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Abstract
We consider equidistant approximations of stochastic integrals driven by Hölder con-
tinuous Gaussian processes of order H > 1

2 with discontinuous integrands involving
bounded variation functions. We give exact rate of convergence in the L1-distance and
provide examples with different drivers. It turns out that the exact rate of convergence
is proportional to n1−2H , which is twice as good as the best known results in the case
of discontinuous integrands and corresponds to the known rate in the case of smooth
integrands. The novelty of our approach is that, instead of using multiplicative esti-
mates for the integrals involved, we apply a change of variables formula together with
some facts on convex functions allowing us to compute expectations explicitly.
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1 Introduction

We consider the rate of convergence for equidistant approximations of pathwise
stochastic integrals

∫ 1

0
� ′(Xs) dXs ≈

n∑
k=1

� ′(Xtk−1)(Xtk − Xtk−1), (1.1)

where tk = k
n , k = 0, 1, . . . , n. Here, � is a difference of convex functions and X is

a centered Gaussian process on [0, 1] with non-decreasing variance function V (s) =
EX2

s normalized such that V (1) = 1. We assume that the variogram function

ϑ(t, s) = E(Xt − Xs)
2, s, t ∈ [0, 1]

satisfies, for some H ∈ ( 12 , 1), that

ϑ(t, s) = σ 2|t − s|2H + g(t, s), (1.2)

where

lim|t−s|→0

g(t, s)

|t − s|2H = 0. (1.3)

This means, in particular, that the process X has H as its Hölder index. One way to
realize the process X is to take fractional Brownian motion BH , with index H and an
independent Gaussian process G with variogram g (such process has Hölder index at
least H ) and put

Xt = X0 + σ BH
t + Gt ,

where X0 may be random initial (Gaussian) value. Since G has variogram g(s, t), it
follows from (1.3) that G typically has more regular sample paths than BH . We also
note that we have either V (0) = C > 0 (e.g., stationary case) or V (s) ≥ cs2 H (e.g.,
the case of the fractional Brownian motion). Indeed, if X0 = 0, then V (s) = ϑ(s, 0)
from which V (s) ≥ cs2 H follows by (1.2) and (1.3). It follows that

∫ 1

0

1√
V (s)

ds < ∞.
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Consequently, by [5] the pathwise Riemann–Stieltjes stochastic integral in (1.1) exists
and we have the classical chain rule

�(X1) − �(X0) =
∫ 1

0
� ′(Xs) dXs . (1.4)

In the case of the fractional Brownian motion, the problem was studied in [3]. This
article extends the article [3] into two directions: (i) we allowmore integrators than just
the fractional Brownian motion and (ii) we give exact L1 error of the approximations.
Rather surprisingly, it turns out that we obtain the rate n1−2H that is twice better
compared to the rate obtained in [3] and corresponds to the known correct rate in the
case of smooth functions � ′ (see for instance [3, 6] and the references therein). In
contrast in the Brownian motion case, introducing jumps reduces the rate into n−1/4

in comparison with n−1/2 obtained for smooth functions � ′ (see, e.g., [3]). For other
related articles on stochastic integrals with discontinuous integrands, see also [5, 7, 8,
14, 15].

The rest of the article is organized as follows: the main results are give in Sect. 2.
In Sect. 3, we give examples. Finally, the proofs are given in Sect. 4.

2 Statement of theMain Results

We begin by recalling some basic facts on convex functions and on functions of
bounded variation. For details on the topic, see for instance [12].

For a convex function�, let� ′ denote its one-sided derivative. Then, the derivative
� ′′ = μ exists as a Radon measure. A particular example includes the function
�(x) = |x − a|, in which case � ′(x) = sgn(x − a) and � ′′(x) = δa(x), the Dirac
measure at level a. More generally, if � ′ is of (locally) bounded variation, then it can
be represented as the difference of two non-decreasing functions. As a corollary, � ′
can be regarded as the derivative of a function � that is a difference of two convex
functions. That is, we have � = �1 − �2 and the second derivative � ′′ is a signed
Radon measure μ = μ1 − μ2 with a total variation measure |μ| = μ1 + μ2, where
μi , i = 1, 2 are non-negative measures.

Throughout the article, we also use the short notation

ϕ(a) = E(Y1Y>a) = 1√
2π

e− a2
2 ,

where Y ∼ N (0, 1).
Our main result is the following.

Theorem 2.1 Let � be a convex function with the left sided derivative � ′, and
let μ denote the measure associated with the second derivative of � such that
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∫
R

ϕ(a)μ(da) < ∞. Let X be a Gaussian process as above. Then,

E

∣∣∣∣∣
∫ 1

0
� ′(Xs)dXs −

n∑
k=1

� ′(Xtk−1)(Xtk − Xtk−1)

∣∣∣∣∣
= σ 2

∫
R

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
dsμ(da)

(
1

n

)2H−1

+
∫
R

Rn(a)μ(da),

(2.1)

where the remainder satisfies

∫
R

Rn(a)μ(da) ≤ C max{n−H , n1−2H max
1≤k≤n

[g(tk, tk−1)n
2H ]}

for some constant C depending solely on the variance function V (s).

