.21)

Xt/n
p−→ hX (θt ). (2.22)

Moreover, the number S∞ := limt→∞ St of susceptibles that escape infection satisfies

S∞/n
p−→ vS(θ∞).

The same holds on the graph G under the additional assumption G1 (Theorem 2.7 in
[4]).

This means that the entire course of the epidemic, including the final number of
individuals affected by the outbreak is approximately deterministic, following the
solution to equations (2.18) and (2.19) (with suitable formulae derived from these
equations for the remaining variables).

The other case covered is where there are initially a small number of infectives –
of order less than n, so that μI = 0 (i.e. the initial proportion of infectives tends to 0
as n → ∞). We recall from [4] that

R0 :=
(

β

ρ + β

) (
αS

μ

) ∞∑

k=0

(k − 1)kpk; (2.23)

the basic reproductive ratio of the epidemic. If R0 > 1, then the epidemic takes off
with positive probability, even from a small initial number of infectives.

It is shown in [4] that, when R0 > 1, even if μI = 0, then there is a unique
θ∞ ∈ (0, 1) with hI(θ∞) = 0, and that hI is strictly positive on (θ∞, 1) and strictly
negative on (0, θ∞).

The initial condition of the limiting differential equation, nowdefined on (−∞,∞),
is shifted so that t = 0 corresponds to the time T0 in the random process, which is
the infimum of times t such that the fraction of susceptible individuals has fallen from
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about αS = vS(1) to some fixed smaller s0 by time t . Note that T0 is finite if and only
if a large outbreak occurs, and such an outbreak is already established by time T0.

It is shown in [4] that there is a unique continuously differentiable θt : R → (θ∞, 1)
such that

d

dt
θt = −βθtpI(θt ), θ0 = v−1

S (s0). (2.24)

Furthermore, θt ↘ θ∞ as t → ∞ and θt ↗ 1 as t → −∞.
The processes are extended to be defined on (−∞,∞) by taking St = S0 for t < 0,

and similarly for the other processes.
The following is proven in [4] (Theorems 2.9 and 2.10), for both the simple graph

G and the multigraph G∗. Suppose that conditions D1–D6 and G1 hold. Assume that
R0 > 1. Suppose also that αI = μI = 0 but there is initially at least one infective
vertex with non-zero degree.

Then, lim infn→∞ P(T0 < ∞) > 0. Also, conditional on T0 < ∞, uniformly on
(−∞,∞),

ST0+t/n
p−→ vS(θt ), IT0+t/n

p−→ Ît , RT0+t/n
p−→ R̂t , (2.25)

XS,T0+t/n
p−→ hS(θt ), XI,T0+t/n

p−→ hI(θt ), XR,T0+t/n
p−→ hR(θt ), (2.26)

XT0+t/n
p−→ hX (θt ). (2.27)

Also, conditional on T0 < ∞, the number of susceptibles that escape infection
satisfies

S∞/n
p−→ vS(θ∞).

Here, Ît is the unique solution to

d

dt
Ît = βhI(θt )hS(θt )

hX (θt )
− ρ Ît , lim

t→−∞ Ît = 0, (2.28)

and R̂t := 1 − vS(θt ) − Ît .
This means that, on the event that a large outbreak occurs, the evolution of the

epidemic is approximately deterministic, following the solution to equations (2.24)
and (2.28), with suitable formulae for the remaining variables derived from these equa-
tions. The point of translating the time variable by T0 is that, without the translation, at
time 0, we have pI(θ0) = pI(1) = 0 (since μI = 0), which leads to the trivial solution
θt = 1 for all t , which is the disease-free equilibrium and corresponds to a stochastic
epidemic that does not take off.
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3 New Probabilistic Interpretation of � and Alternative Formulae for
Limiting Deterministic Functions

We will now give a more complete probabilistic interpretation of the function θt used
to define the deterministic limit for the SIR epidemic.

As stated in the previous section, the function θt used to define the deterministic
limits satisfies

dθt

dt
= −βθt

h I (θt )

hX (θt )
.

Substituting hX (θ) = μθ2, hI(θ) = μθ2 − μRθ − μρ
β

θ(1 − θ) − αS
∑

k kpkθ
k , we

can rewrite this as

dθt

dt
= −β

μθ2t − μRθt − μρ
β

θt (1 − θt ) − αS
∑

k kpkθ
k
t

μθt

= −(β + ρ)θt + ρ + βμR

μ
+ βαS

μ

∑

k

kpkθ
k−1
t .

