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Abstract
We completely characterize when the free effective resistance of an infinite graph
whose vertices have finite degrees can be expressed in terms of simple hitting proba-
bilities of the random walk on the graph.
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1 Introduction

We consider undirected, connected graphs with no multiple edges and no self-loops.
Each edge (x, y) is given a positive weight c(x, y). A possible interpretation is that
(x, y) is a resistor with resistance 1/c(x, y). The graph then becomes an electrical
network.

More precisely, a (weighted) graph G = (V , c) consists of an at most countable
set of vertices V and a weight function c : V × V → R≥0 such that c is symmetric
and for all x ∈ V , we have c(x, x) = 0 and

cx :=
∑

y∈V
c(x, y) < ∞.
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We think of two vertices x, y ∈ V as being adjacent if c(x, y) > 0. For x ∈ V , let
N (x) := {y ∈ V | c(x, y) > 0} be the set of neighbors of x . Throughout this work,
we assume that every vertex has finite degree in G, i.e., |N (x)| < ∞ for every x ∈ V .

For x ∈ V , let Px be the random walk on G starting at x . It is the Markov chain
defined by the transition matrix

p(x, y) = c(x, y)

cx
, x, y ∈ V

and initial distribution δx . We will think of Px as a probability measure on � = VN0

equipped with the σ -algebra (2V )⊗N0 . If not explicitly stated otherwise, we will from
now on assume that every occurring graph is connected. In that case, Px is irreducible.

For a set of vertices A ⊆ V and ω = (ωk)k∈N0 ∈ �, let

τA(ω) := inf {k ≥ 0 | ωk ∈ A} and

τ+
A (ω) := inf {k ≥ 1 | ωk ∈ A} (inf ∅ := ∞),

be hitting times of A. For x ∈ V , we use the shorthand notation τ{x} =: τx .
Suppose that G is finite. Ohm’s Law states that the effective resistance R(x, y)

between two vertices x, y is the voltage drop needed to induce an electrical current of
exactly 1 ampere from x to y.

The relationship between electrical currents and the random walk of G has been
studied intensively [3, 5–7]. For finite graphs, x 	= y, one has the following proba-
bilistic representations

R(x, y) = 1

cx
Ex

⎡

⎣
τy−1∑

k=0

1x (ωk)

⎤

⎦ (1.1)

= 1

cx · Px [τy ≤ τ+
x ] (1.2)

= 1

cx · Px [τy < τ+
x ] . (1.3)

Note that (cz)z∈V is an invariant measure of p. A proof of the first equality in the
unweighted case can be found in [7] and can be extended to fit our more general

context. To see that (1.1) equals (1.2), realize that
∑τy−1

k=0 1x (ωk) is geometrically
distributed with parameter Px [τ+

x < τy]. For the last equality, use that any finite graph
is recurrent and thus Px [τ+

x = τy = ∞] = 0.
The subject of effective resistances gets much more complicated on infinite graphs

since those may admit multiple different notions of effective resistances. Recurrent
graphs, however, have a property which is often referred to as unique currents [6] and
consequently also have one unique effective resistance. In this case, the above repre-
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sentation holds [1, 8]. Indeed, [1, Lemma 2.61] states the more general inequalities

1

cx · Px [τy ≤ τ+
x ] ≤ RF (x, y) ≤ 1

cx · Px [τy < τ+
x ] (1.4)

for the free effective resistance RF (see Sect. 2) of any infinite graph whose vertices
have only finitely many neighbors. For the convenience of the reader, we include a
proof of the result, see Lemma 2.4.

In [5, Corollaries 3.13 and 3.15], it is suggested that one seems to have

RF (x, y) = 1

cx · Px [τy < τ+
x ] (1.5)

on all transient graphs. However, this is false as our example in Sect. 3 shows.
The main result of this work (Corollary 6.3) states that the free effective resistance

of a transient graph G = (V , c) admits the representation (1.5) for all x, y ∈ V if and
only if G is a subgraph of an infinite line. Corollary 6.5 states that the lower bound in
(1.4) is attained if and only if G is recurrent.