Remark 1 Since H < 1, we have n−H < n1−2H . Consequently, in view of (1.3), the
remainder

∫
R
Rn(a)μ(da) satisfies

lim
n→∞

∫
R
Rn(a)μ(da)

n1−2H = 0,

i.e., the remainder is negligible compared to the first term in (2.1).

Remark 2 It follows from assumption
∫
R

ϕ(a)μ(da) < ∞ that the stochastic integral
and its Riemann approximation in (2.1) are integrable (a random variable Z is inte-
grable if E|Z | < ∞), and hence, the bound (2.1) makes sense. Indeed, by the proof of
Theorem 2.1, we obtain that the difference of the stochastic integral and its approxima-
tion in (2.1) is integrable. Moreover, in view of (1.4) and Lemma 4.2 below, it follows
that stochastic integral is integrable. These facts imply that theRiemann approximation
in (2.1) is integrable as well.

For functions of locally bounded variation, we obtain immediately the following
corollary.

Corollary 2.2 Let � ′ be of locally bounded variation with |μ| as its total variation
measure. Suppose

∫
R

ϕ(a)|μ|(da) < ∞ and let X be a Gaussian process as above.
Then,

E

∣∣∣∣∣
∫ 1

0
� ′(Xs)dXs −

n∑
k=1

� ′(Xtk−1)(Xtk − Xtk−1)

∣∣∣∣∣
≤ σ 2

∫
R

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
ds|μ|(da)

(
1

n

)2H−1

+
∫
R

Rn(a)|μ|(da),

where the remainder satisfies

∫
R

Rn(a)|μ|(da) ≤ C max

{
n−H , n1−2H max

1≤k≤n

[
g (tk, tk−1) n

2H
]}
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for some constant C depending solely on the variance function V (s).

Finally, as a by-product of our proof we obtain lower and upper bounds with a weaker
condition on the variogram ϑ(t, s).

Corollary 2.3 Let � be a convex function with the left sided derivative � ′, and
let μ denote the measure associated with the second derivative of � such that∫
R

ϕ(a)μ(da) < ∞. Let X be a centered Gaussian process with a non-decreasing
variance function V (s) with V (1) = 1. Suppose further that the variogram satisfies

σ 2−|t − s|2H ≤ ϑ(t, s) ≤ σ 2+|t − s|2H

for some H ∈ ( 1
2 , 1

)
. Then, there exist constants C− and C+ such that

C−
∫
R

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
dsμ(da)

(
1

n

)2H−1

≤ E

∣∣∣∣∣
∫ 1

0
� ′(Xs)dXs −

n∑
k=1

� ′(Xtk−1)(Xtk − Xtk−1)

∣∣∣∣∣
≤ C+

∫
R

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
dsμ(da)

(
1

n

)2H−1

.

Remark 3 Note that here we have incorporated the remainders into the constants C−
andC+. If one considers only the leading order terms (with respect to n), thenC− = σ 2−
and C+ = σ 2+.

3 Examples

Our results cover many interesting Gaussian processes and functions � ′. First of all,
the assumption

∫
R

ϕ(a)|μ|(da) < ∞ is not very restrictive, due to the exponential

decay of ϕ(a) = 1√
2π

e− a2
2 . Our Assumption (1.2) on the Gaussian process is not very

restrictive either as the following examples show.

Example 1 The normalized multi-mixed fractional Brownian motion (see [1]) is the
process

Xt =
n∑

k=1

σk B
Hk ,

where
∑n

k=1 σ 2
k = 1 and BHk ’s are independent fractional Brownian motions with

Hurst indices Hk . Let Hmin = mink≤n Hk and let kmin be the index of Hmin (here, we
assume for the sake of simplicity that kmin is unique). Assume that Hmin > 1

2 . We
have

ϑ(t, s) = σkmin |t − s|2Hmin + g(t, s),
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where

g(t, s) =
∑

k �=kmin

σ 2
k |t − s|2Hk .

Theorem 2.1 is applicable with H = Hmin and V (s) = ∑n
k=1 σks2Hk .

Example 2 Let X be a centered stationary Gaussian process with covariance function
r satisfying, for some α ∈ ( 1

2 , 1
)
,

r(0) − r(t) = σ 2|t |2α + g(t),

where g(t)
|t |2α → 0 as t → 0. Theorem 2.1 is applicable with H = α and variance

function V (s) = V (0). This example covers many interesting stationary Gaussian
processes, including fractional Ornstein–Uhlenbeck and related processes (see, e.g.,
[10, 11]).

