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Abstract
Using recent results concerning non-uniqueness of the center of themix for completely
mixable probability distributions, we obtain the following result: For each d ∈ N and
each non-empty bounded Borel set B ⊂ R

d , there exists a d-dimensional probability
distribution μ satisfying the following: For each n ≥ 3 and each probability distribu-
tion ν on B, there exist d-dimensional random vectors Xν,1,Xν,2, . . . ,Xν,n such that
1
n (Xν,1 +Xν,2 +· · ·+Xν,n) ∼ ν andXν,i ∼ μ for i = 1, 2, . . . , n. We also show that
the assumption regarding the boundedness of the set B cannot be completely omitted,
but it can be substantially weakened.

Keywords Sums of random vectors · Distributions of sums of random variables ·
Multivariate dependence · Complete mixability

Mathematics Subject Classification (2020) 60E05 · 60E15 · 62H05

1 Introduction

Let μ be a probability distribution on R and n ∈ N. We say that μ is n-completely
mixable if there exists a random vector X = (X1, X2, . . . , Xn) such that for each
i = 1, 2, . . . , n the random variable Xi ∼ μ (i.e., Xi has distribution μ) and

∑n
i=1 Xi
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is a.s. constant. If such a vector X exists, then it is called a complete mix (or a mix for
short). The number C = 1

n

∑n
i=1 Xi is called the center of the mix.

The problem of n-complete mixability is mostly theoretical in nature but it became
popular because of its connections with applications, especially with risk theory. For
more details, see, e.g., [1, 2, 4, 6].

Obviously, only one-point probability distributions are 1-completely mixable and
each symmetric distribution is 2-completely mixable (the symmetry is the necessary
and sufficient condition for 2-complete mixability). However, for n ≥ 3 the problem
of characterizing n-complete mixability is only partially solved and is still an object
of thorough research (see [9] for an exhaustive list of references). In particular, the
following sufficient conditions for n-complete mixability have been established:

If μ has a symmetric and unimodal density, then μ is n-completely mixable for all
n ≥ 2 ( [7]).

If μ has a density, which is monotone on its support [a, b] ⊂ R, then μ is n-
completely mixable if and only if the expected value E(μ) is in [a + b−a

n , b − b−a
n ]

([8]).
If μ has a density, which is concave on its support, then μ is n-completely mixable

for all n ≥ 3 ( [5]).
If μ has a density f on a finite interval [a, b] and f (x) ≥ 3

n(b−a)
, then μ is n-

completely mixable ([6]).
For a long time, it was not known whether the center of the mix is always unique

for an n-completely mixable probability distribution (for n ≥ 3). The problem was
recently solved in [3]. The center of the mix is not necessarily unique. In our paper, we
use that fact to prove that for each d ∈ N and each non-empty bounded Borel set B ⊂
R
d there exists a d-dimensional probability distribution μ satisfying what follows:

For each n ≥ 3 and each probability distribution ν on B, there exist d-dimensional
random vectors Xν,1,Xν,2, . . . ,Xν,n such that 1

n (Xν,1 +Xν,2 + · · · +Xν,n) ∼ ν and
Xν,i ∼ μ for i = 1, 2, . . . , n (see Theorem 1). The assumption about the boundedness
of the support of measure ν can be replaced with the weaker assumption about the
concentration of measure ν (see Theorem 2 and Corollary 1).

Our results have connections with both risk theory and statistics. Namely, if we
have a number of observations from some unknown probability distribution μ, and if
we do not know anything about the dependence structure of these observations, then
the sample mean is not a good statistic for inference aboutμ. For the connections with
risk theory, see [1, 2, 4, 6].

In Sect. 2, we prove Theorems 1 and 2, and Corollary 1, but first we present some
lemmas. The results presented in Sect. 3 show that certain generalizations of Theorem1
are not possible.

2 TheMain Results

Before proving ourmain results (Theorems 1 and 2), we need to present some auxiliary
results.
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Lemma 1 (See [3, Example 2.6].) Let N and M be independent random variables
such that P(M = 0) = P(M = 1) = 1

2 and P(N = 2n) = 1
2n+1 for n = 0, 1, . . . . We

define random variables U0 = V0 = N, W0 = W1 = −2N, U1 = 2(1 − M)N + M
and V1 = 2MN + 1 − M. Then, U0 ∼ U1, V0 ∼ V1, and W0 ∼ W1 and

U0 + V0 + W0 = 0, U1 + V1 + W1 = 1.