2 Free Effective Resistance

Let G = (V , c) be an infinite connected graph. For any W ⊆ V , let G�W :=
(W , c�W×W ) be the subgraph of G induced by W . We say a sequence (Vn)n∈N of
subsets of V is a finite exhaustion of V if |Vn| < ∞, Vn ⊆ Vn+1 and V = ∪n∈NVn .
Define Gn = (Vn, cn) := G�Vn .

Definition 2.1 Let (Vn)n∈N be any finite exhaustion of V such that Gn is connected.
For x, y ∈ V , the free effective resistance RF (x, y) of G is defined by

RF (x, y) = lim
n→∞ RGn (x, y).

Remark 2.2 The fact that RGn (x, y) converges with the limit independent of a choice
of (Vn)n∈N is due to Rayleigh’s monotonicity principle (see, e.g., [2, 4]).

We denote by P
n
x the random walk on Gn starting at x with transition matrix pn

associated with cn . Since we can extend it to a function on V by defining pn(x, y) = 0
whenever x /∈ Vn or y /∈ Vn , Pn

x is a probability measure on� = VN0 for each x ∈ Vn
and we have

pn(x, y) = cn(x, y)

(cn)x
= c(x, y)∑

w∈Vn c(x, w)

for all x, y ∈ Vn .
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Remark 2.3 Note that for any x, y ∈ Vn ,

pn(x, y) = p(x, y) · cx
(cn)x

= p(x, y) ·
(
1 +

∑
v /∈Vn c(x, v)

∑
v∈Vn c(x, v)

)
≥ p(x, y).

Lemma 2.4 ([1, Lemma 2.61]). Let G = (V , c) be an infinite, connected graph such
that |N (x)| < ∞ for all x ∈ V and let RF be the free effective resistance of G. Then,

1

cx · Px [τy ≤ τ+
x ] ≤ RF (x, y) ≤ 1

cx · Px [τy < τ+
x ]

holds for all x, y ∈ V with x 	= y.

Proof For any v ∈ V , we have (cn)v → cv as n → ∞ and thus pn(v,w) → p(v,w)

for all v,w ∈ V . By the definition of RF and (1.3), we know that

RF (x, y) = lim
n→∞ RGn (x, y) = lim

n→∞
1

(cn)x · Pn
x [τy < τ+

x ]
= 1

cx · ( lim
n→∞Pn

x [τy < τ+
x ]) . (2.1)

In particular, limn→∞ P
n
x [τy < τ+

x ] exists. Hence, the claim is equivalent to

Px [τy < τ+
x ] ≤ lim

n→∞P
n
x [τy < τ+

x ] ≤ Px [τy ≤ τ+
x ].

Consider the discrete topology on V and its product topology on � = VN0 . Since
pn → p point-wise and {y ∈ Vn | cn(x, y) > 0} ⊂ N (x) and |N (x)| < ∞ for all
n ∈ N and all x ∈ Vn , it follows that (Pn

x )n∈N converges weakly to Px . In the product
topology, the sets

{
ω ∈ � | τy(ω) < τ+

x (ω)
}
and

{
ω ∈ � | τy(ω) ≤ τ+

x (ω)
}
are open

and closed, respectively. By the Portmanteau theorem, it follows that

Px [τy < τ+
x ] ≤ lim inf

n→∞ P
n
x [τy < τ+

x ] = lim
n→∞P

n
x [τy < τ+

x ]

and

lim
n→∞P

n
x [τy < τ+

x ] ≤ lim sup
n→∞

P
n
x [τy ≤ τ+

x ] ≤ Px [τy ≤ τ+
x ].