Example 3 The normalized sub-fractional Brownian SH̃ motionwith index H̃ ∈ (0, 1)
(see [4]) is a centered Gaussian process with covariance

R(t, s) = σ 2
(
s2H̃ + t2H̃ − 1

2

(
(s + t)2H̃ + (s − t)2H̃

))
,

where σ 2 = 1/(2 − 22H̃−1) is a normalizing constant. We have

c|t − s|2H̃ ≤ E(SH̃
t − SH̃

t )2 ≤ C |t − s|2H̃ .

Assume that H̃ > 1
2 . Now, Corollary 2.3 is applicable with H = H̃ and V (s) = s2H̃ .

Example 4 The bifractional Brownian motion (see [9, 13]) BH̃ ,K with indices H̃ ∈
(0, 1) and K ∈ (0, 1] is the centered Gaussian process with covariance

R(t, s) = 1

2K

((
t2H̃ + s2H̃

)K − |t − s|2H̃ K
)

.

Similarly to the case of sub-fractional Brownian motion, we have

2−K |t − s|2H̃ K ≤ E(BH̃ ,K
t − BH̃ ,K

t )2 ≤ 21−K |t − s|2H̃ K .

Assume H̃ K > 1
2 . Now, Corollary 2.3 is applicablewith H = H̃ K and V (s) = s2H̃ K .

Example 5 The tempered fractional Brownian motion (see [2]) X H̃ with index H̃ ∈
(0, 1) is the centered Gaussian process with covariance

R(t, s) = 1

2

(
C2
t t

2H̃ + C2
s s

2H̃ − C2
t−s |t − s|2H̃

)
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with a certain functionCt (see [2, Lemma 2.3]). Similarly to the case of sub-fractional
and bifractional Brownian motion, we have (see [2, Theorem 2.7])

σ 2−|t − s|2H̃ ≤ E(X H̃
t − X H̃

t )2 ≤ σ 2+|t − s|2H̃ .

Assume H̃ > 1
2 . Now, Corollary 2.3 is applicable with H = H̃ and V (s) = C2

s s
2H̃ .

4 Proofs

In what follows, C denotes a generic constant that depends only on the variance
function V (s), but may vary from line to line.

4.1 Auxiliary Lemmas on Gaussian Process X and Convex Function9

The following is one of our key lemmas and allows to reduce our analysis to the simple
case �(x) = (x − a)+.

Lemma 4.1 Let � be convex and ψ = � ′− be its left-sided derivative. Then, for any
x, y ∈ R we have

�(x) − �(y) − ψ(y)(x − y) =
∫
R

[|x − a| − |y − a| − sgn(y − a)(x − y)]μ(da)

= 2
∫
R

[
(x − a)+ − (y − a)+ − 1y>a(x − y)

]
μ(da)

≥ 0.

Proof Let I be an interval such that x, y ∈ I . Then, it is well-known that we have
representations [12]

�(x) = αI + βI x +
∫
I
|x − a|μ(da)

and

� ′(x) = βI +
∫
I
sgn(x − a)μ(da).

Using these, |x − a| = 2(x − a)+ − (x − a), and sgn(y − a) = 21y>a − 1, we obtain
that linear terms vanish and we get

�(x) − �(y) − ψ(y)(x − y) =
∫
I
[|x − a| − |y − a| − sgn(y − a)(x − y)]μ(da)

= 2
∫
I

[
(x − a)+ − (y − a)+ − 1y>a(x − y)

]
μ(da).
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It is an easy exercise to check that (x − a)+ − (y − a)+ − 1y>a(x − y) ≥ 0 from
which it follows that �(x) − �(y) − ψ(y)(x − y) ≥ 0 for any convex function �. It
remains to note that

∫
I

[
(x − a)+ − (y − a)+ − 1y>a(x − y)

]
μ(da)

=
∫
R

[
(x − a)+ − (y − a)+ − 1y>a(x − y)

]
μ(da),

where the latter integral is well-defined since (x −a)+ − (y−a)+ −1y>a(x − y) = 0
whenever a /∈ I . �

As a consequence, we obtain the following lemma providing us integrability.

Lemma 4.2 Let � be a convex function with the associated measure � ′′ = μ and let
Y ∼ N (0, 1). If

∫
R

ϕ(a)μ(da) < ∞, then E|�(Y )| < ∞.

Proof By adding a linear function if necessary, we may assume without loss of gen-
erality that � ≥ 0. Now, from Lemma 4.1 we deduce that, for any deterministic
z,

�(Y ) − �(z) − � ′−(z)(Y − z) = 2
∫
R

[
(Y − a)+ − (z − a)+ − 1z>a(Y − z)

]
μ(da).

Taking expectation and using Tonelli’s theorem, we get

E�(Y ) − �(z) + � ′−(z)z = 2
∫
R

[
E(Y − a)+ − (z − a)+ + 1z>az

]
μ(da).

In particular, for z = 0, we get

E�(Y ) − �(0) = 2
∫
R

[
E(Y − a)+ − (−a)+

]
μ(da).

Hence, it suffices to prove

E(Y − a)+ − (−a)+ ≤ Cϕ(a).