Moreover, if X is any of random variables U0, U1, V0, V1, W0, and W1, then

1

2(x + 1)
< P(|X | > x) <

2

x
for x > 0.

In particular, E |X | = ∞ and E |X |α < ∞ for each α ∈ (0, 1).

Now, we use Lemma 1 and binary representations of numbers from [0, 1] to obtain
the following proposition.

Proposition 1 There exist random variables Ut , Vt , Wt with t ∈ [0, 1], such that

Ut + Vt + Wt = t for eacht ∈ [0, 1]

and the distributions of Ut , Vt , and Wt each do not depend on t.

Proof Let (U0, j , V0, j ,W0, j ,U1, j , V1, j ,W1, j ) for j = 1, 2, . . . be a sequence of inde-
pendent copies of the random vector defined in Lemma 1. We define

Ut =
∞∑

j=1

Ut j , j

2 j
, Vt =

∞∑

j=1

Vt j , j
2 j

, Wt =
∞∑

j=1

Wtj , j

2 j
, (1)

where t = ∑∞
j=1

t j
2 j is a binary representation of t , and t1, t2, · · · ∈ {0, 1}.

All the above series are almost surely convergent. Indeed, by Lemma 1, we have

∞∑

j=1

P

(∣
∣
∣
∣
Ut j , j

2 j

∣
∣
∣
∣ >

1

2 j/2

)

=
∞∑

j=1

P(|Ut j , j | > 2 j/2) <

∞∑

j=1

2

2 j/2 < ∞,

and by the Borel–Cantelli lemma, we obtain that

∣
∣
∣
∣
Ut j , j

2 j

∣
∣
∣
∣ ≤ 1

2 j/2 for all but finitely

many j = 1, 2, . . . . It follows that
∑∞

j=1
Ut j , j

2 j is almost surely absolutely convergent.

The same holds for
∑∞

j=1
Vt j , j

2 j and
∑∞

j=1
Wt j , j

2 j .

The distribution of Ut does not depend on t . Indeed, if s = ∑∞
j=1

s j
2 j and t =

∑∞
j=1

t j
2 j , then (Usj , j : j ∈ N) ∼ (Ut j , j : j ∈ N) since both sequences are i.i.d.

with the same marginal distribution. Hence, Us ∼ Ut . A similar argument shows that
the distributions of Vt and Wt do not depend on t . For later use, we denote these
distributions as follows: Ut ∼ μU , Vt ∼ μV , and Wt ∼ μW .
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Finally, for each t ∈ [0, 1] we have

Ut + Vt + Wt =
∞∑

j=1

Ut j , j + Vt j , j + Wtj , j

2 j
=

∞∑

j=1

t j
2 j

= t .

�	

Theorem 1 Let d ∈ N and B ⊂ R
d be a non-empty bounded Borel subset of the

d-dimensional Euclidean space. There exists a d-dimensional probability distribution
μ satisfying what follows: For each n ≥ 3 and each probability distribution ν on B,
there exist d-dimensional random vectors Xν,1,Xν,2, . . . ,Xν,n such that 1

n (Xν,1 +
Xν,2 + · · · + Xν,n) ∼ ν and Xν,i ∼ μ for i = 1, 2, . . . , n.

Proof Without loss of generality, we may assume that B ⊂ [0, 1]d . (If B 
⊂ [0, 1]d ,
then we may apply an affine transformation to each of the d coordinates of Rd to put
B into [0, 1]d .)

Let μ be the probability distribution on R
d such that all d marginals of μ are

independent and equal to the convolution of the distributionsμU ,μV , andμW defined
in the proof of Proposition 1 (i.e., μ = μ ⊗ · · · ⊗ μ, where μ = μU ∗ μV ∗ μW ).

We fix an arbitrary n ≥ 3. Let ν be any probability distribution on B and let T =
(T (1), T (2), . . . , T (d)) be a randomvector satisfyingT ∼ ν. Using the binary represen-
tation of T (1), T (2), . . . , T (d), we define random variables T (m)

j withm = 1, 2, . . . , d,

and j = 1, 2, . . . , such that T (m) = ∑∞
j=1

T (m)
j

2 j form = 1, 2, . . . , d, and random vari-

ables T (m)
j take values in {0, 1}. Let (U (m),k

0, j , V (m),k
0, j ,W (m),k

0, j ,U (m),k
1, j , V (m),k

1, j ,W (m),k
1, j )

(with m = 1, 2, . . . , d, k = 0, 1, . . . , n − 1 and j = 1, 2, . . . ) be a system of inde-
pendent copies of the random vector defined in Lemma 1. We assume that this system
is independent of T.