It follows that

d

dt
(θt e

(β+ρ)t ) =
(
ρ + βμR

μ

)
e(β+ρ)t + βαS

μ

(∑

k

kpkθ
k−1
t

)
e(β+ρ)t ,

and so, integrating,

θt =
(
1 − ρ + βμR

μ

β + ρ

)
e−(β+ρ)t + ρ + βμR

μ

β + ρ
+ βαS

μ

∑

k

kpk

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds

= ρ

β + ρ
+ β

β + ρ

μR

μ
+ β

β + ρ

μ − μR

μ
e−(β+ρ)t

+ βαS

μ

∑

k

kpk

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds,

and so

θt = μR

μ
+ μ − μR

μ
F(t) + βαS

μ

∑

k

kpk

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds, (3.1)

where

F(t) = ρ

β + ρ
+ β

β + ρ
e−(β+ρ)t .
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Noting that

∫ t

0
θk−1
s

dF(t − s)

ds
ds +

∫ t

0

d

ds
(θs)

k−1F(t − s)ds =
[
θk−1
s F(t − s)

]t

0
,

we see that, for each k ≥ 1,

β

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds = θk−1

t − F(t) −
∫ t

0

d

ds
(θs)

k−1F(t − s)ds

= θk−1
t − F(t) + β(k − 1)

∫ t

0
θk−1
s

hI(θs)

hX (θs)
F(t − s)ds.

This then implies, using αS
∑

k kpk = μS, that

θt = μR

μ
+ μ − μR

μ
F(t) + αS

μ

∑

k

kpkθ
k−1
t − μS

μ
F(t)

+ βαS

μ

∑

k

k(k − 1)pk

∫ t

0
θk−1
s

hI(θs)

hX (θs)
F(t − s)ds

and hence that

θt = μR

μ
+ μI

μ
F(t) + αS

μ

∑

k

kpkθ
k−1
t

+ βαS

μ

∑

k

k(k − 1)pk

∫ t

0
θk−1
s

hI(θs)

hX (θs)
F(t − s)ds. (3.2)

Considering formula (3.2),wewill nowdiscuss how the function θt is the asymptotic
probability that a half-edge does not transmit infection (i.e. initiate a pairing) by time
t . This should be the same as the limiting probability that a given initially susceptible
half-edge has not been paired with a (necessarily infective) half-edge by time t , as
interpreted in [4], since that probability is that its eventual partner has not transmitted
infection by time t .

Given a random half-edge, conditional on it being initially recovered, which has
probability μR/μ, it does not transmit infection by time t with probability 1.

Conditional on the half-edge being initially infected, which has probability μI /μ,
it does not transmit by time t with probability F(t). In the formula for F(t), the term

ρ
β+ρ

is the probability that recovery of the vertex occurs before the half-edge initiates

a pairing. The term β
β+ρ

e−(β+ρ)t is the probability that the half-edge initiates a pairing
before recovery but neither of these events happens by time t .

Conditional on the half-edge being initially susceptible, which happens with prob-
ability μS/μ, we need to further consider the degree of its vertex. With conditional
probability αSkpk

μS
, it has degree k, and then the edge cannot transmit if the vertex

does not get infected by time t or only gets infected by transmitting the infec-
tion to the half-edge itself, which happens with probability θk−1

t . The half-edge

123



Journal of Theoretical Probability

also cannot transmit by time t if one of the other k − 1 half-edges gets infected
at some time s ≤ t , but then the half-edge in question does not initiate a pairing
before vertex recovery over a period of length t − s; this happens with probability
− ∫ t

0
d
ds (θs)

k−1F(t − s)ds = β(k − 1)
∫ t
0 θk−1

s
hI(θs )
hX (θs )

F(t − s)ds.
Alternatively, we have

nμθ2t = nμRθt + nμIθt F(t) + nhS(θt )

+ nβαSθt
∑

k

k(k − 1)pk

∫ t

0
θk−1
s

hI(θs)

hX (θs)
F(t − s)ds.

The left hand-side here is approximately the total number of free half-edges at
time t . The term nμRθt is approximately the total number of initially recovered half-
edges that are still free at time t . The term nμIθt F(t) is approximately the total
number of initially infective half-edges that are still free at time t . The term nhS(θt )
is approximately the total number of free susceptible half-edges at time t . The term

nβαSθt

∫ t

0

∑

k

k(k − 1)pkθ
k−1
s

hI(θs)

hX (θs)
F(t − s)ds

is approximately the total number of half-edges belonging to initially susceptible
vertices that got infected before time t and are still free at time t .

The function θt is closely related to the corresponding function in [7, 8], but these
papers do not engage in the same way as [4] with the construction of the configuration
model multigraph and simple graph by pairing half-edges and revealing them as they
are needed while the epidemic spreads. Instead, for instance, Miller [7] defines a
function θ(t) as follows. An edge is chosen uniformly at random, with endpoints v

and u, and then a direction for the edge, say from v (‘base’) to u (‘target’). Then the
spreadof the epidemic ismodified so that infectious contacts fromu tov are disallowed.
Then θ(t) is defined to be the probability that there has not been an infectious contact
from v to u by time t in the modified process.

