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Abstract
We consider rough differential equations whose coefficients contain path-dependent
bounded variation terms and prove the existence and a priori estimate of solutions.
These equations include classical path-dependent stochastic differential equations con-
taining running maximum processes and normal reflection terms. We apply these
results to determine the topological support of the solution processes.
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differential equation · Running maximum · Skorohod equation · Rough path ·
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1 Introduction

In the framework of Itô’s calculus, path-dependent stochastic differential equa-
tions(=SDEs) are naturally formulated and the existence and uniqueness hold under
suitable standard assumptions on the coefficients. For example, reflected SDEs and
SDEs containing running maximum and minimum processes are typical examples. In
one dimensional cases, very simple SDEs containing themaximum andminimum pro-
cesses and reflection term have been studied in detail. In this paper, we consider rough
differential equations (=RDEs) whose coefficients contain path-dependent bounded
variation terms and prove the existence and a priori estimate of solutions. This class
of equations include the classical path-dependent SDEs mentioned above. Although
the solutions are not unique in general, the uniqueness holds for smooth rough paths
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in many cases. Under the uniqueness assumption, we prove a continuity property of
solution mappings at smooth rough paths which is useful to determine the topological
support of the solution processes.

The structure of this paper is as follows. In Sect. 2, we introduce a class of RDEs
containing bounded variation terms:

Zt = ξ +
∫ t

0
σ(Zs, A(Z)s)dXs, (1.1)

where Xt is a 1/β rough path (1/3 < β ≤ 1/2) and A(Z)t is a continuous bounded
variation path which depends on the past path (Zs)s≤t . After that, we state our main
theorem (Theorem 2.7) which proves the existence and a priori estimate of solutions
under σ ∈ Lipγ−1 (γ > 1/β) and suitable assumptions on A. Note that the regularity
assumption on σ for the existence of solutions is standard in the case of usual RDEs
which corresponds to A ≡ 0. The solution Zt is a controlled path of the driving rough
pathX. Actually, we solve this equation in product Banach spaces consisting of Z and
� = A(Z) by applying Schauder’s fixed point theorem.

To this end, we introduce Hölder continuous path spaces Cθ and Banach spaces
Cq-var ,θ consisting of � based on the control function ω of X. The latter is a set of
pathswhoseq-variation norms (q ≥ 1) are finite and satisfy a certainHölder continuity
defined by ω. We also study basic properties of the functional A. We briefly explain
examples but we will discuss the detail in Sect. 5.

In Sect. 3, we prove our main theorem. The uniqueness does not hold in general.
See Remark 2.8 (6).

In Sect. 4, we consider usual β-Hölder rough path X with the control function
ω(s, t) = |t − s|. We show that the (generally multivalued) solution mapping is
continuous at a rough path for which the solution is unique in Proposition 4.2 using a
priori estimate of solutions. We use this result to prove support theorems in Sect. 6.

In Sect. 5, we give examples. In Sect. 5.1, we consider reflected rough differential
equations on a domain D in R

n :

Yt = ξ +
∫ t

0
σ(Ys)dXs + 	t , ξ ∈ D̄, (1.2)

where	t is the reflection termwhich forcesYt ∈ D̄. This equation looks different from
the equation studied in the main theorem. However, it is well-known that reflected Itô
(Stratonovich) SDEs can be transformed to certain path-dependent Itô (Stratonovich)
SDEs without reflection term. This is used to prove Freidlin-Wentzell type large devi-
ation principle ([5]) and the support theorem ([14]) for reflected diffusions on domains
with smooth boundary. We prove the existence theorem (Theorem 5.6) under standard
assumptions (A) and (B) on D and σ ∈ Lipγ−1 by transforming the Eq. (1.2) to the
corresponding path-dependent RDE (1.1). This is an extension of the result in [2] in
which we proved the existence of solutions of (1.2) under stronger assumptions that
D satisfies the condition (H1) and σ ∈ C3

b .
In 1-dimensional cases, perturbed SDEs and perturbed reflected SDEs were studied

by many people. See e.g. [7, 8, 10, 11, 13, 31, 36]. In Sect. 5.2, we give a short review
of these subjects.

123



Journal of Theoretical Probability

In Sect. 5.3, we consider multidimensional and rough path versions of 1-
dimensional perturbed SDEs and perturbed reflected SDEs. In the study of the latter
one, we need to consider an implicit Skorohod equation as in [2]. As for perturbed
reflected SDE whose driving process is the standard Brownian motion, we can extend
the existence and uniqueness result of the solution due to Doney and Zhang [13] by
using our approach. See Remark 5.22.

Path-dependent functional A(x)t which we are mainly concerned with in this paper
is a kind of generalization of the maximum process max0≤s≤t |xs | and the local time
term L(x)t . Themaximumprocessmax0≤s≤t |xs | is obtained as the limit of ‖x‖L p([0,t])
as p → ∞. Hence it may be natural to study the case where A(x)t = ‖x‖L p([0,t]). In
Sect. 5.4, we study such examples.

InSect. 6,weprove support theorems for solutionprocesses byusingProposition4.2
and Wong–Zakai theorems. In this section, except Theorem 6.4, we consider the
Brownian rough pathW which implies that we consider the usual Stratonovich SDEs
driven by the standard Brownian motion.

Section 1 is an appendix. The solution Yt studied in Sect. 5 is a sum of a controlled
path Zt and a continuous bounded variation path 	t . For a given controlled path Z ,
the Gubinelli derivative Z ′ is uniquely determined if the first level path X ofX is truly
rough in the sense of [20]. In our case, 	 is certainly bounded variation but does not
have good regularity property in Hölder norm. Hence it is natural to ask whether Z ′
is unique or not for Y in our setting. We study this problem by using a certain rough
property of the path X in Sect. 7.1. In Sect. 7.2, we make a remark on path-dependent
rough differential equations with drift. This consideration is necessary for the study
of the reflected diffusions with the drift terms.

2 Preliminary andMain Theorem

Let us fix a positive number T . Let ω(s, t) (0 ≤ s ≤ t ≤ T ) be a control function.
That is, (s, t) 
→ ω(s, t) ∈ R

+ is a continuous function and ω(s, u) + ω(u, t) ≤
ω(s, t) (0 ≤ s ≤ u ≤ t ≤ T ) holds. We introduce a mixed norm by using ω and
p-variation norm. We refer the readers to [21] for the related studies. Let E be a finite
dimensional normed linear space. For a continuous path (xt ) (0 ≤ t ≤ T ) on E , we
define for [s, t] ⊂ [0, T ],

‖x‖∞,[s,t] = max
s≤u≤t

|xu |, (2.1)

‖x‖∞-var ,[s,t] = max
s≤u≤v≤t

|xu,v|, (2.2)

‖x‖p-var ,[s,t] =
{
sup
P

N∑
k=1

|xtk−1,tk |p

}1/p

, (2.3)

where P = {s = t0 < · · · < tN = t} is a partition of the interval [s, t] and xu,v =
xv − xu . When [s, t] = [0, T ], we may omit denoting [0, T ]. For 0 < θ ≤ 1, q ≥ 1,
0 ≤ s ≤ t ≤ T and a continuous path x , we define

123



Journal of Theoretical Probability

‖x‖θ,[s,t] = inf
{
C > 0 | |xu,v| ≤ Cω(u, v)θ s ≤ u ≤ v ≤ t

}
, (2.4)

‖x‖q-var ,θ,[s,t] = inf
{

C > 0
∣∣∣ ‖x‖q-var ,[u,v] ≤ Cω(u, v)θ s ≤ u ≤ v ≤ t

}
. (2.5)

We use the convention that inf ∅ = +∞. When ω(s, t) = |t − s|, ‖x‖θ,[s,t] < ∞ is
equivalent to that xu (s ≤ u ≤ t) is a Hölder continuous path with the exponent θ in
usual sense. Hence we may say x is an ω-Hölder continuous path with the exponent
θ ((ω, θ)-Hölder continuous path in short). For two parameter function Fs,t (0 ≤ s ≤
t ≤ T ), we define ‖F‖θ,[s,t] similarly.

We denote by Cθ ([0, T ], E) the set of ω-Hölder continuous paths x with values
in E satisfying ‖x‖θ = ‖x‖θ,[0,T ] < ∞. We may denote the function space by
(Cθ ([0, T ], E), ω) to specify the control function. Cθ ([0, T ], E) is a Banach space
with the norm |x0| + ‖x‖θ . We may just write Cθ (E) if there is no confusion. Let
Cq-var ,θ (E) denote the set of E-valued continuous paths of finite q-variation defined
on [0, T ] satisfying ‖x‖q-var ,θ := ‖x‖q-var ,θ,[0,T ] < ∞. Note that Cq-var ,θ (E) is a
Banach space with the norm |x0| + ‖x‖q-var ,θ . Obviously, any path x ∈ Cq-var ,θ (E)

satisfy |xs,t | ≤ ‖x‖q-var ,θω(s, t)θ . We may write Cθ , Cq-var ,θ for simplicity.
We next introduce the notation for mappings between normed linear spaces. Let

E, F be finite dimensional normed linear spaces. For γ = n + θ (n ∈ N ∪ {0}, 0 <

θ ≤ 1), Lipγ (E, F) denotes the set of bounded functions f on E with values in F
which are n-times continuously differentiable and whose derivatives up to n-th order
are bounded and Dn f is a Hölder continuous function with the exponent θ in usual
sense.

We use the following lemma. The compact embedding in (2) is necessary for the
application of the Schauder fixed point theorem.

Lemma 2.1 (1) Let 1 ≤ q ′ ≤ q. For a continuous path x, we have

‖x‖q-var ,[s,t] ≤ ‖x‖q ′/q
q ′-var ,[s,t]‖x‖(q−q ′)/q

∞-var ,[s,t] ≤ ‖x‖q ′-var ,[s,t]. (2.6)

(2) Let 1 ≤ q ′ ≤ q. Let 0 < θ, θ ′ ≤ 1 be positive numbers such that qθ ≤ q ′θ ′. Then
for any x ∈ Cq ′-var ,θ ′

, we have

‖x‖q-var ,θ ≤ ω(0, T )(q
′θ ′−qθ)/q‖x‖q ′/q

q ′-var ,θ ′ ‖x‖(q−q ′)/q∞-var . (2.7)

Further if q ′ < q holds, then the inclusion Cq ′-var ,θ ′ ⊂ Cq-var ,θ is compact.
(3) If ‖x‖q-var ,[s,t] < ∞ for some q, then limq→∞ ‖x‖q-var ,[s,t] = ‖x‖∞-var ,[s,t].

Proof (1) We have

‖x‖q-var ,[s,t] =
{
sup
P

∑
i

|xti−1,ti |q
}1/q

≤
{
sup
P

∑
i

|xti−1,ti |q
′
max

i
|xti−1,ti |q−q ′

}1/q

≤ ‖x‖q ′/q
q ′-var ,[s,t]‖x‖(q−q ′)/q

∞,[s,t] . (2.8)
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The second inequality follows from the trivial bound ‖x‖∞-var ,[s,t] ≤ ‖x‖q ′-var ,[s,t].
(2) By (1), we have

‖x‖q-var ,[s,t] ≤ ‖x‖q ′/q
q ′-var ,θ ′,[s,t]ω(s, t)(θ

′q ′)/q−θ‖x‖(q−q ′)/q
∞-var ,[s,t]ω(s, t)θ . (2.9)

This implies (2.7). If supn |(xn)0|+‖xn‖q ′-var ,θ ′ < ∞, then by their equicontinuities,
there exists a subsequence such that xnk converges to a certain function x∞ in the
uniform norm. By (2.7), we can conclude that the convergence takes place with respect
to the norm on Cq-var ,θ .
(3) We need only to prove lim supq→∞ ‖x‖q-var ,[s,t] ≤ ‖x‖∞-var ,[s,t]. Suppose
‖x‖q0-var ,[s,t] < ∞. Then for q > q0,

sup
P

(∑
i

|xti−1,ti |q
)1/q

≤ sup
P

(∑
i

|xti−1,ti |q0
)1/q

sup
P

max
i

|xti−1,ti |(q−q0)/q .

(2.10)

Taking the limit q → ∞, we obtain the desired estimate. ��
Throughout this paper, β is a positive number satisfying 1/3 < β ≤ 1/2 if there

are no further comments. Let ω be a control function and let Xs,t = (Xs,t , Xs,t )

(0 ≤ s ≤ t ≤ T ) be a (ω, β)-Hölder rough path on R
d . That is, X satisfies Chen’s

relation and the path regularity conditions,

|Xs,t | ≤ ‖X‖βω(s, t)β, |Xs,t | ≤ ‖X‖2βω(s, t)2β, 0 ≤ s ≤ t ≤ T , (2.11)

where ‖X‖β(< ∞) and ‖X‖2β(< ∞) denote the ω-Hölder norm. We denote by
C β(Rd) the set of all (ω, β)-Hölder rough paths,whereωmoves in the set of all control
functions.Whenω(s, t) = |t−s|,Xs,t is a usualβ-Hölder rough path. IfXs,t is a rough

path with finite 1/β-variation, setting ω(s, t) = ‖X‖1/β1/β-var ,[s,t] + ‖X‖1/(2β)

1/(2β)-var ,[s,t],‖X‖β ≤ 1 and ‖X‖2β ≤ 1 hold. We refer the reader to [6, 20, 22, 28, 29] for the
references of rough paths.

We use the following quantity,

|̃||X|||β =
3∑

i=1

|||X|||iβ, |||X|||β = ‖X‖β +
√

‖X‖2β. (2.12)

We introduce a set of controlled paths D2θ
X (Rn) of Xs,t , where 1/3 < θ ≤ β

following [20, 24]. A pair of ω-Hölder continuous paths (Z , Z ′) ∈ Cθ ([0, T ], R
n) ×

Cθ ([0, T ],L(Rd , R
n)) with the exponent θ is called a controlled path of X , if the

remainder term RZ
s,t = Zt − Zs − Z ′

s Xs,t satisfies ‖RZ‖2θ < ∞. The set of controlled
paths D2θ

X (Rn) is a Banach space with the norm

‖(Z , Z ′)‖2θ = |Z0| + |Z ′
0| + ‖Z ′‖θ + ‖RZ‖2θ (Z , Z ′) ∈ D2θ

X (Rn). (2.13)
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The rough differential equations which we will study contain path dependent
bounded variation term A(x)t . We consider the following condition on A. Note that
the function space Cβ in the following statement depends on the control function ω.

Assumption 2.2 Let ξ ∈ R
n . Let ω be a control function. Let A be a mapping from

Cβ([0, T ], R
n | x0 = ξ) to C([0, T ], R

n) satisfying the following.

(1) (Adaptedness) (A(x)s)0≤s≤t depends only on (xs)0≤s≤t for all 0 ≤ t ≤ T .
(2) (Continuity) There exists 1/3 < β0 < β such that A can be extended to a contin-

uous mapping from Cβ0([0, T ], R
n | x0 = ξ) to (C([0, T ], R

n), ‖ ‖∞,[0,T ]). We
use the same notation A to denote the extended mapping on Cβ0 .

(3) There exists a non-decreasing positive continuous function F on [0,∞) such that
for all x ∈ Cβ0([0, T ], R

n | x0 = ξ),

‖A(x)‖1-var ,[s,t] ≤ F(‖x‖(1/β0)-var ,[s,t])‖x‖∞-var ,[s,t], 0 ≤ s ≤ t ≤ T

(2.14)

hold.

Remark 2.3 The conditions (1), (2) are natural. In many cases, A is defined on contin-
uous path spaces and is continuous with respect to the uniform norm. The condition
(3) is strong assumption. This implies that the total variation of A(x) on [s, t] can be
estimated by the norm of the path (xu − xs) on s ≤ u ≤ t . Note that this does not
exclude the case where A(x)u (s ≤ u ≤ t) depends on xv (v ≤ s).

We have the following simple result.

Lemma 2.4 Let ω be a control function and let Cβ([0, T ], R
n) be the corresponding

Hölder space.

(1) Suppose A : Cβ([0, T ], R
n | x0 = ξ) → C([0, T ], R

n) satisfies Assumption 2.2
(1), (2). Then the initial value A(x)0 is independent of x ∈ Cβ([0, T ], R

n | x0 = ξ).
(2) Let 0 < T ′ < T and set ωT ′(s, t) = ω(T ′ + s, T ′ + t) (0 ≤ s ≤ t ≤ T − T ′).

Then ωT ′ is a control function.
(3) Let Cβ

T ′([0, T − T ′], R
n) be the (ωT ′ , β)- Hölder space. Let y ∈ Cβ([0, T ′], R

n)

and x ∈ Cβ

T ′([0, T − T ′], R
n) and suppose yT ′ = x0. Set

x̃t =
{

yt t ≤ T ′,
xt−T ′ T ′ ≤ t ≤ T .

Then x̃ ∈ Cβ([0, T ], R
n). Let

Ãy,T ′(x)t = A(x̃)T ′+t , 0 ≤ t ≤ T − T ′, x ∈ Cβ

T ′([0, T − T ′], R
n | x0 = yT ′).

Then Ãy,T ′ satisfies Assumption 2.2 replacing ω and T by ωT ′ and T − T ′. In
particular, (2.14) holds for the same function F.

123



Journal of Theoretical Probability

Proof (1) For x ∈ C([0, T ], R
n), let xt

u = xt∧u . Then byAssumption 2.2 (1), A(x)u =
A(xt )u (0 ≤ u ≤ t) holds. By a simple calculation, for any x, y ∈ C([0, T ], R

n), we
have

‖xt − yt‖Cβ0 ≤ (‖x‖Cβ + ‖y‖Cβ

)
ω(0, t)β−β0 .

Since (y0)t = y0, this implies limt→+0 ‖xt − y0‖Cβ0 = 0. Hence

|A(x)0 − A(y)0| = |A(xt )0 − A(y0)0| ≤ ‖A(xt ) − A(y0)‖∞,[0,T ] → 0 as t ↓ 0.

(2) and (3) are easy to check. ��
Actually, the condition (3) automatically implies the following stronger estimate.

By this result, we may assume that the growth rate of F(u) is at most of order u1/β ,
that is, a polynomial order.

Lemma 2.5 Assume the mapping A : Cβ([0, T ], R
n | x0 = ξ) → C([0, T ], R

n)

satisfies the condition (3) in Assumption 2.2.

(1) There exists C > 0 such that

‖A(x)‖1-var ,[s,t] ≤ C
(
‖x‖1/β0(1/β0)-var ,[s,t] + 1

)
‖x‖∞-var ,[s,t] 0 ≤ s ≤ t ≤ T .