For k = 0, 1, . . . , n − 1, let Uk
T = (U (1),k

T ,U (2),k
T , . . . ,U (d),k

T ), Vk
T =

(V (1),k
T , V (2),k

T , . . . , V (d),k
T ) and Wk

T = (W (1),k
T ,W (2),k

T , . . . ,W (d),k
T ) be given by

U (m),k
T =

∞∑

j=1

U
(m),k

T (m)
j , j

2 j
, V (m),k

T =
∞∑

j=1

V
(m),k

T (m)
j , j

2 j
, W (m),k

T =
∞∑

j=1

W
(m),k

T (m)
j , j

2 j

for m = 1, 2, . . . , d
We define the requested random vectorsXν,i = (X (1)

ν,i , X
(2)
ν,i , . . . , X

(d)
ν,i ) as follows:

Xν,i = Ui mod n
T + V(i+1) mod n

T + W(i+2) mod n
T .

Now, we use the property that for each t ∈ {0, 1} and each m, j and k, we have
U (m),k
t, j +V (m),k

t, j +W (m),k
t, j = t . As a consequence, we obtain that form = 1, 2, . . . , d,
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we have

1

n
(X (m)

ν,1 + X (m)
ν,2 + · · · + X (m)

ν,n ) = 1

n

n−1∑

k=0

(U (m),k
T + V (m),k

T + W (m),k
T )

=1

n

n−1∑

k=0

∞∑

j=1

U
(m),k

T (m)
j , j

+ V
(m),k

T (m)
j , j

+ W
(m),k

T (m)
j , j

2 j
= 1

n

n−1∑

k=0

∞∑

j=1

T (m)
j

2 j
= T (m).

It follows that 1
n (Xν,1 + Xν,2 + · · · + Xν,n) = T ∼ ν.

It remains to show that for each i = 1, 2, . . . , n, we have Xν,i ∼ μ. First, we
observe that the conditional distribution of X (m)

ν,i = U (m),i mod n
T + V (m),(i+1) mod n

T +
W (m),(i+2) mod n

T , given T , is μ = μU ∗ μV ∗ μW . Moreover, the coordinates X (1)
ν,i ,

X (2)
ν,i , …,X (d)

ν,i are conditionally independent (given T ). It follows that Xν,i ∼ μ =
μ ⊗ · · · ⊗ μ, conditionally. Since this distribution does not depend on the condition,
we obtain that Xν,i ∼ μ unconditionally. �	

In the following results, we strengthen Theorem 1 by replacing the assumption
about the boundedness of the support of measure ν with the weaker assumption about
the concentration (small tails) of measure ν.

Theorem 2 Let d ∈ N, B1 ⊂ B2 ⊂ · · · ⊂ R
d be non-empty bounded Borel sets

and 0 ≤ p1 ≤ p2 ≤ . . . be a sequence of real numbers satisfying limk→∞ pk = 1.
There exists a d-dimensional probability distribution μ satisfying what follows: For
each n ≥ 3 and each probability distribution ν on R

d satisfying ν(Bk) ≥ pk for
k = 1, 2, . . . , there exist d-dimensional random vectors Xν,1,Xν,2, . . . ,Xν,n such
that 1

n (Xν,1 + Xν,2 + · · · + Xν,n) ∼ ν and Xν,i ∼ μ for i = 1, 2, . . . , n.

Proof If pk = 1 for some k, then the result follows by Theorem 1 applied to the Borel
set B = Bk . In the sequel, we assume that pk < 1 for each k. Wemay also assume that
the sequence (pk) is strictly increasing. Indeed, if pk = pk+1, then we can exclude
both pk+1 and Bk+1 from the respective sequences.