However, this now follows by observing that

E(Y − a)+ − (−a)+ = ϕ(a) − aP(Y > a) − (−a)+ = ϕ(a) − |a|P(Y > |a|)

and the well-known asymptotical relation aP(Y > a) ∼ ϕ(a). �

Next, we establish several lemmas related to the Gaussian process X .
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Lemma 4.3 We always have

√
V (tk) − √

V (tk−1) ≤ √
ϑ(tk, tk−1) ≤ Cn−H

and

sup
n≥1

sup
2≤k≤n

√
V (tk)√
V (tk−1)

< ∞. (4.1)

Proof By Gaussianity, we have E|Xt | = C
√
V (t) from which reverse triangle

inequality gives

√
V (tk) − √

V (tk−1) = CE|Xtk | − CE|Xtk−1 | ≤ CE|Xt − Xs |

leading to the first claim. The second claim now follows from

√
V (tk)√
V (tk−1)

= 1 +
√

ϑ(tk, tk−1)√
V (tk−1)

and the fact that V (tk−1) ≥ V (t1) ≥ cn−H since k ≥ 2 and V is non-decreasing. �

Throughout, we use the following short notation

γk = R(tk, tk−1)

V (tk−1)
,

where R(t, s) is the covariance function of X , and we use the convention γk = 0
whenever V (tk−1) = 0. The following gives us a useful relation.

Lemma 4.4 Let V (tk−1) > 0. Then,

√
V (tk) − γk

√
V (tk−1) = −

(√
V (tk) − √

V (tk−1)
)2

2
√
V (tk−1)

+ ϑ(tk, tk−1)

2V (tk−1)
.

Proof We use

√
V (tk) − γk

√
V (tk−1) = √

V (tk) − √
V (tk−1) + [

1 − γk
] √

V (tk−1)

and

γk − 1 = V (tk) − V (tk−1) − ϑ(tk, tk−1)

2V (tk−1)
.
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Using also

V (tk) − V (tk−1) =
(√

V (tk) − √
V (tk−1)

) (√
V (tk) + √

V (tk−1)
)

=
(√

V (tk) − √
V (tk−1)

)2 + 2
(√

V (tk) − √
V (tk−1)

) √
V (tk−1)

leads to

[
1 − γk

] √
V (tk−1) = −

(√
V (tk) − √

V (tk−1)
)2

2
√
V (tk−1)

−
(√

V (tk) − √
V (tk−1)

)

+ ϑ(tk, tk−1)

2V (tk−1)
.

Consequently, we have

√
V (tk) − γk

√
V (tk−1) = −

(√
V (tk) − √

V (tk−1)
)2

2
√
V (tk−1)

+ ϑ(tk, tk−1)

2V (tk−1)
,

completing the proof. �

4.2 Approximation Estimates

We begin with the following elementary lemma on the approximation of Riemann–
Stieltjes integrals. For the reader’s convenience, we present the proof.

Lemma 4.5 Let f be a differentiable function on [0, 1], and let g be non-decreasing
on [0, 1]. Then,

∣∣∣∣∣
∫ 1

0
f (V (s))dg(s) −

n∑
k=1

f (V (tk−1))(g(tk) − g(tk−1))

∣∣∣∣∣
≤ max

1≤k≤n
(g(tk) − g(tk−1))

∫ 1

0
| f ′(s)|ds.

Proof Without loss of generality, we can assume
∫ 1
0 | f ′(s)|ds < ∞ since otherwise

there is nothing to prove. From this, it follows that f is of bounded variation, since
for a differentiable function we have

TV( f ) =
∫ 1

0
| f ′(s)|ds,

where TV stands for total variation. Since V is continuous and non-decreasing, this
further implies that s → f (V (s)) is continuous and of bounded variation as well,
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with

TV( f (V )) ≤
∫ 1

0
| f ′(s)|ds.

Indeed, this follows from the fact that

TV( f (V )) = sup
{s1,s2,...,sn}

n∑
k=1

| f (V (sk)) − f (V (sk−1))|

≤ sup
{x1,x2,...,xn}

n∑
k=1

| f (xk) − f (xk−1)| = TV( f ).

Thus, the Riemann–Stieltjes integral
∫ 1
0 f (V (s))dg(s) exists, as s → f (V (s)) is

continuous and s → g(s) is non-decreasing, and hence, of bounded variation. Let us
now prove the claimed upper bounds. We have

∣∣∣∣∣
∫ 1

0
f (V (s))dg(s) −

n∑
k=1

f (V (tk−1))(g(tk) − g(tk−1))

∣∣∣∣∣

≤
n∑

k=1

∫ tk

tk−1

| f (V (s)) − f (V (tk−1))|dg(s)

≤
n∑

k=1

| f (V (s∗
k )) − f (V (tk−1))|[g(tk) − g(tk−1)]

≤ max
1≤k≤n

[g(tk) − g(tk−1)] sup
{s1,s2,...,sn}

n∑
k=1

| f (V (sk)) − f (V (sk−1))|

≤ max
1≤k≤n

[g(tk) − g(tk−1)]
∫ 1

0
| f ′(s)|ds,

where s∗
k ∈ [tk−1, tk] and we have also applied the mean value theorem. This verifies

the claimed upper bound and thus, completes the proof. �
We apply the result for function f (x) = 1√

x
e− a2

2x . The following lemma evaluates the
integral for this function in terms of the level a when the level a is large enough.