(2.15)

(2) Let us choose positive numbers α̃ and q such that α̃ ≤ β and 1 ≤ q ≤ β/α̃. Then
for any x, x ′ ∈ Cβ , we have

‖A(x) − A(x ′)‖q-var ,α̃

≤ ω(0, T )
β
q −α̃ (F(‖x‖β0ω(0, T )β0)‖x‖β + F(‖x ′‖β0ω(0, T )β0)‖x ′‖β

)1/q

× ‖A(x) − A(x ′)‖1−(1/q)∞-var . (2.16)

Proof Let ω1/β0(s, t) = ‖x‖1/β01/β0-var ,[s,t]. For ε > 0, we choose the points s =
t0 < t1 < · · · < tN = t such that ω1/β0(ti−1, ti ) = ε (1 ≤ i ≤ N − 1)
and ω1/β0(tN−1, tN ) ≤ ε. By the super additivity of ω1/β0 , we have (N − 1)ε ≤∑N

i=1 ω1/β0(ti−1, ti ) ≤ ω1/β0(s, t) and N ≤ ω1/β0(s, t)/ε + 1. By the additivity
property of the bounded variation norm, we have

‖A(x)‖1-var ,[s,t] =
N∑

i=1

‖A(x)‖1-var ,[ti−1,ti ]

≤
N∑

i=1

F
(
ω1/β0 (ti−1, ti )

β0
) ‖x‖∞-var ,[ti−1,ti ] ≤ F(εβ0 )

(
ω1/β0 (s, t)

ε
+ 1

)
‖x‖∞-var ,[s,t]

= F(εβ0 )

(‖x‖1/β01/β0-var ,[s,t]
ε

+ 1

)
‖x‖∞-var ,[s,t]
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which implies the desired estimate.
(2) Applying Lemma 2.1 (2) in the case where q ′ = 1, θ ′ = β, θ = α̃, we have

‖A(x) − A(x ′)‖q-var ,α̃ (2.17)

≤ ω(0, T )(β/q)−α̃
(‖A(x)‖1-var ,β + ‖A(x ′)‖1-var ,β

)1/q ‖A(x) − A(x ′)‖1−(1/q)∞-var .

(2.18)

Note that

‖x‖1/β0-var ,[s,t] = sup

⎧⎨
⎩
∣∣∣∣∣
∑

i

|xti−1,ti |1/β0
∣∣∣∣∣
β0
⎫⎬
⎭

≤ sup

⎧⎨
⎩
∣∣∣∣∣
∑

i

(‖x‖β0,[s,t]ω(ti−1, ti )
β0
)1/β0

∣∣∣∣∣
β0
⎫⎬
⎭

≤ ‖x‖β0,[s,t]ω(s, t)β0 .

By the assumption on A, we have

‖A(x)‖1-var ,β ≤ F
(‖x‖β0ω(0, T )β0

) ‖x‖β. (2.19)

This completes the proof. ��
Remark 2.6 Of course, we may optimize the estimate (2.15) as follows:

‖A(x)‖1-var ,[s,t] ≤ F̃
(‖x‖(1/β0)-var ,[s,t]

) ‖x‖∞-var ,[s,t],

where F̃(u) = infε>0 F(ε)
{( u

ε

)1/β0 + 1
}
.

We now introduce our RDEs and state our main theorem.

Theorem 2.7 Let γ > 1/β. Let X be a (ω, β)-Hölder rough path. Let σ ∈
Lipγ−1(Rn × R

n,L(Rd , R
n)) and ξ ∈ R

n. Assume that the mapping A :
Cβ([0, T ], R

n | x0 = ξ) → C([0, T ], R
n) satisfies the condition in Assumption 2.2.

Then the following hold.

(1) There exists a controlled path (Z , Z ′) ∈ D
2β
X (Rn) such that

Zt = ξ +
∫ t

0
σ(Zs, A(Z)s)dXs, Z ′

t = σ(Zt , A(Z)t ), 0 ≤ t ≤ T . (2.20)

(2) All solutions (Z , Z ′) of (2.20) satisfy the following estimate:
there exist positive constants K and κ1, κ2, κ3 which depend only on σ, β, γ , F
such that

‖Z‖β + ‖Z ′‖β + ‖A(Z)‖1-var ,β + ‖RZ‖2β
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≤ K
{
1 +

(
1 + |̃||X|||β

)κ1
ω(0, T )

}κ2 |̃||X|||β
κ3

. (2.21)

First we make some remarks for this theorem and after that we explain some exam-
ples.

Remark 2.8 (1) From now on, we always set γ > 1/β for 1/3 < β ≤ 1/2 if there is
no further comment.
(2) Let (Z , Z ′) ∈ D2θ

X (Rn) (1/3 < θ ≤ β). Let {�t }0≤t≤T be a continuous bounded
variation path onR

n . Thenwe can define the integral
∫ t
0 σ(Zs, �s)dXs in a similarway

to the usual rough integral. We denote the derivative of σ = σ(ξ, η) (ξ ∈ R
n, η ∈ R

n)

with respect to ξ by D1σ and η by D2σ . Let

��
s,t = σ(Zs, �s)Xs,t + (D1σ)(Zs, �s)Z ′

sXs,t + (D2σ)(Zs, �s)

∫ t

s
�s,r ⊗ d Xr

and �̃�
s,t = ��

s,t − (D2σ)(Zs, �s)
∫ t

s �s,r ⊗ d Xr . Let P = {s = t0 < · · · < tN = t}
and write |P| = maxi |ti+1 − ti |. Then it is easy to check that lim|P |→0

∑N
i=1 ��

ti−1,ti

converges by the Sewing lemma using (3.8). Actually lim|P |→0
∑N

i=1 �̃�
ti−1,ti also

converges to the same limit value. We denote the limit by
∫ t

s σ(Zu, �u)dXu . Hence
the sum of the term

∫ t
s �s,r ⊗ d Xr does not have any effect on the integral. However,

we need to consider�� instead of �̃� to obtain estimates of the integral in Lemma 3.2
which is necessary for the proof of the main theorem.
(3) Let us consider the case σ(ξ, η) = σ̃ (ξ + η), where σ̃ ∈ Lipγ−1(Rn,L(Rd , R

n)).
Let Y be a continuous path on R

n . Suppose that there exist (Z , Z ′) ∈ D2θ
X (Rn) and

continuous bounded variation path (�t )0≤t≤T such that Yt = Zt + �t (0 ≤ t ≤ T ).
Clearly, the decomposition of Y to controlled path part Z and the bounded variation
part� is not unique. We should note that our definition of

∫ t
0 σ̃ (Ys)dXs depends on Z ′

and Y . However, under a natural assumption, the Gubinelli derivative Z ′
t is uniquely

defined for Y and the integral does not depend on the decomposition (Z , �). We
discuss this problem in the “Appendix”.
(4) Theorem 2.7 implies that the solution Zt satisfies the following estimate:

∣∣∣Zt − Zs − σ(Zs, A(Z)s)Xs,t − (D1σ)(Zs, A(Z)s)σ (Zs, A(Z)s)Xs,t

− (D2σ)(Zs, A(Z)s)

∫ t

s
A(Z)s,r ⊗ d Xr

∣∣∣ ≤ G(ω(0, T ), |̃||X|||β)ω(s, t)θ ,

0 ≤ s ≤ t ≤ T . (2.22)

Here G is a certain polynomial function which depends on σ, β, γ, F . Also θ(> 1) is
a positive constant which depends on β and γ (When γ = 3, θ = 3β holds). Clearly,
a path Zt which satisfies (2.22) is a solution of (2.20).
(5) Let ω̃ be a control function and Ci be positive constants. Actually, under the
assumption that for all 0 ≤ s ≤ t ≤ T ,

‖A(x)‖1-var ,[s,t] ≤ C1

(
1 + ‖x‖β0

1/β0-var ,[s,t]
)

‖x‖∞-var ,[s,t] + C2ω̃(s, t)
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+ C3|t − s|β,

we can prove similar results to Theorem2.7 forβ-Hölder rough pathsXwithω(s, t) =
|t − s| by a similar proof of the main theorem. This extension is necessary to treat
the examples in Example 2.9 (3) and (4). However, we need to change the upper
bound function in (2.21). The reason is as follows. The β-Hölder rough path X can be
regarded as a (ω̄, β)-Hölder rough path, where ω̄(s, t) = ω̃(s, t) + |t − s|. We can do
the same proof as in the main theorem in this setting. The control function ω in (2.21)

should be changed to this ω̄ and accordingly |̃||X|||β also should be changed to the

corresponding quantity. Also we should replace the term |̃||X|||β
κ3

by (1 + |̃||X|||β)κ3 .
(6) If A ≡ 0, the uniqueness of the solutions hold under the assumption σ ∈ Lipγ .
However, even if A ≡ 0, the uniqueness does not hold in general under σ ∈ Lipγ−1.
See Davie [9]. Gassiat [23] gave an example which showed that the uniqueness does
not hold for reflected RDE even if the coefficient is smooth and the domain is just a
half space. Contrary to this, in one dimensional case (note that the driving noise is
multidimensional one), the uniqueness of the solutions of reflected RDEs were proved
by Deya-Gubinelli-Hofmanová-Tindel in [12]. It may be interesting problem to find
natural class of solutions for which the uniqueness hold and a non-trivial class of
reflected RDEs or more generally path-dependent RDEs for which the uniqueness
hold in an appropriate sense. See also Sect. 5.4 for some examples for which the
uniqueness hold.

The situation is different if β > 1/2. Ferrante and Rovira [19] proved the existence
of solutions of reflected (Young) ODE on half space driven by fractional Brownian
motion with the Hurst parameter H > 1/2. Falkowski and Słomin’ski [18] proved the
Lipschitz continuity of the Skorohod mapping on a half space in the Hölder space and
proved the uniqueness in that case.

We briefly explain examples. We refer the reader for the detail to Sect. 5.

Example 2.9 (1) Let D be a domain in R
n satisfying conditions (A) and (B). Consider

the Skorohod equation yt = xt +φt , where x is a continuous path whose starting point
is in D̄. Also yt ∈ D̄ (0 ≤ t ≤ T ) and φt is the bounded variation term. The mapping
L : x 
→ φ satisfies Assumption 2.2. Using this result, we can apply the main theorem
to reflected rough differential equations.
(2) Let fi (1 ≤ i ≤ n) be Lipschitz functions on R

n and define

A(x)t =
(
max
0≤s≤t

f1(xs), . . . , max
0≤s≤t

fn(xs)

)
, x ∈ C([0, T ], R

n). (2.23)

This satisfies Assumption 2.2. Actually this satisfies the stronger conditions (Lip)ρ
and (BV)ρ for certain ρ in Definition 5.12. See Proposition 5.13 for the proof. Note
that even if we replace each max0≤s≤t fi (xs) by finite products of maximum functions
and minimum functions of f (xs), Assumption 2.2 holds.
(3) Let c1, . . . , cn be β-Hölder continuous paths on R

n in usual sense. Let f be a
Lipschitz map from R

n to R
n . Let us consider a variant of the example (2) as follows:

A(x)t =
(
max
0≤s≤t

| f (xs) − c1(s)|, . . . , max
0≤s≤t

| f (xs) − cn(s)|
)

.
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This does not satisfy Assumption 2.2 (3). However it holds that

‖A(x)‖1-var ,[s,t] ≤ C
(‖x‖∞-var ,[s,t] + |t − s|β) 0 ≤ s ≤ t ≤ T

for some positive constant C .
(4) We consider the case ω(s, t) = |t − s|, that is, usual β-Hölder rough path. Path-
dependent functional A(x)t which we are mainly concerned with in this paper is a
kind of generalization of the maximum process max0≤s≤t xs and the local time term
L(x)t . The maximum process max0≤s≤t |xs | is obtained as the limit of ‖x‖L p([0,t])
as p → ∞. Hence it may be natural to study the case where A(x)t = ‖x‖L p([0,t]).
Theorem 2.7 cannot be applied to this directly. We will study this example in Sect. 5.4.
(5)LetWt be the 1-dimensional standardBrownianmotion starting at 0. Let us consider
the following equations,

Yt = ξ +
∫ t

0
σ(Ys)dWs + a sup

0≤s≤t
Ys, (2.24)

Yt = ξ +
∫ t

0
σ(Ys)dWs + a sup

0≤s≤t
Ys + 	t , ξ ≥ 0, Yt ≥ 0 for all t . (2.25)

Here a denotes a real number.
The Eq. (2.25) contains the local time term 	t at 0. These processes have been

studied e.g. in [7, 8, 10, 11, 13, 31, 36]. We see that a multidimensional version of
these equations can be transformed to the equation of the form (2.20) in Sect. 5.2. We
also give some brief review of 1-dimensional cases there.

3 Proof of Theorem 2.7

In the calculation below, we assume γ ≤ 3 as well as γ > 1/β.
If we write A(Z)t = �t , then the Eq. (2.20) reads

Zt = ξ +
∫ t

0
σ(Zs, �s)dXs, (3.1)

�t = A

(
ξ +

∫ ·

0
σ(Zs, �s)dXs

)
t
. (3.2)

We solve this equation by using Schauder’s fixed point theorem. First, we give an
estimate of the integral

∫ t
s �s,r ⊗ dxr (0 ≤ s < t ≤ T ), where x ∈ Cθ , � ∈ Cq-var ,θ ′

and ⊗ denotes the tensor product. To this end, we introduce some notations. Let
0 ≤ s ≤ t ≤ T and consider a mapping F defined on {(u, v) | s ≤ u ≤ v ≤ t} with
values in a certain vector space. Let P = {s = t0 < · · · < tN ≤ t} be a partition of
[s, t]. We write

∑
P

F(u, v) =
N∑

i=1

F(ti−1, ti ).

123



Journal of Theoretical Probability

We use the following estimate.

Lemma 3.1 Let x ∈ Cθ (Rn). Let p be a positive number such that θ p > 1. Let q
be a positive number such that 1/p + 1/q ≥ 1 and � ∈ Cq-var ,θ ′

(Rn). For any
0 ≤ s < t ≤ T , the integral

∫ t
s �s,r ⊗ dxr converges in the sense of Young integral

and it holds that

∣∣∣∣
∫ t

s
�s,r ⊗ dxr

∣∣∣∣ ≤ Cθ,q‖�‖q-var ,θ ′ ‖x‖θω(s, t)θ+θ ′
, (3.3)

where Cθ,q = 2θ+ 1
q ζ
(
θ + 1

q

)
.

Proof The assumption implies x is finite 1/θ -variation. Moreover θ + 1/q > 1 holds.
Hence the Young integral of

∫ t
s �s,r ⊗dxr converges and the following estimate holds:

∣∣∣∣
∫ t

s
�s,r ⊗ dxr

∣∣∣∣ ≤ Cθ,q‖�‖q-var ,[s,t]‖x‖1/θ-var ,[s,t]

≤ Cθ,q‖�‖q-var ,θ ′ ‖x‖θω
θ+θ ′

(s, t),

which completes the proof. ��
By using this lemma, we will give estimates for the integral

∫ t
s σ(Zu, �u)dXu .

As we mentioned, we denote the derivative of σ = σ(ξ, η) (ξ ∈ R
n, η ∈ R

n) with
respect to ξ by D1σ and η by D2σ . Also we write Dσ(ξ, η)(u, v) = D1σ(ξ, η)u +
D2σ(ξ, η)v. We write Yt = (Zt , �t ) ∈ R

n × R
n . Let (Z , Z ′) ∈ D2α

X (Rn) and
� ∈ Cq-var ,α̃(Rn).

Until the end of this section, we choose and fix p > 0 such that 1/β < p < γ . For
this p, we assume q, α, α̃ satisfy the following condition.

q ≥ 1,
1

p
+ 1

q
≥ 1, α p > 1,

1

3
< α ≤ α̃ ≤ β. (3.4)

As we explained, we consider

�s,t = σ(Ys)Xs,t + (D1σ)(Ys)Z ′
sXs,t + (D2σ)(Ys)

∫ t

s
�s,r ⊗ dXr . (3.5)

By a simple calculation, we have for s < u < t ,

(δ�)s,u,t := �s,t − �s,u − �u,t

= −
(∫ 1

0
(D1σ)(Ys + θYs,u)

)(
RZ

s,u ⊗ Xu,t

)

+
{
(D1σ)(Ys) −

∫ 1

0
(D1σ)(Ys + θYs,u)dθ

} (
(Z ′

s Xs,u) ⊗ Xu,t
)
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+
{
(D2σ)(Ys) −

∫ 1

0
(D2σ)(Ys + θYs,u)dθ

} (
�s,u ⊗ Xu,t

)

+ ((D1σ)(Ys)Z ′
s − (D1σ)(Yu)Z ′

u

)
Xu,t

+ ((D2σ)(Ys) − (D2σ)(Yu))

∫ t

u
�u,r ⊗ dXr . (3.6)

Thus, under the assumption on Z , �, applying Lemma 3.1 to the case θ = β,
θ ′ = α̃ and (a + b + c)γ−2 ≤ 3γ−2(aγ−2 + bγ−2 + cγ−2), we obtain

∣∣(δ�)s,u,t

∣∣
≤ ‖D1σ‖∞‖RZ ‖2α‖X‖βω(s, t)β+2α

+ ‖Dσ‖γ−2|Ys,u |γ−2
{
‖Z ′‖∞‖X‖βω(s, u)β + ‖�‖q-var ,α̃ω(s, u)α̃

}
‖X‖βω(u, t)β

+ {‖D1σ‖∞‖Z ′‖αω(s, u)α + ‖D1σ‖γ−2|Ys,u |γ−2‖Z ′‖∞
} ‖X‖2βω(u, t)2β

+ Cβ,q‖D2σ‖γ−2|Ys,u |γ−2‖�‖q-var ,α̃‖X‖βω(u, t)α̃+β

≤ ‖Dσ‖∞‖RZ ‖2α‖X‖βω(s, t)β+2α + ‖Dσ‖∞‖Z ′‖α‖X‖2βω(s, t)α+2β

+ C‖Dσ‖γ−2

{(‖Z ′‖∞‖X‖βω(s, t)β−α
)γ−2 +

(
‖RZ ‖2αω(s, t)α

)γ−2

+
(
‖�‖q-var ,α̃ω(s, t)α̃−α

)γ−2}·
{(

‖Z ′‖∞‖X‖βω(s, t)β + ‖�‖q-var ,α̃ω(s, t)α̃
)

‖X‖βω(s, t)β + ‖Z ′‖∞‖X‖2βω(s, t)2β
}

· ω(s, t)α(γ−2), (3.7)

where C = 3γ−2(2 + Cβ,q). Therefore, there exists a positive constant C which
depends only on γ, β, p such that

∣∣(δ�)s,u,t

∣∣ ≤ C Kσ f
(
‖RZ‖2α, ‖Z ′‖α, ‖Z ′‖∞, ‖�‖q-var ,α̃

)
|̃||X|||β(

1 + ω(s, t)1/2
)

ω(s, t)β+(γ−1)α

0 ≤ s ≤ t ≤ T (3.8)

where

Kσ = ‖Dσ‖γ−2 + ‖Dσ‖∞, (3.9)

f (a, b, c, d) = a + b +
(

aγ−2 + cγ−2 + dγ−2
)

(c + d). (3.10)

LetP = {tk}N
k=0 be a partition of [s, t]. Sinceβ+(γ −1)α > β+pα−α ≥ pα > 1,

by the Sewing lemma (see e.g. [20, 22, 29]), the following limit exists,

I ((Z , Z ′),�)s,t := lim
|P |→0

∑
P

�u,v. (3.11)
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We may denote I
(
(Z , Z ′),�

)
by

I (Z , �)s,t or
∫ t

s
σ(Zu, �u)dXu (3.12)

simply if there are no confusion. This integral satisfies the additivity property

I (Z , �)s,u + I (Z , �)u,t = I (Z , �)s,t 0 ≤ s ≤ u ≤ t ≤ T . (3.13)

The pair (I (Z , �), σ (Yt )) is actually a controlled path of X . In fact, we have the
following estimates.