We put p0 = 0 and B0 = ∅. For k = 1, 2, . . . let μk be the probability measure
given by Theorem 1 for the Borel set B = Bk and let μ = ∑∞

k=1(pk − pk−1)μk .
Given the measure ν, we will define a sequence (νk) of measures onRd by formula

νk = ∑k
l=1 Ak,l · ν|Bl\Bl−1 , where Ak,l = ∏k−1

j=l (ν(Bj ) − p j )/
∏k

j=l(ν(Bj ) − p j−1)

for 1 ≤ l ≤ k, and the restriction ν|B is defined by ν|B(A) = ν(A ∩ B) for each
Borel set A ⊂ R

d . It is easy to verify that for each 1 ≤ l ≤ k we have Ak,l ≥ 0,
∑k

l=1 Ak,l · (ν(Bl) − ν(Bl−1)) = 1, and
∑∞

k=l Ak,l · (pk − pk−1) = 1. Consequently,
νk is a probability measure on Bk , and

∑∞
k=1(pk − pk−1)νk = ∑

(l,k):1≤l≤k(pk −
pk−1)Ak,lν|Bl\Bl−1 = ∑∞

l=1 ν|Bl\Bl−1 = ν.
Now, for each k = 1, 2, . . . let Xνk ,1,Xνk ,2, . . . ,Xνk ,n be d-dimensional random

vectors given by Theorem 1. Moreover, let L be a random variable, independent
of these vectors, such that P(L = k) = pk − pk−1 for k = 1, 2, . . . . We define
Xν,i = XνL ,i for i = 1, 2, . . . , n. The conditional distribution of Xν,i (under the
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condition L = k) is μk . Consequently, Xν,i ∼ ∑∞
k=1(pk − pk−1)μk = μ. Similarly,

1
n (Xν,1 + Xν,2 + · · · + Xν,n) ∼ ∑∞

k=1(pk − pk−1)νk = ν. �	
We recall that for two probability distributions μ and ν on R, we say that μ is

stochastically dominated by ν (denoted byμ ≤st ν)when their cumulative distribution
functions satisfy the inequality Fμ(u) ≥ Fν(u) for each u ∈ R. Equivalently, μ ≤st ν

if and only if there exist random variables X ∼ μ and Y ∼ ν satisfying X ≤ Y .

Corollary 1 Let d ∈ N, f : Rd → R be a Borel function such that limx→∞ f (x) =
+∞, and ν0 be a fixed probability distribution on R. We consider a family V consist-
ing of probability distributions of all d-dimensional random vectors Z such that the
distribution of f (Z) is stochastically dominated by ν0.

There exists a d-dimensional probability distribution μ satisfying what follows:
For each n ≥ 3 and each probability distribution ν ∈ V , there exist d-dimensional
random vectors Xν,1,Xν,2, . . . ,Xν,n such that

1
n (Xν,1 +Xν,2 + · · · +Xν,n) ∼ ν and

Xν,i ∼ μ for i = 1, 2, . . . , n.

The case when f is the Euclidean norm in R
d and ν0 is a probability distribution

on (0,∞) seems to be the most useful.

Proof For k = 1, 2, . . . let Bk = {x ∈ R
d : f (x) ≤ k + a}, where a ∈ R is chosen

in such a way that the sets Bk are non-empty and let pk = ν0((−∞, k + a]). By
the assumption about the limit of f at infinity, the sets Bk are bounded. Applying
Theorem 2 for sequences (Bk) and (pk) completes the proof of the corollary. �	

3 Some Necessary Conditions for the Center of theMix

In this section, we present some necessary conditions that should be satisfied by each
complete mix. In particular, we show that we can neither replace the [0, 1] interval
in Proposition 1 nor skip the boundedness assumption about set B in Theorem 1.
(However, we can weaken the assumptions about the distribution ν as in Theorem 2
andCorollary 1.)Wealso generalize the followingnecessary condition for a probability
distribution to be n-completely mixable, formulated by Wang and Wang in 2011:

Proposition 2 ( [8], see also [5, 6, 9]) Suppose the probability distribution μ is n-
completely mixable, centered at C. Let a = inf{x : μ((−∞, x]) > 0} and b =
sup{x : μ((−∞, x]) < 1}. If one of a and b is finite, then the other one is finite, and
a + b−a

n ≤ C ≤ b − b−a
n .

The following proposition and Corollary 2 significantly strengthen the above result
(cf. Remark 1).

Proposition 3 Let ν be a probability distribution onR. If X1, X2, . . . , Xn are random
variables satisfying X1 + X2 + · · · + Xn ∼ ν, then for each a1, a2, . . . , an ∈ R and
i = 1, 2, . . . , n we have

P (Xi > ai ) −
n∑

j=1
j 
=i

P(X j < a j ) ≤ ν
((∑n

j=1
a j ,∞

))
≤

n∑

j=1

P(X j > a j )
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and

P (Xi < ai ) −
n∑

j=1
j 
=i

P(X j > a j ) ≤ ν
((

−∞,
∑n

j=1
a j

))
≤

n∑

j=1

P(X j < a j ).