We saw in (2.13) that XR,t/n is asymptotically close to

hR(θt ) := μRθt + μρ
β

θt (1 − θt ).

The term μρ
β

θt (1 − θt ) in the above formula is compact but does not appear readily
interpretable.

We claim that the limiting function can instead be expressed in the form

h̃ R(t) = μRθt + μI θt
ρ

β + ρ
(1 − e−(β+ρ)t )

+ αS

∑

k

kpkθt
(

−
∫ t

0

d

ds
(θs)

k−1 ρ

β + ρ
(1 − e−(β+ρ)(t−s))ds

)
.

(3.3)
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To understand this formula, note that nμRθt is approximately the number of free
recovered half-edges that were initially recovered.

Also,

ρ

β + ρ
(1 − e−(β+ρ)t )

is the probability that a vertex infectious at time 0 recovers by time t and that its
recovery happens before an infectious half-edge attached to this vertex initiates a
pairing. This implies that

nμI θt
ρ

β + ρ
(1 − e−(β+ρ)t )

is approximately the total number of free recovered half-edges that were infectious at
time 0.

Finally,

nαS

∑

k

kpkθt
(

−
∫ t

0

d

ds
(θs)

k−1 ρ

β + ρ
(1 − e−(β+ρ)(t−s))ds

)

is approximately the total number of free recovered half-edges whose vertices were
susceptible at time 0, got infected and recovered by time t .

We are now going to verify that h̃ R(t) = hR(θt ). This means that we need to verify
that

μρ

β
(1 − θt ) = μI

ρ

β + ρ
(1 − e−(β+ρ)t )

+ αS

∑

k

kpk
(

−
∫ t

0

d

ds
(θs)

k−1 ρ

β + ρ
(1 − e−(β+ρ)(t−s))ds

)
.

To do that, first note that, integrating by parts,

− ∫ t
0

d
ds (θs)

k−1 ρ
β+ρ

(1 − e−(β+ρ)(t−s))ds

=
[

− θk−1
s

ρ
β+ρ

(1 − e−(β+ρ)(t−s))
]t

0
− ρ

∫ t
0 θk−1

s e−(β+ρ)(t−s)ds

= ρ
β+ρ

(1 − e−(β+ρ)t ) − ρ
∫ t
0 θk−1

s e−(β+ρ)(t−s)ds.

This means we actually need to verify that

μρ

β
(1 − θt ) = μI

ρ

β + ρ
(1 − e−(β+ρ)t )

+ μS
ρ

β + ρ
(1 − e−(β+ρ)t )

− ραS

∑

k

kpk

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds.
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But, as seen in (3.1),

θt = μR

μ
+ μ − μR

μ
F(t) + βαS

μ

∑

k

kpk

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds,

where

F(t) = ρ

β + ρ
+ β

β + ρ
e−(β+ρ)t ,

and so

−ραS

∑

k

kpk

∫ t

0
θk−1
s e−(β+ρ)(t−s)ds = −μρ

β
θt + ρ(μ − μR)

β + ρ
e−(β+ρ)t

+ ρ

β

ρμ

β + ρ
+ ρμR

β + ρ
.

This means that we need to verify that

μρ

β
(1 − θt ) = μI

ρ

β + ρ
(1 − e−(β+ρ)t ) + μS

ρ

β + ρ
(1 − e−(β+ρ)t )

− μρ

β
θt + ρ(μ − μR)

β + ρ
e−(β+ρ)t + ρ

β

ρμ

β + ρ
+ ρμR

β + ρ
,

which holds, noting that μS + μI + μR = μ.
Similarly, we have an alternative formula for the limit of XI,t/n, the asymptotic

scaled number of free infectious half-edges at time t :

h̃ I (t) = μI θt e
−(β+ρ)t + αSθt

∑

k

kpk
(

−
∫ t

0

d

ds
(θs)

k−1e−(β+ρ)(t−s)ds
)
. (3.4)

For infectious vertices, we have

Ît = αIe
−ρt + β

∫ t

0
hI(θs)

hS(θs)

hX (θs)
e−ρ(t−s)ds

= αIe
−ρt −

∫ t

0

dvS(θs)

ds
e−ρ(t−s)ds, (3.5)

and, for recovered vertices,

R̂t = αR + αI(1 − e−ρt ) + β

∫ t

0
hI(θs)

hS(θs)

hX (θs)
(1 − e−ρ(t−s))ds

= αR + αI(1 − e−ρt ) −
∫ t

0

dvS(θs)

ds
(1 − e−ρ(t−s))ds. (3.6)
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