Lemma 3.2 Assume (Z , Z ′) ∈ D2α
X (Rn) and � ∈ Cq-var ,α̃(Rn) and q, α, α̃ satisfy

(3.4). For any 0 ≤ s ≤ t ≤ T , we have the following estimates. The constant K below
depends only on ‖σ‖∞, ‖Dσ‖∞, ‖Dσ‖γ−2, α, β, p, γ and may change line by line.

(1) |�s,t | ≤
{
‖σ‖∞‖X‖β + ‖Dσ‖∞‖Z ′‖∞‖X‖2βω(s, t)β

+ Cβ,q‖Dσ‖∞‖�‖q-var ,α̃‖X‖βω(s, t)α̃
}
ω(s, t)β . (3.14)

(2)
∣∣I (Z , �)s,t − �s,t

∣∣
≤ K f

(
‖RZ‖2α, ‖Z ′‖α, ‖Z ′‖∞, ‖�‖q-var ,α̃

)
|̃||X|||β

(
1 + ω(s, t)1/2

)

ω(s, t)γα+β−α (3.15)

and

‖I (Z , �)‖β ≤ ‖σ‖∞‖X‖β

+ K g
(
‖RZ‖2α, ‖Z ′‖α, ‖Z ′‖∞, ‖�‖q-var ,α̃

) (
1 + ω(0, T )1/2

+ω(0, T )α(γ−1)−α̃+ 1
2

)
ω(0, T )α̃ |̃||X|||β, (3.16)

where

f (a, b, c, d) = a + b + (aγ−2 + cγ−2 + dγ−2)(c + d), (3.17)

g(a, b, c, d) = f (a, b, c, d) + c + d. (3.18)

(3)
∣∣I (Z , �)s,t − σ(Ys)Xs,t

∣∣
≤
{

K f
(
‖RZ‖2α, ‖Z ′‖α, ‖Z ′‖∞, ‖�‖q-var ,α̃

)

|̃||X|||β
(
1 + ω(s, t)1/2

)
ω(s, t)γα−2α̃+β−α

+ ‖Dσ‖∞‖Z ′‖∞‖X‖2βω(s, t)2(β−α̃)
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+ Cβ,q‖Dσ‖∞‖�‖q-var ,α̃‖X‖βω(s, t)β−α̃

}
ω(s, t)2α̃ . (3.19)

(4) |σ(Yt ) − σ(Ys)|
≤ ‖Dσ‖∞

{
‖Z ′‖∞‖X‖βω(s, t)β−α̃ + ‖RZ‖2αω(s, t)2α−α̃

+‖�‖q-var ,α̃

}
ω(s, t)α̃. (3.20)

(5) (I (Z , �), σ (Z , �)) ∈ D2α̃
X holds.

Remark 3.3 (1) Under the condition (3.4), (γ − 1)α + β > 1 holds as we noted.
(2) If � ∈ C1-var ,β , then I (Z , �) ∈ D

2β
X .

(3) We give estimates of paths on [0, T ] in Lemma 3.2. However, a similar estimate
holds on small interval [0, τ ] (0 < τ < T ) by replacing the norms and ω(0, T ) in
Lemma 3.2 by the norms on [0, τ ] and ω(0, τ ).
(4) Let 1/3 < β̃ < β. ThenX can be regarded as a 1/β̃-rough path. It is easy to check
that Lemma 3.2 still holds under the condition (3.4) by replacing β by β̃. Suppose
ω(0, T ) ≤ 1. Then ‖X‖β̃ ≤ ‖X‖β and ‖X‖2β̃ ≤ ‖X‖2β holds. We use these results
to prove a priori estimate in Theorem 2.7.

Proof (1) This follows from the explicit form of (3.5) and Lemma 3.1.
(2) This follows from (3.8) and the Sewing lemma.
(3) This follows from (2) and Lemma 3.1.
(4) This follows from the definition of Yt .
(5) This follows from (3) and (4) and 2α ≥ α̃. ��

We consider the product Banach space D2θ1
X × Cq-var ,θ2 , where 1/3 < θ1 ≤ 1/2

and 0 < θ2 ≤ 1. The norm is defined by

‖((Z , Z ′),�)‖ = |Z0| + |Z ′
0| + ‖Z ′‖θ1 + ‖RZ‖2θ1 + |�0| + ‖�‖q-var ,θ2 . (3.21)

Let ξ be the starting point of Z and let η = A(x)0 ∈ R
n . Note that η is independent

of x . Let

WT ,θ1,θ2,q,ξ,η =
{ (

(Z , Z ′),�
)∈D2θ1

X × Cq-var ,θ2 | Z0=ξ, Z ′
0=σ(ξ, η),�0 = η

}
.

(3.22)

The solution of RDE could be obtained as a fixed point of the mapping,

M : ((Z , Z ′),�
) (∈ WT ,α,α̃,q,ξ,η

) 
→ ((ξ + I (Z , �), σ (Y )), A(ξ + I (Z , �)))

(∈ WT ,α,α̃,q,ξ,η). (3.23)

We prove a continuity property of M.
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Lemma 3.4 (Continuity) Assume

1

3
< β0 ≤ α < α̃ < β, α p > 1, 1 < q < min

(
p

p − 1
,

β

α̃

)
, (3.24)

where β0 is the number in Assumption 2.2. Then M is continuous.

We already proved the compactness of the inclusion Cq ′-var ,θ ′ ⊂ Cq-var ,θ , where
1 ≤ q ′ < q, qθ ≤ q ′θ ′. We need the following compactness result also.

Lemma 3.5 Let 1
3 < θ < θ ′ ≤ 1

2 . Then D2θ ′
X ⊂ D2θ

X and the inclusion is compact.

Proof of Lemma 3.5 Suppose

sup
n

‖(Z(n), Z(n)′)‖θ ′ = sup
n

{|Z(n)0| + |Z(n)′0| + ‖Z(n)′‖θ ′ + ‖RZ(n)‖2θ ′ } < ∞.

(3.25)

This implies {Z(n)′} is bounded and equicontinuous. Since Z(n)t − Z(n)s =
Z(n)′s Xs,t + RZ(n)

s,t , {Z(n)} is also bounded and equicontinuous. Hence certain
subsequence {Z(nk), Z(nk)

′} converges uniformly. This implies {(Z(nk)
′, RZ(nk ))}

converges in D2θ
X . ��

Proof of Lemma 3.4 First note that

M(WT ,α,α̃,q,ξ,η) ⊂ WT ,α,α̃,q,ξ,η. (3.26)

(ξ + I (Z , �), σ (Y )) ∈ D2α
X follows from Lemma 3.2. By Assumption 2.2, we have

‖A(ξ + I (Z , �))‖q-var ,[s,t] ≤ ‖A(ξ + I (Z , �))‖1-var ,[s,t]
≤ F

(‖I (Z , �))‖1/β-var ,[s,t]
) ‖I (Z ,	)‖∞-var ,[s,t]

≤ F
(‖I (Z , �)‖βω(s, t)β

) ‖I (Z , �)‖βω(s, t)β,

which shows

‖A(ξ + I (Z , �))‖q-var ,α̃ ≤ F
(‖I (Z , �)‖βω(0, T )β

) ‖I (Z , �)‖β

ω(0, T )β−α̃ < ∞. (3.27)

Thus we have proved (3.26). We estimate ‖I (Z , �)′ − I (Z̃ , �̃)′‖α . We have

∣∣∣
(
σ(Yt ) − σ(Ỹt )

)
−
(
σ(Ys) − σ(Ỹs)

)∣∣∣
=
∫ 1

0

{
(Dσ)(Ys + θYs,t )(Ys,t ) − (Dσ)(Ỹs + θ Ỹs,t )(Ỹs,t )

}

≤ ‖Dσ‖∞|Ys,t − Ỹs,t | + ‖Dσ‖γ−22
γ−2

(
|Ys − Ỹs |γ−2 + |Ys,t − Ỹs,t |γ−2

)
|Ys,t |
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≤ ‖Dσ‖∞
(
‖Z ′ − Z̃ ′‖αω(0, s)α‖X‖βω(s, t)β + ‖RZ − RZ̃ ‖2αω(s, t)2α

+‖� − �̃‖q-var ,α̃ω(s, t)α̃
)

+ 2γ−2‖Dσ‖γ−2

{(
‖RZ − RZ̃ ‖2αω(0, s)2α + ‖� − �̃‖q-var ,α̃ω(0, s)α̃

)γ−2

+
(
‖Z ′ − Z̃ ′‖αω(0, s)α‖X‖βω(s, t)β + ‖RZ − RZ̃ ‖2αω(s, t)2α

+ ‖� − �̃‖q-var ,α̃ω(s, t)α̃
)γ−2}

×
(
(|σ(ξ)| + ‖Z ′‖αω(0, s)α)‖X‖βω(s, t)β + ‖RZ ‖2αω(s, t)2α + ‖�‖q-var ,α̃ω(s, t)α̃

)
.

(3.28)

Since β > α̃ > α, this shows the continuity of the mapping ((Z , Z ′),�) 
→
I (Z , �)′.

We next estimate ‖RI (Z ,�) − RI (Z̃ ,�̃)‖2α .

|RI (Z ,�)
s,t − RI (Z̃ ,�̃)

s,t | =
∣∣∣(I (Z , �)s,t − σ(Ys)Xs,t

)−
(

I (Z̃ , �̃)s,t − σ(Ỹs)Xs,t

)∣∣∣
≤
∣∣∣(I (Z , �)s,t − �(Z , �)s,t

)−
(

I (Z̃ , �̃)s,t − �(Z̃ , �̃)s,t

)∣∣∣
+
∣∣∣(D1σ)(Ys)(Z ′

sXs,t ) − (D1σ)(Ỹs)(Z̃ ′
sXs,t )

∣∣∣
+
∣∣∣∣(D2σ)(Ys)

(∫ t

s
�s,u ⊗ dXu

)
− (D2σ)(Ỹs)

(∫ t

s
�̃s,u ⊗ dXu

)∣∣∣∣ .
(3.29)

We argue in a similar way to the sewing lemma for the estimate of the first term.
Let PN = {t N

k = s + k(t−s)
2N } be a usual dyadic partition of [s, t]. We have

∣∣∣(I (Z , �)s,t − �(Z , �)s,t
)−

(
I (Z̃ , �̃)s,t − �(Z̃ , �̃)s,t

)∣∣∣

≤
∣∣∣∣∣∣

⎛
⎝∑

PN

�(Z , �)u,v − �(Z , �)s,t

⎞
⎠−

⎛
⎝∑

PN

�(Z̃ , �̃)u,v − �(Z̃ , �̃)s,t

⎞
⎠
∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎛
⎝I (Z , �)s,t −

∑
PN

�(Z , �)u,v

⎞
⎠
∣∣∣∣∣∣

+
∣∣∣∣∣∣

⎛
⎝I (Z̃ , �̃)s,t −

∑
PN

�(Z̃ , �̃)u,v

⎞
⎠
∣∣∣∣∣∣ . (3.30)
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By (3.15),

∣∣∣∣∣∣

⎛
⎝I (Z , �)s,t −

∑
PN

�(Z , �)u,v

⎞
⎠
∣∣∣∣∣∣+
∣∣∣∣∣∣

⎛
⎝I (Z̃ , �̃)s,t −

∑
PN

�(Z̃ , �̃)u,v

⎞
⎠
∣∣∣∣∣∣

≤ K
{

f (‖RZ‖2α, ‖Z ′‖α, ‖Z ′‖∞, ‖�‖q-var ,α̃)

+ f (‖RZ̃‖2α, ‖Z̃ ′‖α, ‖Z̃ ′‖∞, ‖� ′‖q-var ,α̃)
}

× (1 + ω(s, t)1/2)|̃||X|||β max
PN

ω(u, v)(γ−1)α+β−1K (T )ω(s, t). (3.31)

Hence this term is small in the ω-Hölder space C2α on a bounded set ofWT ,α,α̃,q,ξ,η if
N is large. We fix a partition so that this term is small. Although the partition number
may be big,

⎛
⎝∑

PN

�(Z , �)u,v − �(Z , �)s,t

⎞
⎠−

⎛
⎝∑

PN

�(Z̃ , �̃)u,v − �(Z̃ , �̃)s,t

⎞
⎠

=
N∑

k=0

∑
Pk

(
δ�(Z , �)u,(u+v)/2,v − δ�(Z̃ , �̃)u,(u+v)/2,v

)
(3.32)

is a finite sum, and by the explicit form of δ� as in (3.6), we see that this difference
is small in C2α if ((Z , Z ′),�) and ((Z̃ , Z̃ ′), �̃) are sufficiently close inWT ,α,α̃,q,ξ,η.
The estimate of the second and the third terms are similar to the above and we obtain
the continuity of the mapping

((Z , Z ′),�)(∈ WT ,α,α̃,q,ξ,η) 
→ (ξ + I (Z , �), σ (Y )) (∈ D2α
X ). (3.33)

We next prove the continuity of the mapping

((Z , Z ′),�)(∈ WT ,α,α̃,q,ξ,η) 
→ A(ξ + I (Z , �))(∈ Cq-var ,α̃). (3.34)

Since we choose β0 ≤ α, it suffices to apply Lemma 2.5 (2) to the case where
x = ξ + I (Z , �) and x ′ = ξ + I (Z̃ , �̃) because of Lemma 3.2 (2) and the continuity
(3.33). ��

By using the above lemmas, we prove the existence of solutions on small interval
[0, T ′]. Since the interval can be chosen independent of the initial condition, we obtain
the global existence of solutions and the estimate for solutions. We consider balls with
radius 1 centered at ((ξ + σ(ξ, η)Xt , σ (ξ, η)), η) (0 ≤ t ≤ T ′),

BT ′,θ1,θ2,q =
{
((Z , Z ′),�) ∈ WT ′,θ1,θ2,q,ξ,η | ‖Z ′‖θ1,[0,T ′] + ‖RZ‖2θ1,[0,T ′]

+‖�‖q-var ,θ2,[0,T ′] ≤ 1
}

. (3.35)
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Lemma 3.6 (Invariance and compactness) Assume (3.24) and let α < α < α̃ < α <

β. Also we choose q ′ > 1 such that
α̃

α
q < q ′ < q.

(1) For sufficiently small T ′, we have

M(BT ′,α,α̃,q) ⊂ BT ′,α,α,q ′ ⊂ BT ′,α,α̃,q . (3.36)

Moreover T ′ does not depend on ξ .
(2) BT ′,α,α,q ′ is a compact subset of BT ′,α,α̃,q .

Proof (1) The second inclusion is immediate because ω(0, T ′) ≤ 1 and the definition
of the norms. We prove the first inclusion. Let ((Z , Z ′),�) ∈ BT ′,α,α̃,q . Recall that
I (Z , �)′t = σ(Zt , �t ) and note that ‖Z ′‖∞,[0,T ′] ≤ ‖σ‖∞ + ‖Z ′‖αω(0, T ′)α . From
Lemma 3.2 (4), we have

‖I (Z , �)′‖α,[0,T ′] ≤ ‖Dσ‖∞
{
‖Z ′‖∞,[0,T ′]‖X‖βω(0, T ′)β−α

+ ‖RZ‖2α,[0,T ′]ω(0, T ′)2α−α

+ ‖�‖q-var ,α̃,[0,T ′]ω(0, T ′)α̃−α
}

≤ ‖Dσ‖∞
{
(‖σ‖∞ + 1) ‖X‖β + 2

}
ω(0, T ′)α̃−α

We next estimate RI (Z ,�). Let 0 < s < t < T ′. By Lemma 3.2 (3), we have

‖RI (Z ,�)‖2α,[0,T ′]
≤ ‖Dσ‖∞‖Z ′‖∞,[0,T ′]‖X‖2βω(0, T ′)2(β−α)

+ Cβ,q‖Dσ‖∞‖�‖q-var ,α̃,[0,T ′]‖X‖βω(0, T ′)α̃+β−2α

+ 2K f
(
‖RZ‖2α,[0,T ′], ‖Z ′‖α,[0,T ′], ‖Z ′‖∞,[0,T ′],

‖�‖q-var ,α̃,[0,T ′]
) |̃||X|||βω(0, T ′)γα+β−α−2α

≤
{
‖Dσ‖∞ (‖σ‖∞ + 1) ‖X‖2β + Cβ,q‖Dσ‖∞‖X‖β

× +2K f (1, 1, ‖σ‖∞ + 1, 1)|̃||X|||β
}
ω(0, T ′)2(α̃−α).

We turn to the estimate of A(ξ + I (Z , �)). By (3.27) and Lemma 3.2 (2), we have

‖A(ξ + I (Z , �))‖q ′-var ,α,[0,T ′]
≤ F

(‖I (Z , �)‖β,[0,T ′]ω(0, T ′)β
) ‖I (Z , �)‖β,[0,T ′]ω(0, T ′)β−α

≤ F
(
(1 + 2g(1, 1, ‖σ‖∞ + 1, 1))K |̃||X|||β

)

(1 + 2g(1, 1, ‖σ‖∞ + 1, 1))K |̃||X|||βω(0, T ′)β−α.
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Thus, noting Lemma 2.5 (1), there exists a positive number K ′ which depends on K ,
‖σ‖∞, ‖Dσ‖∞, f , g and a positive number κ0 which depends on β − α and α̃ − α

such that if ω(0, T ′) ≤ {K ′(1 + |̃||X|||β)}−κ0 , then M(BT ′,α,α̃,q) ⊂ BT ′,α,α,q ′ holds.
This completes the proof.
(2) This follows from Lemma 2.1 (2) and Lemma 3.5. ��

We are in a position to prove our main theorem.