Lemma 4.6 Let |a| > 1. Then, for f (x) = 1√
x
e− a2

2x we have

∫ 1

0
| f ′(s)|ds ≤ Cϕ(a).

Proof By straightforward computations, we get

f ′(x) = 1

2
e− a2

2x x− 5
2 (a2 − x)
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from which we get

| f ′(x)| = 1

2
e− a2

2x x− 5
2 (a2 − x)

as x ∈ [0, 1] and |a| > 1. Now,

∫ 1

0
| f ′(s)|ds ≤

∫ 1

0

1

2
e− a2

2s s− 5
2 a2ds

= a2

2

∫ ∞
a2
2

e−z
(
a2

2z

)− 5
2 a2

2z2
dz

=
√
2

a

∫ ∞
a2
2

e−z√zdz.

By L’Hopital’s rule, we obtain that

lim
a→∞

∫ ∞
a2
2
e−z√zdz

ae− a2
2

= lim
a→∞

e− a2
2 a√

2
· a

a2e− a2
2 − e− a2

2

= 1√
2
.

It follows that

∫ 1

0
| f ′(s)|ds ≤ C

a
· ae− a2

2 = Cϕ(a).

This completes the proof. �
The following lemma is to obtain boundedness in the region |a| ≤ 1.

Lemma 4.7 Set fa(x) = a4

x2
e− a2

2x . Then,

sup
|a|≤1

sup
0≤x≤1

fa(x) < ∞.

Proof The claim follows directly by noting that fa(x) = h
(
a2
x

)
, where

h(z) = z2e− z
2

is bounded for z ≥ 0. �
Lemma 4.8 We have, for |a| ≤ 1,

n∑
k=2

1√
V (tk−1)

[
ϕ

(
a2√

V (tk−1)

)
− ϕ

(
a2√
V (tk)

)]
(tk − tk−1) ≤ Cϕ(a)n−H .
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Proof By mean value theorem and the fact ϕ′(x) = −xϕ(x), we have

1√
V (tk−1)

[
ϕ

(
a2√

V (tk−1)

)
− ϕ

(
a2√
V (tk)

)]

≤ 1√
V (tk−1)

(
a2√
V (tk)

− a2√
V (tk−1)

)
a2√
ξk

ϕ

(
a2√
ξk

)

≤ ξ
3
2
k√

V (tk)V (tk−1)
k

√
V (·)a

4

ξ2k
ϕ

(
a2√
ξk

)
.

Here,

sup
k

ξ
3
2
k√

V (tk)V (tk−1)
< ∞

by Lemma 4.3, while

sup
k

sup
|a|≤1

a4

ξ2k
ϕ

(
a2√
ξk

)
< ∞

by Lemma 4.7. The claim follows from k
√
V (·) ≤ Cn−H . �

Lemma 4.9 We have

∣∣∣∣∣
n−1∑
k=2

[
V (tk−1)

]− 1
2 ϕ

(
a2√
V (tk)

)
[tk − tk−1] −

∫ 1

0
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds

∣∣∣∣∣
≤ Cϕ(a)nH−1.

Proof From monotonicity, we get

∫ tk

tk−1

[V (s)]−
1
2 ϕ

(
a2√
V (s)

)
ds ≤ [

V (tk−1)
]− 1

2 ϕ

(
a2√
V (tk)

)
[tk − tk−1]

≤
∫ tk+1

tk
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds.

Summing over k = 2, . . . , n − 1 yields

∫ tn−1

t1
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds ≤

n−1∑
k=2

[
V (tk−1)

]− 1
2 ϕ

(
a2√
V (tk)

)
[tk − tk−1]

≤
∫ 1

t2
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds
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from which we get

∣∣∣∣∣
n−1∑
k=2

[
V (tk−1)

]− 1
2 ϕ

(
a2√
V (tk)

)
[tk − tk−1] −

∫ 1

0
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds

∣∣∣∣∣
≤

∫ t1

0
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds +

∫ 1

tn−1

[V (s)]−
1
2 ϕ

(
a2√
V (s)

)
ds.

Here,

∫ t1

0
[V (s)]−

1
2 ϕ

(
a2√
V (s)

)
ds +

∫ 1

tn−1

[V (s)]−
1
2 ϕ

(
a2√
V (s)

)
ds

≤ ϕ(a)

∫ t1

0
[V (s)]−

1
2 ds + ϕ(a)

∫ 1

tn−1

[V (s)]−
1
2 ds.