Proof We show the first inequality. Using the implication (∀ j X j ≤ a j ) ⇒∑n
j=1 X j ≤ ∑n

j=1 a j , we obtain

ν
((∑n

j=1
a j ,∞

))
= P

⎛

⎝
n∑

j=1

X j >

n∑

j=1

a j

⎞

⎠ ≤ P

⎛

⎝
n⋃

j=1

(X j > a j )

⎞

⎠

≤
n∑

j=1

P(X j > a j ).

Similarly, by (
∑n

j=1 X j ≤ ∑n
j=1 a j , ∀ j 
=i − X j ≤ −a j ) ⇒ Xi ≤ ai we obtain

P(Xi > ai ) ≤P

⎛

⎜
⎜
⎝

⎛

⎝
n∑

j=1

X j >

n∑

j=1

a j

⎞

⎠ ∪
n⋃

j=1
j 
=i

(−X j > −a j )

⎞

⎟
⎟
⎠

≤ν
((∑n

j=1
a j ,∞

))
+

n∑

j=1
j 
=i

P(X j < a j ).

The proof of the second inequality is analogous. �	
If we put ν = δt (the one-point probability distribution concentrated at t ∈ R) and

ai = t − ∑n
j=1
j 
=i

a j into Proposition 3, then we obtain the following corollary.

Corollary 2 If X1, X2, . . . , Xn are random variables satisfying X1+ X2+· · ·+ Xn =
t ∈ R, then for each a1, a2, . . . , an ∈ R and i = 1, 2, . . . , n we have

n∑

j=1
j 
=i

P(X j < a j ) ≥ P

⎛

⎜
⎜
⎝Xi > t −

n∑

j=1
j 
=i

a j

⎞

⎟
⎟
⎠ (2)

and

n∑

j=1
j 
=i

P(X j > a j ) ≥ P

⎛

⎜
⎜
⎝Xi < t −

n∑

j=1
j 
=i

a j

⎞

⎟
⎟
⎠ . (3)
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If
∑n

j=1 a j < t , then
∑n

j=1 P(X j > a j ) ≥ 1. If
∑n

j=1 a j > t , then
∑n

j=1 P(X j <

a j ) ≥ 1.

Remark 1 We will show that Corollary 2 is a generalization of Proposition 2.
Let X1, X2, . . . , Xn be random variables satisfying X1, X2, . . . , Xn ∼ μ and

1
n (X1 + X2 + · · · + Xn) = C . We recall that a = inf{x : μ((−∞, x]) > 0} and
b = sup{x : μ((−∞, x]) < 1}.

Assume that a is finite. Then, for each j = 1, 2, . . . , n we have P(X j < a) =
μ((−∞, a)) = 0. By (2) applied to a1 = a2 = · · · = an = a and t = nC we obtain
P(Xi > nC − (n−1)a) = 0. Consequently, b is finite and b ≤ nC − (n−1)a, which
is equivalent to a + b−a

n ≤ C .
Now, assume that b is finite. Then, for each i = 1, 2, . . . , n we have P(Xi > b) =

μ((b,∞)) = 0. By (3) applied to a1 = a2 = · · · = an = b and t = nC we obtain
P(Xi < nC − (n−1)b) = 0. Consequently, a is finite and a ≥ nC − (n−1)b, which
is equivalent to C ≤ b − b−a

n .

As a consequence of Corollary 2, we immediately obtain the following corollary.

Corollary 3 Letμ1, μ2, . . . , μn be probability distributions. If there exist random vari-
ables X1 ∼ μ1, X2 ∼ μ2, . . . , Xn ∼ μn and t ∈ R such that X1+ X2+· · ·+ Xn = t ,
then

−∞ < sup

⎧
⎨

⎩

n∑

j=1

a j :
n∑

j=1

μ j ((−∞, a j )) < 1

⎫
⎬

⎭
≤ t

≤ inf

⎧
⎨

⎩

n∑

j=1

a j :
n∑

j=1

μ j ((a j ,∞)) < 1

⎫
⎬

⎭
< ∞.

Corollary 3 shows that we cannot replace the [0, 1] interval in Proposition 1 by any
unbounded set. Additionally, it shows that we cannot skip the assumption that the set
B is bounded in Theorem 1. (Indeed, Corollary 3 implies that the projection of B onto
each coordinate has to be bounded.)
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