Proof of Theorem 2.7 (1) Let us take α, α̃, p, q, α, α as in Lemma 3.6. By Lemma 3.4
and Lemma 3.6, applying Schauder’s fixed point theorem, we obtain a fixed point for

small interval [0, T ′] if ω(0, T ′) ≤ {K (1+ |̃||X|||β)}−κ0 , where K is a certain positive
constant. That is, there exists a solution on [0, T ′]. We now consider the equation on
[T ′, T ]. We can rewrite the equation as

ZT ′+t = ZT ′ +
∫ T ′+t

T ′
σ(Zu, �u)dXu 0 ≤ t ≤ T − T ′, (3.37)

�T ′+t = A

(
ξ +

∫ ·

0
σ(Zu, �u)dXu

)
T ′+t

0 ≤ t ≤ T − T ′. (3.38)

Let ωT ′(s, t) = ω(T ′ + s, T ′ + t) for 0 ≤ s < t ≤ T − T ′. We see that Z̃t := ZT ′+t
and �̃t := �T ′+t (0 ≤ t ≤ T − T ′) is a solution to

Z̃t = Z̃0 +
∫ t

0
σ(Z̃u, �̃u)dXT ′+u 0 ≤ t ≤ T − T ′, (3.39)

�̃t = Ãy,T ′
(∫ ·

0
σ(Z̃u, �̃u)dXT ′+u

)
t

0 ≤ t ≤ T − T ′. (3.40)

where

yt = ξ +
∫ t

0
σ(Zu, �u)dXu, 0 ≤ t ≤ T ′.

Note that we already defined Ãy,T ′(x)t (0 ≤ t ≤ T − T ′) (x ∈ Cβ([0, T −
T ′], R

n | x0 = ZT ′ , ωT ′)) in Lemma 2.4 (4).
Thanks to Lemma 2.4, we can do the same argument as [0, T ′] for small interval. By

iterating this procedure finite time, say, N -times, we obtain a controlled path (Zt , Z ′
t )

(0 ≤ t ≤ T ). This is a solution to (2.20). Clearly,

N ≤ 1 + ω(0, T ){K (1 + |̃||X|||β)}κ0 (3.41)

We need to show (Z , �) ∈ WT ,β,β,1,ξ,η and its estimate with respect to the norm
‖ · ‖β . We give the estimate of the solution on [0, T ′]. The solution (Z , Z ′) which we
obtained satisfies

‖Z ′‖α,[0,T ′] + ‖RZ‖α,[0,T ′] + ‖�‖q-var ,α̃,[0,T ′] ≤ 1. (3.42)
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Let 0 ≤ u ≤ v ≤ T ′. From (3.42), (3.16) and (3.1), we have

‖Z‖β,[u,v] ≤ K |̃||X|||β. (3.43)

Second, by (2.14) and (3.43), we have

‖A(Z)‖1-var ,[u,v] ≤ F(K |̃||X|||β)K |̃||X|||βω(u, v)β . (3.44)

Therefore Z and A(Z) are (ω, β)-Hölder continuous paths. Hence, we have ‖Z ′‖β ≤
K |̃||X|||β. Moreover, we can apply Lemma 3.2 to Z and 	 = A(Z) in the case where
α = α̃ = β and q = 1. Thus, by substituting the estimates (3.43) and (3.44) for (3.19),

we obtain for 0 ≤ u ≤ v ≤ T ′, |RZ
u,v| ≤ K |̃||X|||βω(u, v)2β. These local estimates

hold on other small intervals. By the estimate (3.41), we obtain the desired estimate.
(2) Let (Z , Z ′) ∈ D

2β
X (Rn) be a solution of (2.20). Let β0 < β̃ < β. The constants

K , κ1, κ2, κ3 which will appear in the calculation below depend only on σ and F and
may change line by line. As we already noted in Remark 3.3 (4), Lemma 3.2 still
holds replacing β by β̃. We take 0 < τ ≤ T so that ω(0, τ ) ≤ 1. Using ‖X‖β̃,[0,τ ] ≤
‖X‖β,[0,τ ] and ‖X‖β̃,[0,τ ] ≤ ‖X‖β,[0,τ ] which follows from ω(0, τ ) ≤ 1, we have

‖Z‖β̃,[0,τ ] ≤ ‖σ‖∞‖X‖β,[0,τ ] + ‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃ . (3.45)

By Lemma 2.5 (1), we have

‖A(Z)‖1-var ,[s,t]
≤ C

(
‖Z‖1/β01/β0-var ,[s,t] + 1

)
‖Z‖∞-var ,[s,t]

≤ C

{(
‖σ‖∞‖X‖β,[0,τ ] + ‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃

)1/β0 + 1

}
‖Z‖β̃,[s,t]ω(s, t)β̃ ,

(3.46)

which implies

‖A(Z)‖1-var ,β̃,[0,τ ]
≤ K

(
‖X‖1/β0β,[0,τ ] + ‖RZ‖1/β0

2β̃,[0,τ ]ω(0, τ )β̃/β0 + 1
)

(
‖X‖β,[0,τ ] + ‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃

)

≤ K

{
‖X‖β,[0,τ ] + ‖X‖2β,[0,τ ] + ‖X‖2/β0β,[0,τ ] + ‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃

+
(
‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃

)2 +
(
‖RZ‖1/β0

2β̃,[0,τ ]ω(0, τ )β̃/β0
)2}

. (3.47)
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By (3.45) and (3.47), we obtain

‖Z ′‖β̃,[0,τ ] = ‖σ(Z , A(Z))‖β̃,[0,τ ]

≤ K

{
‖X‖β,[0,τ ] + ‖X‖2β,[0,τ ] + ‖X‖2/β0β,[0,τ ] + ‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃

+
(
‖RZ‖2β̃,[0,τ ]ω(0, τ )β̃

)2 +
(
‖RZ‖1/β0

2β̃,[0,τ ]ω(0, τ )β̃/β0
)2}

(3.48)

We apply Lemma 3.2 (3) to the estimate of RZ in the case where� = A(Z), q = 1
and α = α̃ = β̃. By combining the estimates obtained above, we see that there exist
κ1 > 0, κ2 > 1, κ3 > 0 and K > 0 which can be taken independent of β̃ such that

‖RZ‖2β̃,[0,τ ] ≤ K

{
|̃||X|||β

κ1 + ‖RZ‖2β̃,[0,τ ]ω(0, τ )κ3 +
(
‖RZ‖2β̃,[0,τ ]ω(0, τ )κ3

)κ2

+ ‖Z ′‖β̃,[0,τ ]ω(0, τ )κ3 +
(
‖Z ′‖β̃,[0,τ ]ω(0, τ )κ3

)κ2
}
. (3.49)

Let zβ̃,τ = ‖Z ′‖β̃,[0,τ ] + ‖RZ‖2β̃,[0,τ ]. Then using (3.48) and (3.49), we see that
there exist (possibly different) κ1 ≥ 1, κ2 > 1, κ3 > 0, K > 0 which can be taken
independent of β̃ such that

zβ̃,τ ≤ K
{
|̃||X|||β

κ1 + ω(0, τ )κ3
(

zβ̃,τ + zκ2

β̃,τ

)}
, for all τwith ω(0, τ ) ≤ 1.

(3.50)

Since β̃ < β, the function τ 
→ zβ̃,τ (0 ≤ τ ≤ 1) is an increasing continuous

function and limτ→+0 zβ̃,τ = 0. If |̃||X|||β = 0, then by the definition, Zt = ξ for

all 0 ≤ t ≤ T and ‖Z ′‖β = ‖RZ‖2β = 0 hold. The desired estimate holds. So we

assume |̃||X|||β �= 0. We now define

τ1 = sup
{
τ

∣∣∣ τ ≤ T , ω(0, τ ) ≤ 1, zβ̃,τ ≤ 2K |̃||X|||β
κ1
}

.

There are two cases τ1 = T and τ1 < T . Suppose τ1 = T . Then zβ̃,[0,T ] ≤ 2K |̃||X|||β
κ1

holds. If this is not the case, zβ̃,τ1
= 2K |̃||X|||β

κ1
holds. Hence by the inequality (3.50),

we get

ω(0, τ1) ≥
⎛
⎜⎝ K |̃||X|||β

κ1

2K |̃||X|||β
κ1 +

(
2K |̃||X|||β

κ1
)κ2

⎞
⎟⎠

1/κ3

. (3.51)

After establishing this estimate, we proceed in a similar way to the argument in the
proof of (1) replacing T ′ by τ1. In this way, we obtain an increasing time sequence
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0 = τ0 < τ1 < · · · < τN−1 < τN = T (N ≥ 2) and the estimate (3.51) hold for
ω(τi−1, τi ) (1 ≤ i ≤ N − 1). Also we have

‖Z ′‖β̃,[τi−1,τi ] + ‖RZ‖2β̃,[τi−1,τi ] = 2K |̃||X|||β
κ1

, 1 ≤ i ≤ N − 1, (3.52)

‖Z ′‖β̃,[τN−1,T ] + ‖RZ‖2β̃,[τN−1,T ] ≤ 2K |̃||X|||β
κ1

. (3.53)

By using
∑N−1

i=1 ω(τi−1, τi ) ≤ ω(0, T ), we get the estimate of N as follows.

N ≤
(
2 + 2κ2 K κ2−1 |̃||X|||β

κ1κ2−1
)1/κ3

ω(0, T ) + 1. (3.54)

Using (3.52), (3.53), (3.54) and simple estimates

‖Z ′‖β̃,[0,T ] ≤
N∑

i=1

‖Z ′‖β̃,[τi−1,τi ],

‖RZ‖2β̃,[0,T ] ≤
N∑

i=1

‖RZ‖2β̃,[τi−1,τi ] +
N∑

i=1

i−1∑
j=1

‖Z ′‖β̃,[τ j−1,τ j ]‖X‖β,[0,T ],

we obtain

‖Z ′‖β̃,[0,T ] + ‖RZ‖2β̃,[0,T ] ≤ K
{(

1 + |̃||X|||β
κ1
)

ω(0, T ) + 1
}2 |̃||X|||β

κ2
. (3.55)

Since β̃ < β and ‖Z ′‖β,[0,T ] + ‖RZ‖2β,[0,T ] < ∞, taking the limit β̃ ↑ β, this
estimate hold for the norms ‖ · ‖β and ‖ · ‖2β as well. The estimates of Z and A(Z)

follow from this estimate and the estimates similar to (3.45) and (3.47). This completes
the proof. ��

4 A Continuity Property of the SolutionMapping

In this section, we consider the case where ω(s, t) = |t − s|. That is, we consider
usual Hölder rough paths. Also let us denote the set of β-Hölder geometric rough paths
(1/3 < β ≤ 1/2) by C

β
g (Rd) which is the closure of the set of smooth rough paths

in the topology of C β(Rd). In this paper, smooth rough path means the rough path h
defined by a Lipschitz path h ∈ C1 and its iterated integral h̄2

s,t = ∫ t
s (hu − hs) ⊗ dhu .

We identify h and the Lipschitz path h. Also we denote the set of smooth rough paths
by CLip(R

d).
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Let Z(h) be a solution to (2.20) for X = h. Then Z(h) is a solution to the usual
integral equation

Zt = ξ +
∫ t

0
σ(Zs, A(Z)s)dhs . (4.1)

As already explained, we cannot expect the uniqueness of the solution of the RDEs
in our setting driven by general rough path X. However, the uniqueness hold in many
cases when the driving rough path is a smooth rough path and σ is sufficiently
smooth. If the solution to the ODE (4.1) is unique, then Z(h) is uniquely defined
and (Z(h), RZ(h), A(Z(h))) satisfies the same estimate as in Theorem 2.7. We use the
notation Z(h)t instead of Z(h)t in this case.

We denote the set of solutions (Z , Z ′) of our RDE (2.20) by Sol(X). We prove a
certain continuity property of multivaluedmappingX 
→ Z(X) ∈ Sol(X) at the rough
path X for which the solution is unique. Thus, this multivalued map is continuous in
such a sense at any smooth rough path if the uniqueness holds on the set of smooth
rough paths.

We write Cθ− = ∩0<ε<θCθ−ε, C1+-var ,θ− = ∩q>1,0<ε<θCq-var ,θ−ε. Clearly, these
spaces areFréchet spaceswith the naturally defined semi-norms.Also note that Z(X) ∈
Cβ−([0, T ], R

n).

Lemma 4.1 We consider the Eq. (2.20) and assume the same assumption on A
and σ in Theorem 2.7. Let X ∈ C β(Rd). Let {XN } ⊂ C β(Rd) be a sequence
such that limN→∞|||XN − X|||β = 0. Let us choose solutions Z(XN ) ∈ Sol(XN )

(N = 1, 2, . . .). Then there exists a subsequence Nk ↑ ∞ such that the limit Z =
limk→∞ Z(XNk ) exits in Cβ−([0, T ], R

n). Further for such Z, (Z , σ (Z , A(Z))) ∈
Sol(X) and limk→∞

∥∥∥RZ(XNk ) − RZ
∥∥∥
2β− = 0 hold.

Proof By the estimate in Theorem 2.7 (2), we can choose {Nk} such that Z(XNk ),

A(Z(XNk )) converges in Cβ− and C1+-var ,β− respectively. This implies
limk→∞

∫ t
s A(Z(XNk ))s,r d X Nk (r) = ∫ t

s A(Z(X))s,r d Xr which shows the limit Z
satisfies the inequality (2.22).

This proves (Z , σ (Z , A(Z))) ∈ Sol(X). We have

R
Z(XNk )

s,t = Zs,t (XNk ) − σ
(
Zs(XNk )s, A(Z(XNk ))s

)
(X Nk )s,t .

Hence limk→∞ R
Z(XNk )

s,t = RZ(X)
s,t for all (s, t). Combining the uniform estimates of

(ω, 2β)-Hölder estimates of them, this completes the proof. ��
The following proposition follows from the above lemma

Proposition 4.2 We consider the Eq. (2.20) and assume the same assumption on A
and σ in Theorem 2.7. Assume the solution of (2.20) is unique for the rough path
X0 ∈ C β(Rd). Then the multivalued mappingX(∈ C β(Rd)) → Sol(X) is continuous
at X0 in the following sense. For any ε > 0, there exists δ > 0 such that for any X
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satisfying |||X − X0|||β ≤ δ and any Z(X) ∈ Sol(X), it holds that

‖Z(X) − Z(X0)‖β− + ‖RZ(X) − RZ(X0)‖2β− ≤ ε.

Remark 4.3 Let X ∈ C
β
g (Rd). It holds that for any sequence {hN } ⊂ CLip(R

d) satis-
fying limN→|||hN −X||| = 0, any accumulation points of {Z(hN )} belong to Sol(X).
The set Sol∞(X) which consists of such all accumulation points is a subset of Sol(X)

and may be a natural class of solutions. However Sol∞(X) = Sol(X) may hold.

By a similar argument to the proof of Theorem 4.9 in [2], we can prove the existence
of universally measurable selection mapping of solutions as follows.

Proposition 4.4 We consider the Eqs. (3.1) and (3.2) and assume the same assumption
on A and σ in Theorem 2.7. Then there exists a universally measurable mapping

I : C β
g (Rd) � X 
→

((
Z(X), σ (Y (X))

)
, �(X)

)
∈ Cβ− × Cβ− × C1-var+,β−

which satisfies the following.

(1) (Z(X), σ (Y (X))) ∈ D
2β
X (Rn) and

(
(Z(X), σ (Y (X))) ,�(X)

)
is a solution in

Theorem 2.7 and satisfies the estimate in (5.13).
(2) There exists a sequence of Lipschitz paths hN such that |||X − hN |||β → 0 and

I(hN ) converges to I(X) in Cβ−(Rn) × Cβ−(L(Rd , R
n)) × C1-var+,β−(Rd).

Proof Below, we omit writing ξ . We consider the product space,

E = C β
g (Rd) × Cβ−(Rn) × Cβ−(L(Rd , R

n)) × C1-var+,β−(Rd) (4.2)

and its subset

E0 =
{(

h, Z(h), σ (Y (h)),�(h)
)

∈ E | h is a smooth rough path
}

(4.3)

Let Ē0 be the closure of E0 in E . Then Ē0 is a separable closed subset of E . The sep-
arability follows from the continuity of the mapping h 
→ ((Z(h), σ (Y (h))),�(h)).
Note that Sol∞(X) coincides with the projection of the subset of Ē0 whose first com-
ponent is X. Hence by the measurable selection theorem (See 13.2.7.Theorem in
[15]), there exists a universally measurable mapping I : C

β
g (Rd) → E such that

I(X) ∈ {X} × Sol∞(X). This mapping satisfies the required properties in (1) and (2).
��

Remark 4.5 It is not clear that we could obtain the adapted measurable solution map-
ping I.
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5 Examples

5.1 Reflected Rough Differential Equations

Let D be a connected domain in R
n . As in [27, 34], we consider the following condi-

tions (A), (B) on the boundary. See also [35].

Definition 5.1 We write B(z, r) = {y ∈ R
n | |y − z| < r}, where z ∈ R

n , r > 0. The
set Nx of inward unit normal vectors at the boundary point x ∈ ∂ D is defined by

Nx = ∪r>0Nx,r , (5.1)

Nx,r = {n ∈ R
n | |n| = 1, B(x − rn, r) ∩ D = ∅} . (5.2)

(A) There exists a constant r0 > 0 such that

Nx = Nx,r0 �= ∅ for any x ∈ ∂ D.

(B) There exist constants δ > 0 and 0 < δ′ ≤ 1 satisfying:
for any x ∈ ∂ D there exists a unit vector lx such that

(lx , n) ≥ δ′ for any n ∈ ∪y∈B(x,δ)∩∂ DNy .

Let us recall the Skorohod equation. The Skorohod equation associated with a
continuous path x ∈ C([0,∞), R

n) with x0 ∈ D̄ is given by

yt = xt + φt , yt ∈ D̄ t ≥ 0, (5.3)

φt =
∫ t

0
1∂ D(ys)n(s)d‖φ‖1-var ,[0,s] t ≥ 0, n(s) ∈ Nys if ys ∈ ∂ D (5.4)

Under the assumptions (A) and (B) on D, the Skorohod equation is uniquely solved.
This is due to Saisho [34]. We write �(x)t = yt and L(x)t = φt . By the uniqueness,
we have the following flow property.