Since V (s) ≥ cs2H , we get

∫ t1

0
[V (s)]−

1
2 ds +

∫ 1

tn−1

[V (s)]−
1
2 ds

≤ C
∫ t1

0
s−Hds +

∫ 1

tn−1

s−Hds

= CnH−1 + 1 −
[
n − 1

n

]1−H

≤ CnH−1 +
[
1 − n − 1

n

]1−H

= CnH−1.

This completes the proof. �
Lemma 4.10 We have

∣∣∣∣∣
n∑

k=2

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1) −

∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds

∣∣∣∣∣
≤ Cϕ(a)nH−1.

Proof We separate the cases |a| > 1 and |a| ≤ 1. Let first |a| > 1. Noting that then,
by using the convention 1

x ϕ
( a
x

) = 0 for x = 0, we have

n∑
k=2

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1)

=
n∑

k=1

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1).
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Now, Lemmas 4.5 and 4.6 apply, and we get, with f (x) = 1√
x
e− a2

2x , that

∣∣∣∣∣
n∑

k=2

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1) −

∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds

∣∣∣∣∣

≤
∫ 1
0

∣∣ f ′(s)
∣∣ ds

n
≤ Cϕ(a)

n
≤ Cϕ(a)nH−1.

This proves the claim when |a| > 1. For |a| ≤ 1, we write

n∑
k=2

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1) −

∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds

=
n∑

k=2

1

2
√
V (tk−1)

ϕ

(
a√
V (tk)

)
(tk − tk−1) −

∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds

+
n∑

k=2

1

2
√
V (tk−1)

[
ϕ

(
a√

V (tk−1)

)
− ϕ

(
a√
V (tk)

)]
(tk − tk−1).

The second term can be bounded by Lemma 4.8, and we have

n∑
k=2

1

2
√
V (tk−1)

[
ϕ

(
a√

V (tk−1)

)
− ϕ

(
a√
V (tk)

)]
(tk − tk−1) ≤ Cn−H

≤ Cϕ(a)nH−1

since for |a| ≤ 1 we have ϕ(a) > ε. For the first term, we have by Lemma 4.9 that

∣∣∣∣∣
n−1∑
k=2

1

2
√
V (tk−1)

ϕ

(
a√
V (tk)

)
(tk − tk−1) −

∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds

∣∣∣∣∣
≤ Cϕ(a)nH−1

yielding

∣∣∣∣∣
n∑

k=2

1

2
√
V (tk−1)

ϕ

(
a√
V (tk)

)
(tk − tk−1) −

∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds

∣∣∣∣∣
≤ Cϕ(a)nH−1 + 1

2
√
V (tn−1)

ϕ

(
a√
V (1)

)
n−1

≤ Cϕ(a)nH−1.

This proves the case |a| ≤ 1 and completes the whole proof. �
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4.3 Proof of Theorem 2.1 and Corollary 2.2

We begin by considering a simple case f (x) = (x − a)+.

Proposition 4.11 Let a ∈ R be fixed. Then,

E

∣∣∣∣∣
∫ 1

0
IXs>adXs −

n∑
k=1

1Xtk−1>a(Xtk − Xtk−1)

∣∣∣∣∣
= 1

2

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
ds

(
1

n

)2H−1

+ Rn(a),

where the remainder satisfies

Rn(a) ≤ Cϕ(a)max{n−H , n1−2H max
1≤k≤n

[g(tk, tk−1)n
2H ]}.

Proof By (1.4), we have

∫ 1

0
IXs>adXs = (X1 − a)+ − (X0 − a)+.

Writing

(X1 − a)+ − (X0 − a)+ =
n∑

k=1

[
(Xtk − a)+ − (Xtk−1 − a)+

]
,

we get

(X1 − a)+ − (X0 − a)+ −
n∑

k=1

1Xtk−1>a(Xtk − Xtk−1)

=
n∑

k=1

[
(Xtk − a)+ − (Xtk−1 − a)+ − 1Xtk−1>a(Xtk − Xtk−1)

]

≥ 0,

where the last inequality follows from Lemma 4.1. From (x −a)+ = x1x>a −a1x>a ,
we obtain for one interval increment

(Xtk − a)+ − (Xtk−1 − a)+ − 1Xtk−1>a(Xtk − Xtk−1)

= Xtk1Xtk>a − Xtk1Xtk−1>a − a1Xtk>a + a1Xtk−1>a .

If V (tk−1) > 0, using representation

Xtk = R(tk, tk−1)

V (tk−1)
Xtk−1 + bY ,
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where Y ∼ N (0, 1) is independent of Xtk−1 , R is the covariance of X , and b is such
that EX2

tk = V (tk), we get

E

(
Xtk1Xtk−1>a

)
= R(tk, tk−1)

V (tk−1)
E

(
Xtk−11Xtk−1>a

)
= γk

√
V (tk−1)ϕ

(
a√

V (tk−1)

)
.