Lemma 5.2 Assume (A) and (B). For any continuous path x on R
n with x0 ∈ D̄, we

have for all τ, s ≥ 0

�(x)τ+s = � (ys + θs x)τ , (5.5)

L(x)τ+s = L(x)s + L (ys + θs x)τ , (5.6)

where (θs x)τ = xτ+s − xs .

We obtain the following estimate of L(x).

Lemma 5.3 Assume conditions (A) and (B) hold. Let xt be a continuous path of finite
q-variation (q ≥ 1). Then we have the following estimate.

‖L(x)‖1-var ,[s,t] ≤ C
(
‖x‖q

q-var ,[s,t] + 1
)

‖x‖∞-var ,[s,t], (5.7)
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where C is a positive constant which depends on the constants δ, δ′, r0 in conditions
(A) and (B).

Proof We proved the following estimate in [2, 4] following the argument in [34].

‖L(x)‖1-var ,[s,t] ≤ δ′−1
({

δ−1G(‖x‖∞-var ,[s,t]) + 1
}q ‖x‖q

q-var ,[s,t] + 1
)

× (G(‖x‖∞-var ,[s,t]) + 2
) ‖x‖∞-var ,[s,t], (5.8)

where

G(u) = 4
{
1 + δ′−1 exp

{
δ′−1 (2δ + u) /(2r0)

}}
exp
{
δ′−1 (2δ + u) /(2r0)

}
, u ∈ R. (5.9)

By combining this and Lemma 2.5, we complete the proof. ��
Lemma 5.4 Assume (A) and (B). Consider two Skorohod equations y = x + φ, y′ =
x ′ + φ′. Then

|yt − y′
t |2 ≤

{
|xt − x ′

t |2 + 4
(‖φ‖1-var ,[0,t] + ‖φ′‖1-var ,[0,t]

)
max
0≤s≤t

|x(s) − x ′(s)|
}

exp
{(‖φ‖1-var ,[0,t] + ‖φ′‖1-var ,[0,t]

)
/r0
}
. (5.10)

The estimate (5.10) can be found in Remark 4.1 (i) in [34]. Lemma 5.3 shows
that if x is a (ω, θ)-Hölder continuous path, L(x) ∈ C1-var ,θ holds true. Actually,
‖L(x)‖1-var ,[s,t] can be estimated by themodulus of continuity of x and ‖x‖∞-var ,[s,t].
For example, see [34] and the proof of Lemma 2.3 in [4]. Hence, we see that L is a
1/2-Hölder continuous map on C([0,∞), R

n). Note that � is Lipschitz continuous if
D is a convex polyhedron ([16]).

Let X ∈ C β(Rd). We assume D satisfies the condition (A) and (B). We now
consider reflected RDE:

Yt = ξ +
∫ t

0
σ(Ys)dXs + 	t , 	t = L

(
ξ +

∫ ·

0
σ(Ys)dXs

)
t
, ξ ∈ D̄. (5.11)

We need to make clear the definition of the solution (Yt ) of (5.11).

Definition 5.5 We call Yt is a solution of (5.11) if and only if the following holds:

(i) There exist a Z ∈ D2β([0, T ], R
n) and a continuous bounded variation path 	t

such that Yt = Zt + 	t (0 ≤ t ≤ T ).
(ii) 	t = L(Z)t (0 ≤ t ≤ T ).
(iii) Z satisfies

Zt = ξ +
∫ t

0
σ(Zs + L(Z)s)dXs, Z ′

t = σ(Zt + L(Z)t ) 0 ≤ t ≤ T .

(5.12)
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Note that if Y is a solution in the above sense, Z is uniquely determined by Y and
X since Zt = ξ + ∫ t

0 σ(Ys)dXs and Z ′
t = σ(Yt ) hold. See also Remark 5.7 (1).

By applying Theorem 2.7, we obtain the following result.

Theorem 5.6 Let X ∈ C β(Rd). Assume D satisfies conditions (A) and (B).
Let σ ∈ Lipγ−1(Rn,L(Rd , R

n)) and ξ ∈ D̄. Then there exist (Z , Z ′) ∈ D
2β
X (Rn)

and 	 ∈ C1-var ,β(Rn) with 	0 = 0 such that Yt = Zt + 	t is a solution of (5.11).
Moreover the following estimate holds,

‖Z‖β + ‖RZ‖2β + ‖	‖1-var ,β ≤ K
{
1 +

(
1 + |̃||X|||β

)κ1
ω(0, T )

}κ2 |̃||X|||β
κ3

,

(5.13)

where K , κi are constants which depend only on σ, β, γ, δ, δ′, r0.

Proof By applying Theorem 2.7, we have at least one solution Z and the estimate of
(5.12). Let Yt = Zt + L(Z)t and 	t = L(Z)t . Then this pair is a solution to the
original equation. ��
Remark 5.7 (1) Let (Yt ,	t ) be a solution of (5.11). Then there exists θ > 1 such that

∣∣∣∣Ys,t − 	s,t −
(

σ(Ys)Xs,t + (Dσ)(Ys)[σ(Ys)]Xs,t + (Dσ)(Ys)

(∫ t

s
	s,u ⊗ dXu

))∣∣∣∣
≤ Cω(s, t)θ , 0 ≤ s < t ≤ T . (5.14)

Conversely, suppose

(i) (Yt ,	t ) is a pair of continuous paths satisfying (5.14) and (	t ) is a bounded
variation path satisfying ‖	‖1-var ,[s,t] ≤ Cω(s, t)β (0 ≤ s ≤ t ≤ T ).

(ii) Yt ∈ D̄ (0 ≤ t ≤ T ).
(iii) (Yt ,	t ) satisfies

	t =
∫ t

0
1∂ D(Ys)n(s)d‖	‖1-var ,[0,s] 0 ≤ t ≤ T , (n(s) ∈ NYs if Ys ∈ ∂ D).

Let �s,t = σ(Ys)Xs,t + (Dσ)(Ys)[σ(Ys)]Xs,t + (Dσ)(Ys)
(∫ t

s 	s,u ⊗ d Xu

)
. Then

|(δ�)s,u,t | ≤ Cω(s, t)θ (0 ≤ s ≤ u ≤ t ≤ T ) holds and Z0,t ∈ Cβ([0, T ], R
n; x0 =

0) exists such that |(Z0,t − Z0,s) − �s,t | ≤ Cω(s, t)θ . Further, by the assumption on
	, (Z0,t ) ∈ D

2β
X (Rn) with Z ′

0,t = σ(Yt ) and Yt = Y0 + Z0,t + 	t holds. Clearly,

Z0,t = ∫ t
0 σ(Ys)dXs . By the definition of L , we have L(Y0 + Z0,·)t = 	t . Hence,

(Yt ,	t ) is a solution of (5.11).
(2) In [2], we consider the following condition (H1) on D:

(i) The condition (A) holds,
(ii) There exists a positive constant C such that for any x , it holds that

‖L(x)‖1-var ,[s,t] ≤ C‖x‖∞-var ,[s,t].
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This condition holds if D is convex and there exists a unit vector l ∈ R
n such that

inf {(l, n(x)) | n(x) ∈ Nx , x ∈ ∂ D} > 0.

Under (H1) and σ ∈ C3
b , we proved the existence of solutions of reflected RDEs driven

by 1/β rough paths and gave estimates for the solutions in Theorem 4.5 in [2]. We
used Euler approximation of the solution modifying Davie’s proof in [9]. In the proof,
we need to solve the following implicit Skorohod equation in each step,

yt = ξ + ηt + M

(∫ t

0
	r ⊗ dxr

)
+ 	t , ξ ∈ D̄, 0 ≤ t ≤ T ′, (5.15)

L

(
ξ + η· + M

(∫ ·

0
	r ⊗ dxr

))
t
= 	t , 0 ≤ t ≤ T ′, 	0 = 0, (5.16)

where 0 < T ′ < T , yt ∈ D̄ (0 ≤ t ≤ T ′), M ∈ L(Rn⊗R
d , R

n) and	t is a continuous
bounded variation path. Also ηt , xt are finite 1/β-variation paths which are defined by
X and X. If we replace

∫ t
0 	r ⊗ dxr in (5.15) and (5.16) by

∫ t
0 f (	r )⊗ dxr , where f

is a bounded Lipschitz map between R
n , then we can solve the equation under general

condition (A) and (B). To avoid the explosion problem, that is, to handle the linear
growth term of 	t , we put stronger assumption (H1)(ii) on D in [2]. Also we used
Lyon’s continuity theorem of rough integrals in the proof and so we need to assume
σ ∈ C3

b . In this paper, we adopt different approach to the problem and obtain an
extension of the previous result in the sense that the assumption on σ and D can be
relaxed.

In Sect. 4, we prove a continuity property of solution mappings at Lipschitz paths
under the uniqueness of the solutions. For reflected RDEs, we can give more explicit
estimate of the continuity of the solution mapping Y at the Lipschitz paths. As before
we consider a domain D ⊂ R

n which satisfies the conditions (A) and (B). Let h be a
Lipschitz path on R

d starting at 0. If σ is Lipschitz continuous, there exists a unique
solution (Y (h, ξ)t ,	(h, ξ)t ) to the reflected ODE in usual sense (see Proposition 4.1
in [4] for example),

Yt = ξ +
∫ t

0
σ(Ys)dhs + 	t , ξ ∈ D̄, 0 ≤ t ≤ T . (5.17)

We may omit denoting h, ξ . Moreover, Z(h)t = ξ + ∫ t
0 σ(Ys(h))dhs , Zt (h)′ =

σ(Yt (h)) and 	(h)t are a unique pair of solution to the equation in Theorem 5.6
for the smooth rough path hs,t = (hs,t , h̄2

s,t ) defined by h. Hence the solution
(Z(h), RZ(h), 	(h)) satisfies the estimate (5.13) with the same constant C1, C2.

From now on, we will give an explicit estimate for Yt (ξ,X) − Yt (η, h). Let X be
a general (not necessarily geometric) β-Hölder rough path. Let X−h

s,t be the translated
rough path ofX by h. That is, the 1st level path and the second level path are given by,

X−h
s,t = Xs,t − hs,t (5.18)
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X
−h
s,t = Xs,t − h̄2

s,t −
∫ t

s
X−h

s,u ⊗ dhu −
∫ t

s
hs,u ⊗ dX−h

s,u . (5.19)

Hence

‖X−h‖β ≤ ‖X − h‖β, (5.20)

‖X
−h‖2β ≤ ‖X − h̄2‖2β +

(
1 + 2

1 + β

)
T 1−β‖X − h‖β‖h‖1. (5.21)

These imply that if |||h − X|||β ≤ 1, then

|||X−h |||β ≤
(
1 +

√(
1 + 2

1 + β

)
T 1−β‖h‖1

)
|||h − X|||β. (5.22)

By the definition of controlled paths, we immediately obtain the following.

Lemma 5.8 Let X ∈ C
β
g (Rd). Let h be a Lipschitz path. If (Z , Z ′) ∈ D

2β
X , then

(Z , Z ′) ∈ D
2β
X−h. In fact,

∣∣∣Zs,t − Z ′
s X−h

s,t

∣∣∣ ≤
(
‖RZ‖2β + (|Z ′

0| + ‖Z ′‖βsβ)‖h‖1(t − s)1−2β
)

(t − s)2β.

(5.23)

Let (Z , Z ′) ∈ D2α
X (Rn) and 	 ∈ Cq-var ,α̃(Rn) with 	0 = 0 and q, α, α̃

satisfy the assumptions in Lemma 3.1. By the above lemma, we can define the
integral

∫ t
s σ(Yu)dX−h

u and the estimates in Lemma 3.2 hold for this integral. Here
Yu = Zu + 	u . Moreover, �s,t in (3.5) which is defined by X−h

s,t reads

�s,t = σ(Ys)X−h
s,t + (Dσ)(Ys)Z ′

sX
−h
s,t + (Dσ)(Ys)

∫ t

s
	s,u ⊗ dX−h

u (5.24)

= σ(Ys)Xs,t + (Dσ)(Ys)Z ′
sXs,t + (Dσ)(Ys)

∫ t

s
	s,u ⊗ dXu − σ(Ys)hs,t

+ �̃s,t , (5.25)

where

�̃s,t = −(Dσ)(Ys)Z ′
s

(
h̄2

s,t +
∫ t

s
X−h

s,u ⊗ dhu +
∫ t

s
hs,u ⊗ dX−h

s,u

)

+ (Dσ)(Ys)

∫ t

s
	s,u ⊗ dhu . (5.26)

Since |�̃s,t | ≤ C(t − s)1+α̃ , the sum of these terms converges to 0. Thus we obtain

∫ t

s
σ(Yu)dX−h

u =
∫ t

s
σ(Yu)dXu −

∫ t

s
σ(Yu)dhu . (5.27)
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We now consider the following condition on the boundary.

Definition 5.9 (Condition (C)) There exists a Lipγ function f on R
n and a positive

constant k such that for any x ∈ ∂ D, y ∈ D̄, n ∈ Nx it holds that

(y − x,n) + 1

k
((D f )(x),n) |y − x |2 ≥ 0. (5.28)

Usually, the function f is assume to be C2
b in the condition (C). See [27, 34]. Here,

we assume f ∈ Lipγ to make use of estimates in Lemma 3.2.
Under additional condition (C), we can prove the following explicit modulus of

continuity.

Lemma 5.10 Let X ∈ C
β
g (Rd). Assume that D satisfies the conditions (A), (B), (C)

and σ ∈ Lipγ−1. Let Yt (X, ξ), Zt (X, ξ),	t (X, ξ), Yt (h, ζ ),	t (h, ζ ) be a solution
as in Lemma 4.1. Assume |||h − X|||β ≤ 1. Then there exists a positive constant C
which depends only on σ, r0, δ, δ′, f , k such that

sup
0≤t≤T

|Yt (X, ξ) − Y (h, ζ )t | ≤ CeC‖h‖1(|ξ − ζ | + |||h − X|||β). (5.29)

Proof We write Yt = Yt (X, ξ), 	(X, ξ)t = 	t and Ỹt = Y (h, ζ )t , 	̃t = 	(h, ζ )t

for simplicity. Let Zt = e
− 2

k

(
f (Yt )+ f (Ỹt )

)
|Yt − Ỹt |2. We have

Zt − Z0

=
∫ t

0
2e

− 2
k

(
f (Ys )+ f (Ỹs )

){(
Ys − Ỹs ,

(
σ(Ys) − σ(Ỹs)

)
h′

s

)
ds +

(
Ys − Ỹs , σ (Ys)d X−h

s

)}

− 2

k

∫ t

0
Zs

(
σ(Ys)

∗ D f (Ys) + σ(Ỹs)
∗ D f (Ỹs), h′

s

)
ds − 2

k

∫ t

0
Zs

(
D f (Ys), σ (Ys)dX−h

s

)

−
∫ t

0
2e

− 2
k

(
f (Ys )+ f (Ỹs )

){(
Ỹs − Ys , d	s − d	̃s

)

+ 1

k
(D f (Ys), d	s) |Ys − Ỹs |2 + 1

k

(
D f (Ỹs), d	̃s

)
|Ys − Ỹs |2

}
. (5.30)

Condition (C) implies that the fourth integral on the right-hand side of the Eq. (5.30)
is always negative. By the estimates of the solution Y , Ỹ ,	, 	̃ in Theorem 5.6 and the
estimates in Lemma 3.2 and the Gronwall inequality, we obtain the desired estimate.

��

5.2 Perturbed Reflected SDEs: A Short Review

Let us recall basic results for the following equation driven by a continuous path xt

on R,

Yt = xt + a sup
0≤s≤t

Ys + b inf
0≤s≤t

Ys, (5.31)
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Yt = xt + a sup
0≤s≤t

Ys + 	t , x0 ≥ 0, Yt ≥ 0 for all t . (5.32)

When xt is a sample path of a standard Brownian motion, the solutions to (5.31)
and (5.32) are called (doubly) perturbed Brownian motion and perturbed reflected
Brownian motion respectively.

First we consider the Eq. (5.31). Clearly, if either a ≥ 1 or b ≥ 1, then there are no
solutions to this equation for certain x . Sowe consider the casewhere a < 1 and b < 1.
Suppose b = 0. Then we have explicitly, Yt = xt + a

1−a sup0≤s≤t xs . By [7], when

| ab
(1−a)(1−b)

| < 1, a fixed point argument works and the unique existence holds for any

continuous path xt with x0 = 0. The unique existence extends to | ab
(1−a)(1−b)

| = 1 by
[10]. Consider the case where xt is a sample path of 1-dimensional Brownian motion
Wt with W0 = 0. For any 0 ≤ a < 1, 0 ≤ b < 1, it is proved in [31] that the pathwise
uniqueness holds and the solution is adapted to the Brownian filtration. Finally, for
any a < 1, b < 1, the same results is proved in [8].

We consider the Eq. (5.32). By a fixed point argument, the unique existence is
proved in [25] the case (1) a < 1/2 and (2) a < 1 with x0 > 0. Next, the pathwise
uniqueness is proved by [8] for a < 1 when xt is the Brownian path Wt with W0 = 0.
The unique existence for a < 1 is extended by [13] for any continuous path xt .

We next explain results for the variable coefficient version driven by a standard
1-dimensional Brownian motion Wt ,

Yt = ξ +
∫ t

0
σ(Ys)dWs + a sup

0≤s≤t
Ys, (5.33)

Yt = ξ +
∫ t

0
σ(Ys)dWs + a sup

0≤s≤t
Ys + 	t , ξ ≥ 0, Yt ≥ 0 for all t, (5.34)

where σ is a Lipschitz continuous function on R and the integral is the Itô integral.
The unique existence of the solution to (5.33) is proved for a < 1 by [13]. The same
authors prove the unique existence of the solution to (5.34) for two cases where (1)
a < 1 and ξ > 0 and (2) 0 ≤ a < 1/2 and ξ = 0. Under the same assumption on a,
the absolutely continuity of the law of Yt with respect to the Lebesgue measure was
studied in [36].

5.3 Perturbed Reflected Rough Differential Equations

We consider the multidimensional versions of (5.33) and (5.34) driven by rough paths.
Our objectives are the following two equations.