After rearranging the terms, this leads to

E

[
(Xtk − a)+ − (Xtk−1 − a)+ − 1Xtk−1>a(Xtk − Xtk−1)

]

= √
V (tk)ϕ

(
a√
V (tk)

)
− γk

√
V (tk−1)ϕ

(
a√

V (tk−1)

)

+ aP

(
Y >

a√
V (tk−1)

)
− aP

(
Y >

a√
V (tk)

)

=
[√

V (tk) − γk
√
V (tk−1)

]
ϕ

(
a√

V (tk−1)

)

+ √
V (tk)

[
ϕ

(
a√
V (tk)

)
− ϕ

(
a√

V (tk−1)

)]

+ aP

(
Y >

a√
V (tk−1)

)
− aP

(
Y >

a√
V (tk)

)
.

Note also that this remains valid in the case when V (tk−1) = 0, provided we use the
convention P(Y > ∞) = 0, P(Y > −∞) = 1, ϕ(±∞) = 0, and

γk
√
V (tk−1)ϕ

(
a√

V (tk−1)

)
= 0.

We have obtained

E

∣∣∣∣∣(X1 − a)+ − (X0 − a)+ −
n∑

k=1

1Xtk−1>a(Xtk − Xtk−1)

∣∣∣∣∣ = I0,n + I1,n + I2,n + I3,n,

where

I0,n =
[√

V (t1) − γ1
√
V (0)

]
ϕ

(
a√
V (0)

)
,

I1,n =
n∑

k=2

[√
V (tk) − γk

√
V (tk−1)

]
ϕ

(
a√

V (tk−1)

)
,

I2,n =
n∑

k=1

√
V (tk)

[
ϕ

(
a√
V (tk)

)
− ϕ

(
a√

V (tk−1)

)]
,
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and

I3,n =
n∑

k=1

[
aP

(
Y >

a√
V (tk−1)

)
− aP

(
Y >

a√
V (tk)

)]
.

For I0,n , we have

|I0,n| ≤ ϕ(a)

∣∣∣√V (t1) − γ1
√
V (0)

∣∣∣ .

Here, γ1 = 0 if V (0) = 0 leading to |I0,n| ≤ ϕ(a)n−H , while for V (0) > 0 we can
use Lemmas 4.4 and 4.3 to obtain

∣∣∣√V (t1) − γ1
√
V (0)

∣∣∣

≤
(√

V (t1) − √
V (0)

)2
2
√
V (0)

+ ϑ(t1, t0)

2V (0)

≤ Cn−2H

leading to |I0,n| ≤ Cϕ(a)n−H as well. Consider next the terms I2,n and I3,n . Trivially

I3,n = aP

(
Y >

a√
V (0)

)
− aP

(
Y >

a√
V (1)

)
,

while for I2,n we get by Lemma 4.5 for each subinterval that

I2,n =
∫ 1

0

√
V (s)dϕ

(
a√
V (s)

)
+ R2,n,

where the remainder satisfies, since ϕ
(

a√
V (s)

)
is increasing in s,

R2,n ≤ max
1≤k≤n

k

√
V (·)ϕ(a) ≤ Cϕ(a)n−H .

Note that here, by using the fact that ϕ′(x) = −xϕ(x) and ϕ(x) is the density of the
normal distribution,

∫ 1

0

√
V (s)dϕ

(
a√
V (s)

)

= −
∫ 1

0

√
V (s)ϕ

(
a√
V (s)

)(
a√
V (s)

)
ad

[
(V (s))−

1
2

]

= −a2
∫ 1

0
ϕ

(
a√
V (s)

)
d

[
(V (s))−

1
2

]
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= a2
∫ 1√

V (0)

1√
V (1)

ϕ(az)dz

= a
∫ a√

V (0)

a√
V (1)

ϕ(v)dv

= −aP

(
Y >

a√
V (0)

)
+ aP

(
Y >

a√
V (1)

)
.

Consequently, we have

I2,n + I3,n = R2,n ≤ Cϕ(a)n−H .

It remains to bound the term I1,n . Using Lemma 4.4 allows us to write I1,n = I1,A,n +
I1,B,n , where

I1,A,n = −
n∑

k=2

(√
V (tk) − √

V (tk−1)
)2

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)

and

I1,B,n =
n∑

k=2

ϑ(tk, tk−1)

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
.

For I1,A,n , we estimate

|I1,A,n| ≤ ϕ(a) max
1≤k≤n

k

√
V (·)

n∑
k=2

√
V (tk) − √

V (tk−1)

2
√
V (tk−1)

≤ Cϕ(a)n−H
n∑

k=2

√
V (tk)√
V (tk−1)

1√
V (tk)

(√
V (tk) − √

V (tk−1)
)

≤ Cϕ(a)n−H
n∑

k=1

1√
V (tk)

(√
V (tk) − √

V (tk−1)
)

= Cϕ(a)n−H
n∑

k=1

∫ tk

tk−1

1√
V (tk)

d
√
V (s)

≤ Cϕ(a)n−H
∫ 1

0

1√
V (s)

d
√
V (s)

= Cϕ(a)n−H
∫ 1

0
dV (s)

= Cϕ(a)n−H .
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Here, we have used the facts that 1√
V (tk )

≤ 1√
V (s)

for tk−1 ≤ s ≤ tk as V is non-

decreasing, and that d
√
V (s) = 1

2
√
V (s)

dV (s) giving us

∫ 1

0

1√
V (s)

d
√
V (s) =

∫ 1

0
dV (s) = V (1) − V (0).