Yt = ξ +
∫ t

0
σ(Ys)dXs + C(Y )t , (5.35)

Yt = ξ +
∫ t

0
σ(Ys)dXs + C(Y )t + 	t en, (5.36)
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where en = t (0, . . . , 0, 1) and σ ∈ Lipγ−1(Rn,L(Rd , R
n)). We assume that C is

a mapping from C([0, T ], R
n) to the subspace of continuous and bounded variation

paths on R
n and {C(x)s}0≤s≤t is measurable with respect to σ({xs}0≤s≤t ) for all

0 ≤ t ≤ T . The first Eq. (5.35) is a perturbed rough differential equations and
the second Eq. (5.36) is a perturbed reflected rough differential equation on D̄ =
{(x1, . . . , xn) | xn ≥ 0}. 	t en is the reflected term and Yt and 	t should satisfy

Y n
t = (Yt , en) ≥ 0 for all t ≥ 0, where (·, en) is an inner product,

(5.37)

(	t ) is continuous and nondecreasing,	0 = 0 and 	t =
∫ t

0
1{0}(Y n

s )d	s .

(5.38)

In both equations, Y0 �= ξ in general. Consider the case t = 0. Then we have Y0 =
ξ + C(Y )0. Since C(Y ) is adapted, C(Y )0 is a function of Y0 and we may write
C(Y )0 = C0(Y0). Hence Y0 should satisfy Y0 = ξ + C0(Y0) and we need to assume
Y0 ∈ D̄. If we consider the case where Yt ∈ R and C(Y )t = a max0≤s≤t Ys (a < 1),
Y0 = 1

1−a ξ holds. In this case, Y0 ≥ 0 and ξ ≥ 0 are equivalent and so Yt starts from
[0,∞) when ξ ≥ 0. Under the assumption that Y0 = ξ + C0(Y0) ∈ D̄, by the explicit
solution of the Skorohod problem, we have

	t = max
0≤s≤t

{
−
(

ξ +
∫ t

0
σ(Ys)dXs + C(Y )s, en

)
∨ 0

}
, (5.39)

where a ∨ b = max(a, b).
We give the definition of the solution of (5.35) and (5.36).

Definition 5.11 (1) Yt is a solution of (5.35) if the following hold.

(i) There exists a Z ∈ D
2β
X (Rn) such that Yt = Zt + C(Y )t and Z ′

t = σ(Yt ) (0 ≤
t ≤ T ) hold.

(ii) Zt = ξ + ∫ t
0 σ(Zs + C(Y )s)dXs (0 ≤ t ≤ T ) holds.

(2) (Yt ,	t ) is a solution of (5.36) if the following holds:

(i) (Yt ,	t ) satisfies (5.37) and (5.38).
(ii) There exists a Z ∈ D

2β
X (Rn) such that Yt = Zt + C(Y )t + 	t en and Z ′

t = σ(Yt )

(0 ≤ t ≤ T ) hold.
(iii) Zt = ξ + ∫ t

0 σ(Zs + C(Y )s + 	sen)dXs (0 ≤ t ≤ T ) holds.

We solve these equations by transforming them to the equations in Theorem 2.7. To
this end, we introduce the following conditions.

Definition 5.12 For a mapping C : C([0, T ], R
n) → C([0, T ], R

m), we consider the
following conditions, where ρ denotes a positive number.

(Lip)ρ ‖C(x) − C(y)‖∞,[0,t] ≤ ρ‖x − y‖∞,[0,t] for all x, y ∈ C([0, T ], R
n) and

0 ≤ t ≤ T .
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(BV)ρ ‖C(x)‖1-var ,[s,t] ≤ ρ‖x‖∞-var ,[s,t] for all 0 ≤ s ≤ t ≤ T .

We may write C ∈ (Lip)ρ simply when C satisfies the condition (Lip)ρ , etc. Also we
denote by ‖C‖Lip the smallest nonnegative number ρ for which (Lip)ρ holds.

Clearly the conditions (Lip)ρ and (BV)ρ are stronger than the conditions in
Assumption 2.2. Also the conditions (Lip)ρ and (BV)ρ imply the conditions (A1),
(A2) and (A3) in [1].

As we noted, C which is defined in Example 2.9 (2) satisfies the above conditions.

Proposition 5.13 Let ρ > 0. Let f : R
n → R be a Lipschitz function satisfying

(Lip)ρ . Let C(x)t = max0≤s≤t f (xs) for x ∈ C([0, T ], R
n). Then we have C ∈

(Lip)ρ ∩ (BV)ρ .

Proof We consider the simplest case C(x)t = max0≤s≤t xs , where x is a continuous
path on R. Let 0 ≤ s < t . We take values 0 ≤ s∗ ≤ s, 0 ≤ t∗ ≤ t such that
C(x)s = xs∗ and C(x)t = xt∗ . Suppose t∗ ≤ s, then C(x)u = C(x)t∗ (s ≤ u ≤ t)
holds. Hence ‖C(x)‖1-var ,[s,t] = 0. Suppose s < t∗ ≤ t . Then using xs ≤ xs∗ , we
have

C(x)t − C(x)s = xt∗ − xs∗ ≤ xt∗ − xs ≤ ‖x‖∞-var ,[s,t],

which implies the validity of (BV)1.Wenext show (Lip)1. Let x, x ′ be continuous paths
on R. Similarly, t ′∗ denotes a time at which x ′ attains its maximum of xu (0 ≤ u ≤ t).
We have C(x)t − C(x ′)t = xt∗ − x ′

t ′∗
. If xt∗ − x ′

t ′∗
= 0, Suppose xt∗ > x ′

t ′∗
. Then, by

x ′
t ′∗

≥ x ′
t∗ , we have

0 ≤ C(x)t − C(x ′)t = xt∗ − x ′
t ′∗ ≤ xt∗ − x ′

t∗ ≤ ‖x − x ′‖∞,[0,t].

This proves that (Lip)1 holds for C(x)t = max0≤s≤t xs . General cases follow from
this simplest case. ��

We consider (5.35). To this end, we consider the following condition on C .
(Condition C̃) (i) For any x ∈ C([0, T ], R

n), there exists unique y ∈ C([0, T ], R
n)

such that y = x + C(y). Define C̃(x) = y − x .
(ii) C̃ satisfies (Lip)ρ′ for certain ρ′.
About this property, we have the following. The proof is straightforward and so we

omit the proof.

Proposition 5.14 Assume C satisfies (Condition C̃) (i). Then for any 0 ≤ t ≤ T and
x ∈ C([0, t], R

n), there exists a unique y ∈ C([0, t], R
n) such that y = x + C(y)

on [0, t]. For these x and y, we define C̃t (x) = y − x ∈ C([0, t], R
n). Then for any

z ∈ C([0, T ], R
n) satisfying zs = xs (0 ≤ s ≤ t), C̃(z)s = C̃t (x)s (0 ≤ s ≤ t) holds.

By this result, given ξ ∈ R
n , the solution η ∈ R

n of η = ξ + C0(η) is unique if C
satisfies (Condition C̃) (i). We have the following result for (5.35).

Theorem 5.15 Let C be a continuous mapping between C([0, T ], R
n). Suppose C

satisfies (Condition C̃) and C̃ satisfies (BV)ρ′′ for certain ρ′′. Let X ∈ C β(Rd).
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(1) There exists a controlled path Z ∈ D
2β
X (Rn) satisfying the equation

Zt = ξ +
∫ t

0
σ
(

Zs + C̃(Z)s

)
dXs, Z ′

t = σ(Zt + C̃(Z)t ). (5.40)

and Z has the estimate similarly to Theorem 2.7. Moreover Yt = Zt + C̃(Z)t is a
solution to (5.35).

(2) Let Yt be a solution to (5.35) defined by Z ∈ D
2β
X (Rn). Then Z is a solution to

(5.40). Moreover, such a Z is uniquely determined by Y .
(3) The transformations defined in (1) and (2) are inverse mapping each other and

the uniqueness of the solution of (5.35) and (5.40) is equivalent.

Proof (1) The existence and the estimate of the solution follows from Theorem 2.7.
By Yt = Zt + C̃(Z)t and by the definition of C̃ , we have C̃(Z) = C(Y ). Hence
Z ′

t = σ(Zt + C(Y )t ) and Yt is a solution to (5.35).
(2) By the definition of C̃ , C̃(Z)t = C(Y )t holds. Hence Z is a solution to (5.40).
Also the uniqueness follows from the assumption on C .
(3) These follows from the assumption on C . ��

We give sufficient conditions on C under which C satisfies (Condition C̃).

Lemma 5.16 Let C be a continuous mapping between C([0, T ], R
n).

(1) Assume C satisfies (Lip)ρ1 with ρ1 < 1. Let x ∈ C([0, T ], R
n). There exists a

unique y ∈ C([0, T ], R
n) satisfying y = x+C(y). Then C̃ satisfies (Lip)ρ1/(1−ρ1)

.

(2) Suppose that C satisfies (Lip)ρ1 with ρ1 < 1 and (BV)ρ2 with ρ2 < 1. Then C̃
satisfies (BV)ρ2/(1−ρ2).

(3) Suppose that C satisfies (Lip)ρ and (BV)ρ with ρ < 1/2. Then C̃ satisfies (Lip)ρ′
and (BV)ρ′ with ρ′ = ρ

1−ρ
< 1.

Proof (1) The existence of y follows from the fact that the mapping y 
→ x + C(y) is
contraction. We have C̃(x) = C(y) = C(x + C̃(x)). Therefore,

‖C̃(x) − C̃(x ′)‖∞,[0,t] ≤ ρ1

(
‖x − x ′‖∞,[0,t] + ‖C̃(x) − C̃(x ′)‖∞,[0,t]

)
(5.41)

which implies ‖C̃(x) − C̃(x ′)‖∞,[0,t] ≤ ρ1
1−ρ1

‖x − x ′‖∞,[0,t].
(2) We have

‖C̃(x)‖1-var ,[s,t] = ‖C(x + C̃(x))‖1-var ,[s,t]
≤ ρ2

(
‖x‖∞-var ,[s,t] + ‖C̃(x)‖∞-var ,[s,t]

)

≤ ρ2

(
‖x‖∞-var ,[s,t] + ‖C̃(x)‖1-var ,[s,t]

)

which implies the desired estimate.
(3) This follows from (1) and (2). ��
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Example 5.17 (1) We consider the following C :

Ci (Y )t =
n∑

j=1

ai
j sup
0≤s≤t

Y j
s +

n∑
j=1

bi
j inf
0≤s≤t

Y j
s , (5.42)

where Y j
t and Ci (Y )t are the j-th coordinate and i-th coordinate of Yt and C(Y )t

respectively. By Proposition 5.13 and Lemma 5.16, we see that this C satisfies the
assumption in Theorem 5.15 for sufficiently small ai

j , bi
j . In this paper, we do not

consider the subtle case as in the previous Subsection, e.g., |ab/(1 − a)(1 − b)| ≤ 1
or a < 1, b < 1, etc. We just mention the following simple result.

Let ai < 1 (1 ≤ i ≤ n) and consider C defined by Ci (x)t = ai max0≤s≤t x i (s),
where xt = (xi

t ). If a ≤ −1, the mapping C : x = (xt )(∈ C([0, T ], R) →
(a max0≤s≤t xs) ∈ C([0, T ], R) is not a strict contraction mapping, but, y = x +C(y)

(y ∈ C([0, T ], R)) is uniquely solved as yt = xt + a
1−a max0≤s≤t xs . Therefore, we

have explicitly

C̃(x)t =
(

a1
1 − a1

max
0≤s≤t

x1s , . . . ,
an

1 − an
max
0≤s≤t

xn
s

)
.

Hence, this example satisfies the assumption in Theorem 5.15.
(2) Let fi : R

n → R (1 ≤ i ≤ n) be Lipschitz functions satisfying (Lip)ρi . For
x ∈ C([0, T ], R

n), we define C by Ci (x)t = max0≤s≤t fi (xs). Then C satisfies
(Lip)√∑

i ρ2
i

and (BV)∑
i ρi

. Hence, if
∑

i ρi < 1, then the assumption inTheorem5.15

holds. This follows from Proposition 5.13 and Lemma 5.16.

We now consider (5.36) on D̄ = {(x1, . . . , xn) | xn ≥ 0}. For the moment, we
suppose C satisfies (Condition C̃) and ξ is chosen so that the solution η of η =
ξ + C0(η) satisfies η ∈ D̄ as we noted before. Let Yt be a solution of (5.36) and
suppose Yt = Zt + C(Y )t + 	t en as in Definition 5.11 (2) (ii). Let Z̃t = Yt − C(Y )t .
Using C̃ , we have Yt = Z̃t + C̃(Z̃)t . Then

Yt = Zt + C(Y )t + 	t en

= Zt + C̃(Z̃)t + 	t en

= Zt + C̃(Z + 	en)t + 	t en . (5.43)

By (5.39), we get an equation for 	t ,

	t = max
0≤s≤t

{
−
(

Zn
s + C̃n(Z + 	en)s

)
∨ 0
}
, (5.44)

where Zn
s and C̃n is the n-th coordinate of Zs and C̃ respectively. This is a nonlinear

implicit Skorohod equation. This kind of equation appeared in the study of the Euler
approximation of the solutions for reflected RDEs in [2].
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Fix x ∈ C([0, T ], R
n; x0 = ξ) and consider a mapping on C([0, T ], R;φ0 = 0):

Mx (φ)t = max
0≤s≤t

{
−
(

xn
s + C̃n(x + φen)s

)
∨ 0
}
, φ ∈ C([0, T ], R;φ0 = 0),

(5.45)

where xn is the n-th coordinate of x . Now suppose that x 
→ C̃n(x) is a Lipschitz map
belonging to (Lip)κ . Then we have for any φ, φ′ ∈ C([0, T ], R;φ0 = 0)

‖Mx (φ) − Mx (φ
′)‖∞,[0,T ] ≤ κ‖φ − φ′‖∞,[0,T ]. (5.46)

Hence, if κ < 1, that is, C̃n is strict contraction, thenMx is a contraction mapping for
all x ∈ C([0, T ], R

n; x0 = ξ). Let us denote the fixed point by L̃(x). Then we have
	 = L̃(Z). Thus, under the assumption that C̃n : C([0, T ], R

n) → C([0, T ], R)

satisfies (Lip)ρ with ρ < 1, we obtain a mapping x(∈ C([0, T ], R
n; x0 = ξ)) 
→

L̃(x) ∈ C([0, T ], R;φ0 = 0) and the equation for Z :

Zt = ξ +
∫ t

0
σ
(

Zs + C̃(Z + L̃(Z)en)s + L̃(Z)sen

)
dXs . (5.47)

We have the following estimate of L̃ .

Lemma 5.18 Suppose

(i) C satisfies (Condition C̃) and C̃ satisfies (BV)ρ′′ for some ρ′′ > 0.
(ii) C̃n satisfies (Lip)κ with κ < 1 and C̃n satisfies (BV)κ ′ with κ ′ < 1.

Let Ã(x)t = C̃(x + L̃(x)en)t + L̃(x)t en . Then the following hold.

(1) ‖L̃(x) − L̃(x ′)‖∞,[0,t] ≤ 1 + κ

1 − κ
‖x − x ′‖∞,[0,t].

(2) ‖L̃(x)‖1-var ,[s,t] ≤ 1 + κ ′

1 − κ ′ ‖x‖∞-var ,[s,t].

(3) ‖ Ã(x) − Ã(x ′)‖∞,[0,t] ≤
(

ρ′ + (1 + ρ′)1 + κ

1 − κ

)
‖x − x ′‖∞,[0,t],

(4) ‖ Ã(x)‖1-var ,[s,t] ≤
(

ρ′′ + (1 + ρ′′)1 + κ ′

1 − κ ′

)
‖x‖∞-var ,[s,t].

Proof (1) Since L̃(x) satisfies

L̃(x)t = max
0≤s≤t

{
−
(

xn
s + C̃n(x + L̃(x)en)s

)
∨ 0
}

, (5.48)

we have

‖L̃(x) − L̃(x ′)‖∞,[0,t] ≤ ‖x − x ′‖∞,[0,t] + ‖C̃n(x + L̃(x)en)

− C̃n(x ′ + L̃(x ′)en)‖∞,[0,t]
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≤ ‖x − x ′‖∞,[0,t] + κ
(
‖x − x ′‖∞,[0,t] + ‖L̃(x)

−L̃(x ′)‖∞,[0,t]
)

,

which implies

‖L̃(x) − L̃(x ′)‖∞,[0,t] ≤ 1 + κ

1 − κ
‖x − x ′‖∞,[0,t].

(2) We have

‖L̃(x)‖1-var ,[s,t] ≤ ‖xn + C̃n(x + L̃(x)en)‖∞-var ,[s,t]
≤ ‖x‖∞-var ,[s,t] + ‖C̃n(x + L̃(x)en)‖∞-var ,[s,t]
≤ ‖x‖∞-var ,[s,t] + κ ′ (‖x‖∞-var ,[s,t] + ‖L̃(x)‖1-var ,[s,t]

)
.

Thus, we obtain ‖L̃(x)‖1-var ,[s,t] ≤ 1 + κ ′

1 − κ ′ ‖x‖∞-var ,[s,t].
(3) By using (1) and (2), we have

‖ Ã(x) − Ã(x ′)‖∞,[0,t] ≤ ρ′
(

‖x − x ′‖∞,[0,t] + 1 + κ

1 − κ
‖x − x ′‖∞,[0,t]

)

+ 1 + κ

1 − κ
‖x − x ′‖∞,[0,t],

which implies the desired result.
(4) We have

‖ Ã‖1-var ,[s,t] ≤ ‖C̃(x + L̃(x)en)‖1-var ,[s,t] + ‖L̃(x)‖1-var ,[s,t]

≤ ρ′′ (‖x‖∞-var ,[s,t] + ‖L̃(x)‖∞-var ,[s,t]
)

+ 1 + κ ′

1 − κ ′ ‖x‖∞-var ,[s,t]

≤ ρ′′
(

‖x‖∞-var ,[s,t] + 1 + κ ′

1 − κ ′ ‖x‖∞-var ,[s,t]
)

+ 1 + κ ′

1 − κ ′ ‖x‖∞-var ,[s,t]

=
(

ρ′′ + (1 + ρ′′)1 + κ ′

1 − κ ′

)
‖x‖∞-var ,[s,t].

��
The following lemma follows from Lemma 5.16.

Lemma 5.19 Suppose C satisfies (Lip)ρ and (BV)ρ with ρ < 1/2. Then the assump-
tion of Lemma 5.18 (i) and (ii) hold with ρ′ = ρ′′ = κ = κ ′ = ρ

1−ρ
< 1.