It remains to study the term I1,B,n . For this, we obtain

I1,B,n =
n∑

k=2

ϑ(tk, tk−1)

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)

= σ 2n1−2H
n∑

k=2

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1)

+ n1−2H
n∑

k=2

g(tk, tk−1)n2H

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1).

Here, the first term satisfies, by Lemma 4.10,

σ 2n1−2H
n∑

k=2

1

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1)

= σ 2n1−2H
∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds + n1−2H R′

2,B,n,

where

n1−2H R′
2,B,n ≤ Cϕ(a)nH−1 · n1−2H = Cϕ(a)n−H .

The second term in turn satisfies, again by Lemma 4.10,

n1−2H
n∑

k=2

g(tk, tk−1)n2H

2
√
V (tk−1)

ϕ

(
a√

V (tk−1)

)
(tk − tk−1)

≤ n1−2H max
1≤k≤n

[g(tk, tk−1)n
2H ]

[∫ 1

0

1

2
√
V (s)

ϕ

(
a√
V (s)

)
ds + R′′

2,B,n

]

≤ n1−2H max
1≤k≤n

[g(tk, tk−1)n
2H ]ϕ(a).

Collecting all the estimates completes the proof. �
Remark 4 We note that by the above proof, we actually obtain

E

∣∣∣∣∣
∫ 1

0
IXs>adXs −

n∑
k=1

IXtk−1>a(Xtk − Xtk−1)

∣∣∣∣∣ ≤ Cϕ(a)n1−2H
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whenever we have only the upper bound E(Xt − Xs)
2 ≤ C |t − s|2 H instead of (1.2).

Indeed, the leading order term arises from I1,B,n with a constant given by

C(a) =
∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
ds ≤ ϕ(a)

∫ 1

0

1√
V (s)

ds.

With the help of Proposition 4.11, we are now ready to prove our main results.

Proof of Theorem 2.1 Using Lemma 4.1 and (1.4), we have

�(X1) − �(X0) −
n∑

k=1

� ′(Xtk−1)(Xtk − Xtk−1)

=
n∑

k=1

[
�(Xtk ) − �(Xtk−1) − � ′(Xtk−1)(Xtk − Xtk−1)

]

=
∫
R

2Z+
n (a)μ(da),

where (see the proof of Proposition 4.11)

Z+
n (a) =

n∑
k=1

[
(Xtk − a)+ − (Xtk−1 − a)+ − IXtk−1>a(Xtk − Xtk−1)

]

=
∫ 1

0
IXs>adXs −

n∑
k=1

1Xtk−1>a(Xtk − Xtk−1)

≥ 0.

Taking expectation and using Proposition 4.11 to compute EZ+
n (a), we get

E

∣∣∣∣∣�(X1) − �(X0) −
n∑

k=1

� ′(Xtk−1)(Xtk − Xtk−1)

∣∣∣∣∣
= 2

∫
R

EZ+
n (a)μ(da)

= σ 2
∫
R

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
dsμ(da)

(
1

n

)2H−1

+
∫
R

Rn(a)μ(da).

Here, the remainder Rn(a) is the remainder in Proposition 4.11 and hence, satisfies

Rn(a) ≤ Cϕ(a)max

{
n−H , n1−2H max

1≤k≤n

[
g(tk, tk−1)n

2H
]}
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that is integrable since
∫
R

ϕ(a)μ(da) < ∞ by assumption. Similarly, the leading order
term is finite by the fact that

∫ 1

0

1√
V (s)

ϕ

(
a√
V (s)

)
ds ≤ ϕ(a)

∫ 1

0

1√
V (s)

ds ≤ Cϕ(a).

This yields the claim. �

Proof of Corollary 2.2 Let AK = {ω : sup0≤t≤1 |Xt | ≤ K }. Since f is locally of
bounded variation, it follows that on the set AK we obtain

∫ 1

0
� ′(Xs)dXs −

n∑
k=1

� ′(Xtk−1)(Xtk − Xtk−1) =
∫ K

−K
Z+
n (a)μ(da).

It follows that

∣∣∣∣∣
∫ 1

0
� ′(Xs)dXs −

n∑
k=1

� ′(Xtk−1)(Xtk − Xtk−1)

∣∣∣∣∣ ≤
∫
R

Z+
n (a)|μ|(da).

In view of Remark 4, taking expectation yields the claim.

Proof of Corollary 2.3 The proof follows directly from the proof of Theorem 2.1 by
considering lower and upper bounds separately, and hence, we leave the details for an
interested reader.
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