We now state our theorem for (5.36) and give the proof.
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Theorem 5.20 Let C be a continuous mapping between C([0, T ], R
n). Suppose C

satisfies the same assumption in Lemma 5.18. Moreover we assume that the solution
η of η = ξ + C0(η) satisfies η ∈ D̄. Let X ∈ C β(Rd). Let Ã be the mapping defined
in Lemma 5.18.

(1) There exsits a solution Z ∈ D
2β
X (Rn) to (5.47) and Z has the estimate similarly

to Theorem 2.7. Let Yt = Zt + Ã(Z)t and 	t = L̃(Z)t . Then

Yt = Zt + C(Y )t + 	t en, Z ′
t = σ(Yt ), 	t = L(Z + C(Y ))t (5.49)

hold. That is, (Y ,	) is a solution to (5.36).
(2) Let (Y ,	) be a solution to (5.36) and Z be a controlled path appearing in Defini-

tion 5.11 (2). Then Z is a solution to (5.47). Moreover, Z is uniquely determined
by Y and X.

(3) The transformations defined in (1) and (2) are inverse mapping each other and
the uniqueness of the solution of (5.36) and (5.47) is equivalent.

Proof (1) By Lemma 5.18 and Theorem 2.7, there exists a solution Z to (5.47) and
has the estimate given in Theorem 2.7. By the definition of L̃ and C̃ , we have L̃(Z) =
L(Z + C̃(Z + L̃(Z)en)) and C̃(Z + L̃(Z)) = C(Y ) which shows (5.49).
(2) The argument by which we derived the equation (5.47) shows the former half part.
Z is uniquely defined by Y and X only because Zt = ξ + ∫ t

0 σ(Ys)dXs , Y is a sum of
Z and a continuous bounded variation path and Z ′

t = σ(Yt ).
(3) The invertibility of the mapping follows from the definition. The latter half state-
ment follows from this property of the mapping. ��
Example 5.21 (1) We consider C in (5.42). If ai

j , bi
j are sufficiently small, then

the assumption on C in Lemma 5.18 holds by Proposition 5.13, Lemma 5.16 and
Lemma 5.19.
(2) We consider the example in Example 5.17(2). Suppose

∑
i ρi < 1/2. Then

the assumption on C in Lemma 5.18 holds. This follows from Proposition 5.13,
Lemma 5.16 and Lemma 5.19.
(3) Let a ∈ R and we consider Lipschitz functions fi (1 ≤ i ≤ n) in Example 5.17
(2) and define for x = (xi )n

i=1 ∈ C([0, T ], R
n),

C(x)t =
(
max
0≤s≤t

f1(xs), . . . , max
0≤s≤t

fn−1(xs), max
0≤s≤t

fn(xs) + a max
0≤s≤t

xn
s

)
. (5.50)

Suppose ξ is chosen so that η ∈ D̄. For example, if a < 1, fn(η1, . . . , ηn−1, 0) ≥ 0
for all η and ‖ ∂ fn

∂ηn
‖∞ is sufficiently small, ξ ∈ D̄ is sufficient for η ∈ D̄.

We prove that if a < 1/2 and
∑n

i=1 ρi is sufficiently small, C satisfies the assump-
tion in Lemma 5.18.

Let

C f (x)t =
(
max
0≤s≤t

f1(xs), . . . , max
0≤s≤t

fn(xs)

)
, C fn (x)t = max

0≤s≤t
fn(xs).
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The equation y = x + C(y) is equivalent to

y = x + C f (y) + a

1 − a
max
0≤s≤t

(C fn (y)s + xn
s )en =: 	x (y)

If
∑

i ρi is sufficiently small, then the mapping y 
→ 	x (y) is a strict contraction
mapping for all x . Thus, y = x + C(y) is uniquely solved and C̃(x) = y − x is
defined. Note that

C̃(x) = C f (x + C̃(x)) + a

1 − a
max
0≤s≤t

(C fn (x + C̃(x))s + xn
s )en .

By this expression, for any ε > 0, if
∑

i ρi is sufficiently small, we have, for any
x, x ′ ∈ C([0, T ], R

n),

‖C̃(x) − C̃(x ′)‖∞,[0,t] ≤ ε
(
‖C̃(x) − C̃(x ′)‖∞,[0,t] + ‖x − x ′‖∞,[0,t]

)

+ |a|
1 − a

‖x − x ′‖∞,[0,t],

‖C̃(x)‖1-var ,[s,t] ≤ ε

(
1 + |a|

1 − a

)(
‖x‖∞-var ,[s,t] + ‖C̃(x)‖∞-var ,[s,t])

)

+ |a|
1 − a

‖xn‖∞-var ,[s,t].

This shows that ifa < 1/2 and
∑

i ρi sufficiently small, the assumption ofLemma5.18
is satisfied.

Remark 5.22 (Remark on the Itô and Stratonovich SDEs) The equations, (5.35) and
(5.36) are formulated by using rough integrals. We now consider the equations replac-
ing the rough integrals by Itô and Stratonovich integrals against the standard Brownian
motion Wt . The solutions are semimartingales and the equations are well-defined. We
need to assume σ is Lipschitz continuous and σ ∈ C2

b for the Itô and Stratonovich
integrals respectively. Under the same assumptions on C in Theorem 5.15 and Theo-
rem 5.20, the existence and the pathwise uniqueness hold for the stochastic integral’s
version of (5.40) and (5.47) by the Lipschitz continuity of their coefficients which
implies the uniqueness of the solutions of the stochastic integral’s version of (5.35)
and (5.36). In Sect. 6, we consider Stratonovich SDEs corresponding to (5.35) and
(5.36) and prove the support theorem of the solutions (Corollary 6.6).

Consider Example 5.21 (3). In the case of standard Brownian motion, this example
extends the existence results for solutions in Doney and Zang [13] slightly. Also we
can extend the absolutely continuity property of the law of Yt in Yue and Zhang [36].
We study this problem in a separate joint paper with Yuki Kimura.
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5.4 Related Path-Dependent RDEs

We consider the Hölder rough pathX. Namely, ω(s, t) = t − s. In this Subsection, we
consider RDEs depending on the L p-norm of the solution. For simplicity, we consider
the case where A(x)t is a real-valued process. That is,

(1) σ ∈ Lipγ (Rn × R → L(Rd , R
n)).

(2) We consider the following case:

(2a) Let f ∈ Lip1(Rn, R) and A(x)t = ∫ t
0 f (xs)ds,

(2b) Let R > 0, 1 < p ≤ 1
β
and set A(x)t =

{∫ t
0 (|xs | ∧ R)pds

}1/p
,

(2c) Let 0 < ε < R < ∞, p > 1 and set A(x)t =
{∫ t

0 (ε ∨ |xs | ∧ R)p ds
}1/p

.

Our RDE is of the form,

Zt = ξ +
∫ t

0
σ(Zs, A(Z)s))dXs, (5.51)

as before. In the case (2a), the equation reads Zt = ξ + ∫ t
0 σ(Zs, �s)dXs, �t =∫ t

0 f (Zs)ds, which is usual RDE and we have the existence and the uniqueness of the
solutions. We consider the case (2b). Clearly, (Lip)1 holds. For simplicity, we write
f (x) = |x | ∧ R. Note that

A(x)t − A(x)s ≤
{∫ t

s
| f (xu) − f (xs)|pdu

}1/p

+ | f (xs)|(t − s)1/p

≤ (‖x‖∞-var ,[s,t] + R
)
(t − s)1/p, 0 ≤ s < t ≤ T . (5.52)

Hence noting a remark in Example 2.9 (3), we see that the solution exists and a
priori estimate holds. Actually, we can prove the uniqueness of the solution under the
additional assumption that ξ �= 0.

Proposition 5.23 Assume (1) and (2b) in the above. Further we assume f (|ξ |)(=:
ε) �= 0. Then the solution of (5.51) is unique.

Lemma 5.24 Assume the same assumption as in Proposition 5.23. Here we allow
p > 1. We have the following estimates. Below, Ci (i = 1, 2) are polynomial functions
and ω(s, t) = t − s, ω̃(s, t) = t1/p − s1/p.

‖A(x)‖1-var ,[s,t] ≤ C1(ε
−1, R, ‖x‖β,[0,t]) (ω̃(s, t) + ω(s, t)) , (5.53)

‖A(x) − A(y)‖1-var ,[s,t] ≤ C2(ε
−1, R, ‖x‖β,[0,t], ‖y‖β,[0,t])‖x − y‖∞,[0,t]

(ω̃(s, t) + ω(s, t)) . (5.54)

Proof We have

A(x)′t = 1

p
f (xt )

p
(∫ t

0
f (xu)pdu

) 1
p −1

.
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Also, we have

| f (xu) − f (x0)| ≤ ‖x‖βuβ.

Hence

| f (xu)| ≥ ε

2
for u ≤

(
ε

2‖x‖β

)1/β

,

which implies

(∫ t

0
f (xu)pdu

)
≥
(ε

2

)p
{

t ∧
(

ε

2‖x‖β

)1/β
}

and

A(x)
1−p
t ≤

(
2

ε

)p−1
⎧⎨
⎩

1

t1−1/p
+
(
2‖x‖β

ε

) p−1
β p

⎫⎬
⎭ . (5.55)

Therefore,

‖A(x)‖1-var ,[s,t] ≤ R p

p

(
2

ε

)p−1
⎧⎨
⎩p(t1/p − s1/p) +

(
2‖x‖β

ε

) p−1
β p

(t − s)

⎫⎬
⎭ .

Let y be another β-Hölder continuous path with |y0| = ε. We have

A(x)′t − A(y)′t = 1

p

f (xt )
p − f (yt )

p

A(x)
p−1
t

+ f (yt )
p

p

A(y)
p−1
t − A(x)

p−1
t

(A(x)t A(y)t )p−1

=: I1(t) + I2(t).

Using the elementary inequality,
∣∣∣ br −ar

b−a

∣∣∣ ≤ r max
(
ar−1, br−1

)
(a, b > 0, r ∈ R), we

have

∫ t

s
|I1(u)|du ≤

(
2R

ε

)p−1
⎛
⎝p

(
t1/p − s1/p

)
+
(
2‖y‖β

ε

) p−1
β p

(t − s)

⎞
⎠

‖x − y‖∞,[s,t].

Also we have
∣∣∣A(x)

p−1
t − A(y)

p−1
t

∣∣∣
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≤ (p − 1)R p−1‖x − y‖∞,[0,t]
2t

ε

(
1

t1/p
+
(
2‖x‖β

ε

)1/(β p)

+
(
2‖y‖β

ε

)1/(β p)
)

.

Hence using (5.55),

∫ t

s
|I2(u)|du ≤ (p − 1)R2p−1

p

(
2

ε

)2p−1

‖x − y‖∞,[0,t]

×
∫ t

s

{
u1−1/p + u

((
2‖x‖β

ε

)1/(β p)

+
(
2‖y‖β

ε

)1/(β p)
)}

⎧⎨
⎩

1

u1−1/p
+
(
2‖x‖β

ε

) p−1
β p

⎫⎬
⎭

2

du,

which completes the proof. ��

Proof of Proposition 5.23 Let Zt and Z̃t be solutions to (5.51) and suppose ‖Z − Z̃‖ �=
0. We may assume zt := ‖Z − Z̃‖∞,[0,t] > 0 for all t > 0. Otherwise, that is, if
t0 = inf{t ≥ 0 | ‖Z − Z̃‖∞,[0,t] > 0} > 0 happens, then it suffices to consider
solutions Zt and Z̃t from t0. We have

Zt − Z̃t =
∫ t

0
[A(Z)s − A(Z̃)s]dGs +

∫ t

0
[Zs − Z̃s]d Hs,

where Gs and Hs are L(Rd , R
n)-valued maps which act from the right as

ηGs =
∫ s

0

(∫ 1

0
(D2σ)(Zu, A(Z̃)u + θ(A(Z)u − A(Z̃)u))dθ

)
[η]d Xu,

ηHs =
∫ s

0

(∫ 1

0
(D1σ)(Z̃u + θ(Zu − Z̃u), A(Z̃)u)dθ

)
[η]d Xu

and the integrals are Stieltjes integral and the rough integral. The rough integral is
well-defined because we assume σ ∈ Lipγ . Clearly, Gs, Hs are controlled paths of
X. We fix t and consider the processes in the time interval 0 ≤ s ≤ t . Let Fs =
z−1

t (A(Z)s − A(Z̃)s) and set F̃s = ∫ s
0 FudGu . By Lemma 5.24 and a priori estimates

of Z , Z̃ , we have |Fu,v| ≤ K ω̄(u, v)β , where ω̄(u, v) = ω̃(u, v) + ω(u, v) and
the positive constant K depends only on σ, p, β,X. Then we have the following
expansion,
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Zs − Z̃s = zt F̃s +
∫ s

0
[Zu − Z̃u]d Hu = zt F̃s +

n−1∑
k=1

Ik(s) + Jn(s), n ≥ 1,

(5.56)

I1(s) = zt F̃s, J0(s) = Zs − Z̃s, Ik(s) =
∫ s

0
Ik−1(u)d Hu,

Jn(s) =
∫ s

0
Jn−1(u)d Hu .

(5.57)

We now consider (ω̄, β)-Hölder rough path X(A) whose first level path is Fu,v ⊕
Xu,v ∈ R

n+d and the iterated integrals of them are defined in a natural way using
Xu,v . Let X(A)k

u,v(∈ (Rd+n)⊗k) be the k-level path (k = 1, 2). Then it holds that

|X(A)k
u,v| ≤ K ω̄(u, v)kβ (k = 1, 2). We can regard F, G, H , Z − Z̃ as controlled

paths of (ω̄, β)-Hölder rough path X(A). Therefore using the estimate of the higher
order iterated integrals, we obtain

max
0≤s≤t

|Ik(s)| ≤ zt C
k ω̄(0, t)kβ

(kβ)! , max
0≤s≤t

|Jn(t)| ≤ Cn ω̄(0, t)nβ

(nβ)! , (5.58)

where C is a certain constant which may depend on X. Thus, for all 0 ≤ t ≤ T , there
exist positive numbers C, C ′ which may depend on X such that

zt ≤ zt C
′ω̄(0, t)β + Cn ω̄(0, t)nβ

(nβ)!
which implies for sufficiently small t and for all n

zt ≤ (1 − C ′ω̄(0, t)β)−1Cn ω̄(0, t)nβ

(nβ)!
and so zt = 0 for sufficiently small t . This completes the proof. ��
Remark 5.25 In the above argument, we assume 1 < p ≤ 1/β and we use a priori
estimate of the Hölder norm of the solution Z . When p > 1/β, the path of A(x)

just satisfies very low regularity around 0. Hence we cannot apply our argument
directly to this case. However note that β-Hölder rough path X can be regarded as a
1/p-Hölder rough path and A(x) ∈ C1-var ,1/p. Hence, we can extend our result by
considering controlled paths of D |p|/p

X and C1-var ,1/p. That is, under the assumption
σ ∈ Lip[p] and x0 �= 0, for all p > 1, we can prove the existence and uniqueness

of the solutions of (5.51) in the case of A(x)t =
{∫ t

0 (|xs | ∧ R)p
}1/p

. However the

assumption σ ∈ Lip[p] seems unnecessary.

In the case of (2c), we can prove the existence and the uniqueness of the solutions
in a similar argument to Proposition 5.23. However, unfortunately, we cannot prove
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uniform estimate of the solutions when p → ∞ and so the estimates cannot be applied
to the case A(x)t = max0≤s≤t f (xs). Note that any (ω, β)-Hölder rough paths X is
a (ω̄, β)-Hölder rough path. Let D2β,ω̄

X (Rn) be the associated controlled path spaces
defined by ω̄. Similarly to the case of (2.20), the integral in (5.51) is also well-defined.

Proposition 5.26 Let us consider the situation (1) and (2c) above. Then there exists
a unique solution to (5.51).

Similarly to Proposition 5.23, we need the following lemma. The proof is almost
similar to Lemma 5.24 and we omit it.

Lemma 5.27 Assume (1) and (2c). We have the following estimates.

‖A(x)‖1-var ,[s,t] ≤ C1(ε
−1, R)ω̃(s, t), (5.59)

‖A(x) − A(y)‖1-var ,[s,t] ≤ C2(ε
−1, R)‖D f ‖∞‖x − y‖∞,[0,t]ω̃(s, t). (5.60)

Proof of Proposition 5.26 We can proceed as in Sect. 3 by adopting the control function
ω̄(s, t) = |t − s| + t1/p − s1/p with the help of Lemma 5.27. ��

6 Continuity Property and Support Theorem

Let Wt be a standard d-dimensional Brownian motion. Then we have the notion of
the Itô and Stratonovich SDEs driven by Wt . LetW be the associated Brownian rough
path defined by the Stratonovich integral. When A ≡ 0 and σ ∈ C3

b , the solution
Z(W) is equal to the solution to the Stratonovich SDE in Itô’s calculus for almost all
W . This is checked, for example, by the Wong–Zakai theorem and Lyon’s continuity
theorem. In our cases, we do not have the uniqueness. However, under the assumption
that σ ∈ C2

b , the Wong–Zakai theorems hold for reflected SDEs, perturbed SDEs
and perturbed reflected SDEs. By using this and Proposition 4.2, we can prove the
continuity of the solution mapping of the SDEs at Lipschitz paths in the rough path
topology. We prove support theorem for the above mentioned processes by using the
continuity.

Let us recall the definition of the Brownian rough path. Let �d = C([0, T ], R
d)

and μ be the Wiener measure on �d . Let W ∈ �d and W N
t be the dyadic polygonal

approximation of W , that is,

W N
t = Wt N

i−1
+ 2−N T −1(t − t N

i )Wt N
i−1,t

N
i

, t N
i−1 ≤ t ≤ t N

i ,

t N
i = 2−N iT , 0 ≤ i ≤ 2N . (6.1)

Let W
N
s,t = ∫ t

s W N
s,u ⊗ dW N

u . Let us define

�1 =
{

W ∈ �d | (W N
s,t , W

N
s,t ) converges in C

β(Rd) for all β < 1/2
}

. (6.2)

Here C β is defined by ω(s, t) = |t − s|, that is, C β denotes the set of usual Hölder
rough paths.
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It is known thatμ(�1) = 1 and the limit point of (W N
s,t , W

N
s,t ) for W ∈ �1 is called

the Brownian rough path. We identify the element of W ∈ �1 and the associated
Brownian rough path W. Clearly {W | W ∈ �1} ⊂ C

β
g (Rd) holds for any β < 1/2.

Let σ ∈ C2
b (Rn,L(Rd , R

n)) and consider a Stratonovich reflected SDE,

dYt = σ(Yt ) ◦ dWt + d	t , Y0 = ξ ∈ D̄. (6.3)

We write Zt = Yt − 	t . The corresponding solution Y N
t which is obtained by replac-

ing Wt by W N
t is called the Wong–Zakai approximation of Yt . We also denote the

corresponding reflected term by	N and set Z N = Y N −	N . It is proved in [3, 4, 37]
that the Wong–Zakai approximations of the solution to a reflected Stratonovich SDE
under (A), (B) and (C) converge to the solution in the uniform convergence topology
almost surely. Note that a similar statement under the conditions (A) and (B) is proved
in [3]. See also previous results [14, 17]. By using the result in [4, 37], a support
theorem for the reflected diffusion under the conditions (A), (B) and (C) is proved by
Ren and Wu [33]. We now prove a support theorem for the reflected diffusion under
(A) and (B) by using the estimates in rough path analysis in this paper and in [3, 4].
First we note the following results.

Lemma 6.1 Assume σ ∈ C2
b (Rn,L(Rd , R

n)). We consider the solution (Y , Z ,	) to
(6.3) and their Wong–Zakai approximations (Y N , Z N ,	N ).

(1) Assume D satisfies condition (A), (B), (C). Let

�2 =
{

W ∈ �d
∣∣∣ max
0≤t≤T

{
|Y N

t − Yt | + |Z N
t − Zt | + |	N

t − 	t |
}

→
0 as N → ∞} . (6.4)

Then μ(�2) = 1.
(2) Assume (A), (B) hold. Then there exists an increasing sequence {Nk} ⊂ N such

that μ(�3) = 1 holds where,

�3 =
{

W ∈ �d
∣∣∣ max
0≤t≤T

{
|Y Nk

t − Yt | + |Z Nk
t − Zt | + |	Nk

t − 	t |
}

→ 0 as k → ∞} . (6.5)

Proof (1) This is proved in Lemma 5.1 in [2].
(2) It is proved in [3] that max0≤t≤T |Y N

t −Yt | converges to 0 in probability under (A)
and (B). This and themoment estimate in [4] implies that limN→∞ E[max0≤t≤T |Y N

t −
Yt |p] = 0 for any p ≥ 1 and there exists a subsequence Nk ↑ ∞ such that

max0≤t≤T

∣∣∣Y Nk
t − Yt

∣∣∣ → 0 μ-almost surely. By using this and by a similar proof

to Lemma 5.1 in [2], we can prove (6.5) by taking a subsequence if necessary. ��
We now consider the Stratonovich SDEs corresponding to (5.35) and (5.36).

Y p
t = ξ +

∫ t

0
σ(Y p

s ) ◦ dWs + C(Y p)t , (6.6)
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Y pr
t = ξ +

∫ t

0
σ(Y pr

s ) ◦ dWs + C(Y pr )t + 	t en, (6.7)

We assume σ ∈ C2
b and C satisfies the same assumption as in Theorem 5.15 and

Theorem 5.20 respectively.
We can transform these equations to the following equation with certain A which

satisfies (Lip)ρ and (BV)ρ for some ρ > 0 in a similar way to (5.35) and (5.36),

Zt = ξ +
∫ t

0
σ(Zs + A(Z)s) ◦ dWs . (6.8)

The relation between Y (= Y p or Y pr ) and Z is given as Yt = Zt + A(Z)t . Clearly,
if we consider an ODE which is obtained by replacing W by a Lipschitz path h, then
the solution is unique.

In [1], we proved a Wong–Zakai type theorem for the above Stratonovich SDEs
under the conditions on A: (A1), (A2) and (A3). These conditions are weaker than
(Lip)ρ and (BV)ρ . Thus we have the following.

Lemma 6.2 Suppose A satisfies (Lip)ρ and (BV)ρ for some ρ > 0 and σ ∈
C2

b (Rn,L(Rd , R
n)). Let us consider the solution Z to (6.8) and the Wong–Zakai

approximation Z N defined by W N . Let

�4 =
{

W ∈ �d
∣∣∣ max
0≤t≤T

|Z N
t − Zt | → 0 as N → ∞

}
. (6.9)

Then μ(�4) = 1.

Weprove support theorems for the solutions to (6.3), (6.6) and (6.7) as an application
of the results in Sect. 4. For such purpose, it is important to obtain the support of W.
The following is due to Ledoux-Qian-Zhang [26]. More general results can be found
in [22].

Theorem 6.3 Let β < 1/2. Let μ̂ be the law of W. Then we have Supp μ̂ = C
β
g (Rd),

where Supp μ̂ denotes the topological support of μ̂.

In Remark 4.3, we define a subset of the solution mapping Sol∞(X) (X ∈
C

β
g (Rd)). We see the topological support of the selection mapping with values in

∪X∈C β
g (Rd ))

Sol∞(X) as follows.

Theorem 6.4 Let ν be a probability measure onC β
g (Rd). Let S be a subset ofC β

g (Rd).

We assume Supp ν = C
β
g (Rd) and ν(S) = 1. Let us consider RDE (2.20) and the

solution Z(X) under the same assumption in Theorem 2.7. We assume the solution
for any smooth rough path is unique. Let I : X(∈ S) 
→ Z(X)(∈ Sol∞(X)) ∈
Cβ−([0, T ], R

n) be a measurable mapping with respect to the ν-completed Borel σ -

field. Then we have Supp (I∗ν) = {Z(h) | h ∈ C1}C
β−

, where Supp (I∗ν) denotes the
topological support of the image measure of ν by I.
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Proof The inclusion Supp (I∗ν) ⊂ {Z(h) | h ∈ C1}C
β−

follows from the definition
of Sol∞(X). The converse inclusion follows from the continuity of the multivalued
solution mapping at the set of smooth rough paths which follows from Proposition 4.2
and the assumption on ν. ��

At themoment, we do not have the uniqueness theorem for (5.11), (5.35) and (5.36).
However, the strong solutions exist uniquely for the corresponding Stratonovich SDEs
driven by Brownian motion under the smoothness assumption on σ . Moreover, the
Wong–Zakai theorem hold for them and this convergence theorem gives selection
mappings I in Theorem 6.4 for such cases and we can obtain the support theorem for
them.

Corollary 6.5 Assume D satisfies (A) and (B) and σ ∈ C2
b . Let Y be the solution to

(6.3). Let 0 < β < 1/2. Let PY be the law of Y on Cβ([0, T ], R
n | Y0 = ξ). Then the

support of PY is given by

Supp (PY ) = {Y (h) | h ∈ C1(Rd)}C
β

. (6.10)

Proof ForX = (Xs,t , Xs,t ) ∈ C
β
g (Rd), let X N

t be the dyadic polygonal approximation
of X similarly defined as W N . Let Y N , Z N ,	N be the solution to (6.3) driven by X N .
Let {Nk} be the increasing sequence in Lemma 6.1 (2). Define

�̃3 =
{
X ∈ C β

g (Rd)

∣∣∣ Y Nk
t , Z Nk

t and 	
Nk
t converges uniformly on [0, T ] as k → ∞

}
(6.11)

and

Yt (X) = lim
k→∞ Y Nk

t , Zt (X) = lim
k→∞ Z Nk

t , 	t (X) = lim
k→∞ 	

Nk
t , X ∈ �̃3. (6.12)

�̃3 is a Borel measurable subset of C β
g (Rd) and Y , Z and 	 are Borel measurable

mapping defined on �̃3. By Y N
t = Z N

t + 	N
t = Z N

t + L(Z N )t and the continuity
property of L , Yt (X) = Zt (X)+ Lt (Z(X)) (X ∈ �̃3) holds. Let �̂3 = �̃3∩{W | W ∈
�1}. Then μ̂(�̂3) = 1 and

Y = Y (W) = Z(W) + L(Z(W)), W ∈ �̂3

holds. Note that L : Cβ−([0, T ], R
n; x0 = ξ) → Cβ−([0, T ], R

n) is a continuous
mapping. This follows from Lemma 2.5 (2), Lemma 5.3 and Lemma 5.4. Hence it
suffices to apply Theorem 6.4 to the case I(W) = Z(W), S = �̂3 and ν = μ̂ to obtain
the support theorem in the topology of Cβ−. Since we can choose any β ∈ (0, 1/2),
this completes the proof. ��

Similarly, we have the following result. Since the proof is similar to that of Corol-
lary 6.5, we omit the proof.
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Corollary 6.6 We consider the solutions Y p and Y pr to (6.6) and (6.7) respectively.
Let 0 < β < 1/2. We consider the laws of PY p

and Y pr on Cβ . Then we have

Supp (PY p
) = {Y p(h) | h ∈ C1(Rd)}C

β

, (6.13)

Supp (PY p,r
) = {Y pr (h) | h ∈ C1(Rd)}C

β

. (6.14)
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Appendix A

A.1 Uniqueness of the Gubinelli Derivative

Let Y be a continuous path on R
n and suppose that there exist (Z , Z ′), (Z̃ , Z̃ ′) ∈

D2θ
X (Rn) and continuous bounded variation paths (�t )0≤t≤T , (�̃t )0≤t≤T such that

Yt = Zt + �t = Z̃t + �̃t (0 ≤ t ≤ T ). We discuss conditions under which Z ′
t = Z̃ ′

t
holds for all t .

We consider the following condition C(δ, p, ξ) on a continuous curve X on R
d

(d ≥ 2), where 0 < δ < π/2, p > 1 and ξ is a unit vector. This is related to the
property of the truly roughness of the path [20]. Below we denote the angle between
two non-zero vectors v1 and v2 by θ(v1, v2), where 0 ≤ θ(v1, v2) ≤ π .
C(δ, p, ξ) For any interval [s, t] ⊂ [0, T ], there exists a sequence of partitions
PN = {s = t N

0 < · · · < t N
k(N ) = t} of [s, t] such that limN→∞ |PN | = 0 and

lim
N→∞

∑
i∈PN (X ,ξ,δ)

|Xti−1,ti |p = ∞, (A.1)
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where

PN (X , ξ, δ) =
{
1 ≤ i ≤ k(N ) |θ (Xti−1,ti , ξ

) ≤ π

2
− δ or θ

(
Xti−1,ti ,−ξ

)

≤ π

2
− δ holds

}
. (A.2)

It is easy to check that almost all sample paths of a fractional Brownian
motion(=fBm) Wt whose Hurst parameter 0 < H < 1 satisfies C(δ, p, ξ) for
p < 1/H and sufficiently small δ.

The proof is as follows. Let e1 = ξ . We choose orthonormal vectors e2, . . . , ed in
R

d which are orthogonal to e1. Let W k
t := (Wt , ek) and W ⊥

t =∑d
k=2 W k

t ek . Then by
the rotational invariance of Wt , (W 1

t , . . . , W d
t ) are also fBm with the Hurst parameter

H . LetPN be the dyadic partition of [s, t], that is, t N
i = s+i2−N (t −s) (0 ≤ i ≤ 2N ).

The condition i ∈ PN (W , e1, δ) is equivalent to

|W 1
t N
i−1,t

N
i

| ≥ (tan δ)|W ⊥
t N
i−1,t

N
i

|. (A.3)

Below, we write Wt N
i−1,t

N
i

= Wi−1,i and so on for simplicity. Let p > 1. We have

IN :=
∑

i∈PN (W ,e1,δ)

|Wi−1,i |p =
2N∑
i=1

|Wi−1,i |p1|W 1
i−1,i |≥(tan δ)|W⊥

i−1,i |

≥
2N∑
i=1

|W 1
i−1,i |p1|W 1

i−1,i |≥(tan δ)|W⊥
i−1,i |

≥
2N∑
i=1

|W 1
i−1,i |p1|W 1

i−1,i |≥(tan δ)|W⊥
i−1,i |

+
2N∑
i=1

(
|W 1

i−1,i |p − (tan δ)p|W ⊥
i−1,i |p

)
1|W 1

i−1,i |<(tan δ)|W⊥
i−1,i |

≥
2N∑
i=1

|W 1
i−1,i |p − (tan δ)p

2N∑
i=1

|W ⊥
i−1,i |p

≥
2N∑
i=1

|W 1
i−1,i |p − (tan δ)p(d − 1)(p−1)/p

d∑
k=2

2N∑
i=1

|W k
i−1,i |p.

By Remark D.3.2 in [30], for all 1 ≤ k ≤ d, we have

lim
N→∞

2N H p−N

(t − s)p

2N∑
i=1

∣∣∣W k
i−1,i

∣∣∣p =
∫
R

|x |pdμ(x) in L2,
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where μ is the 1 dimensional standard normal distribution. This implies that if
pH < 1 for sufficiently small δ there exists a subsequence Nk ↑ ∞ such that
limNk→∞ INk = +∞ for almost all W .

Proposition 7.1 Let X ∈ C β(Rd) (1/3 < β ≤ 1/2). Let us choose p such that
1/(2β) < p < 1/β. Assume that the first level path Xt satisfies C(δ, p, ξ) for any
ξ ∈ K and a fixed positive δ, where K is a countable dense subset of Sd−1. Let Yt be
a continuous path on R

n. Suppose Yt = Zt + �t = Z̃t + �̃t , where Z , Z̃ ∈ D
2β
X (Rn)

and �,� ′ are continuous bounded variation paths. Then Z ′
t = Z̃ ′

t (0 ≤ t ≤ T ) holds.

Proof Suppose that there exists s0 such that Z ′
s0 − Z̃ ′

s0 �= 0. Then there exist 0 < s1 <

s0 < s2 < T and unit vectors ξ1, ξ2 ∈ K such that

εs1,s2 = inf
s1<s<s2

|(Z ′
s − Z̃ ′

s)
∗ξ1| > 0, (A.4)

sup
s1<s<s2

θ
(
(Z ′

s − Z̃ ′
s)

∗ξ1, ξ2
)

≤ δ/2. (A.5)

We use C(δ, p, ξ) for ξ = ξ2 and the interval [s1, s2]. Let t N
i , t N

i+1 be partition points
of PN . If i ∈ PN (X , ξ2, δ), then

θ
(

Xt N
i−1,t

N
i

, (Z ′
s − Z̃ ′

s)
∗ξ1
)

≤ π

2
− δ

2
or θ

(
−Xt N

i−1,t
N
i

, (Z ′
s − Z̃ ′

s)
∗ξ1
)

≤ π

2
− δ

2
holds.

(A.6)

Therefore, for i ∈ PN (X , ξ2, δ),

∣∣∣∣
(

Xt N
i−1,t

N
i

, (Z ′
t N
i−1

− Z̃ ′
t N
i−1

)∗ξ1
)∣∣∣∣ ≥ sin

(
δ

2

) ∣∣∣Xt N
i−1,t

N
i

∣∣∣
∣∣∣∣(Z ′

t N
i−1

− Z̃ ′N
ti−1

)∗ξ1
∣∣∣∣

≥ εs1,s2 sin

(
δ

2

) ∣∣∣Xt N
i−1,t

N
i

∣∣∣ . (A.7)

Also we note that

(
Xt N

i−1,t
N
i

, (Z ′
t N
i−1

− Z̃ ′
t N
i−1

)∗ξ1
)

=
(
�̃t N

i−1,t
N
i

− �t N
i−1,t

N
i

, ξ1

)
+
(

RZ̃
t N
i−1,t

N
i

− RZ
t N
i−1,t

N
i

, ξ1

)
.

(A.8)

Thus we obtain

∑
i∈PN (X ,e2,δ)

∣∣∣Xt N
i−1,t

N
i

∣∣∣p ≤ 2p−1
(

εs1,s2 sin

(
δ

2

))−p

(
‖�̃ − �‖p

p-var ,[s1,s2] + ‖RZ̃ − RZ‖p
p-var ,[s1,s2]

)
. (A.9)

Since p > 1/(2β), the right hand side of the above inequality is bounded. This
contradicts the assumption on X . ��
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Path-Dependent RDE with Drift

Weconsider path-dependent rough differential equationswith drift term. It is necessary
to consider such kind of equations for the study of reflected diffusions with drift. In
the case of n-dimensional Brownian motion Wt = (W 1

t , . . . , W n
t )), one possible

approach to include the drift term is to consider the geometric rough path defined by
W̃t = (Wt , t) ∈ R

d+1. By considering the geometric rough path which is naturally
defined by Brownian rough pathWs,t , we may extend all results in previous sections
to the corresponding results for the solutions to the equation,

Zt = ξ +
∫ t

0
σ(Zs, A(Z)s)dWs +

∫ t

0
b(Zs, A(Z)s)ds. (A.10)

However, we need to assume b ∈ Lipγ−1(Rn ×R
n, R

n) (2 < γ ≤ 3) to do so and the
assumption on b is too strong. Hence, we explain different approach to deal with the
drift term. Let us considerβ-Hölder rough path, that is, the casewhereω(s, t) = |t−s|.
Let b ∈ C1

b(Rn × R
n, R

n) and consider the equation,

Zt = ξ +
∫ t

0
σ(Zs, �s)dXs +

∫ t

0
b(Zs, �s)ds, (A.11)

�t=A

(
ξ +

∫ ·

0
σ(Zs, �s)dXs +

∫ ·

0
b(Zs, �s)ds

)
t
. (A.12)

The meaning of this equation is as follows. The controlled path (Z , Z ′) and � are
elements as in the definition of �s,t and I (Z , �)s,t . In the present case, we consider

�̃s,t := σ(Ys)Xs,t+(D1σ)(Ys)Z ′
sXs,t+(D2σ)(Ys)

∫ t

s
�s,r ⊗ dXr+b(Ys)(t − s).

(A.13)

Then, (δ�̃)s,u,t = (δ�)s,u,t + (b(Ys) − b(Yu)) (t − u) for s < u < t and

| (b(Ys) − b(Yu)) (t − u)|
≤‖Db‖∞

(
‖Z ′‖∞‖X‖β(t − s)β+‖RZ‖2β(t − s)2β+‖�‖q-var ,α̃(t − s)α̃

)
(t − s).

(A.14)

By using this, we define

I (Z , �)s,t :=
∫ t

s
σ(Zu, �u)dXu +

∫ t

s
b(Zu, �u)du = lim

|P |→0

∑
P

�̃u,v. (A.15)

For this,
(
I (Z , �)0,t , σ (Zt , �t )

) ∈ D
2β
X and similar estimates to Lemma 3.2 holds.

Moreover, Lemmas 3.4 and 3.6 hold. Thus, Theorem 2.7 holds for suitable constants
which depend only on σ, b, β, p, γ . In the case of reflected rough differential equation,
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all statements can be extended to differential equations with drift term b ∈ C1
b . In

particular, the extension of Corollary 6.5 to reflected diffusion with the drift term
gives an extension of the support theorem in [33].
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