�
In view of (2.1), equation (1.5) holds if and only if

lim
n→∞P

n
x [τy < τ+

x ] = Px [τy < τ+
x ]. (2.2)
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Fig. 1 The transient graph T
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Analogously, the lower bound of (1.4) is attained if and only if

lim
n→∞P

n
x [τy < τ+

x ] = Px [τy ≤ τ+
x ]. (2.3)

3 The Transient T

We will now show that (1.5) does not hold in general. Consider the graph T shown in
Fig. 1. It is transient and we have RF (B, T ) = 2. However,

PB[τT < τ+
B ] = P0[τT < τB]

= 1 − P0[τB ≤ τT ]
= 1 − P0[τB < τT ] − P0[τB = τT = ∞].

Due to the symmetry of T we have P0[τB < τT ] = P0[τT < τB]. Together with the
transience of T , this implies

PB[τT < τ+
B ] = P0[τT < τB] = 1 − P0[τB = τT = ∞]

2
<

1

2

and

PB[τT ≤ τ+
B ] = P0[τT ≤ τB] = 1 + P0[τB = τT = ∞]

2
>

1

2
.

More precisely, one can compute

PB[τT < τ+
B ] = 2

5
and PB[τT ≤ τ+

B ] = 3

5
.

Hence,

1

cBPB[τT < τ+
B ] 	= RF (B, T )
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and

1

cB
EB

[
τT −1∑

k=0

1B(ωk)

]
= 1

cBPB[τT ≤ τ+
B ] 	= RF (B, T ).

4 Probability of Paths

To check whether (2.2) holds, it is useful to write both sides as sums of probabilities
of paths.

A sequence γ = (γ0, . . . , γn) ∈ V n+1 is called a path (of length n) in G if
c(γk, γk+1) > 0 for all k = 0, . . . , n − 1. We denote by L(γ ) the length of γ and by
�G the set of all paths in G. A path γ is called simple if it does not contain any vertex
twice. The probability of γ with respect to Px is defined by

Px (γ ) := Px ({γ } × VN) = 1x (γ0) ·
L(γ )−1∏

k=0

p(γk, γk+1) .

Wesayγ is x → y ifγ0 = x, γL(γ ) = y andγk /∈ {x, y} for all k = 1, . . . , L(γ )−1.
We denote by �G(x, y) the set of all paths x → y in G.

For A ⊆ V , let

�G(x, y; A) := {γ ∈ �G(x, y) | γk ∈ A for all k = 0, . . . , L(γ )}

be the set of all paths x → y in G that use only vertices in A.
Using this notion and �Gn (x, y) = �G(x, y; Vn), we see that (2.2) becomes

lim
n→∞

∑

γ∈�G (x,y;Vn)
P
n
x (γ ) =

∑

γ∈�G (x,y)

Px (γ ). (4.1)

Since �G(x, y; Vn) increases to �G(x, y), this might look like an easy application of
either the Monotone Convergence Theorem or the Dominated Convergence Theorem.
However, neither is applicable since Pn

x (γ ) may be strictly greater than Px (γ ).
To investigate when exactly (4.1) holds, we will introduce another random walk on

V which can be considered an intermediary between P
n
x and Px .

5 Extended Finite RandomWalk

The difference in the behavior of Px and P
n
x occurs only when Px leaves Vn . Instead,

P
n
x is basically reflected back to a vertex in Vn . We will now construct an intermediary

random walk which still has a finite state space, models the behavior of stepping out
of Vn and has the same transition probabilities as Px in Vn . This is done by adding
boundary vertices to Gn wherever there is an edge from Vn to V \ Vn .

123



1962 Journal of Theoretical Probability (2023) 36:1956–1971

Fig. 2 The lattice Z2

For any set A ⊆ V , let

∂i A := {v ∈ A | ∃ w ∈ V \ A : c(v,w) > 0}

be the inner boundary and ∂o A := ∂i (V \ A) be the outer boundary of A in G.
For any v ∈ ∂i A, let v be a copy of v. Define Gn = (Vn, cn) where

Vn = Vn ∪ {v | v ∈ ∂i Vn} ,

and cn is defined as follows. For x, y ∈ Vn , let

cn(x, y) = cn(y, x) =

⎧
⎪⎨

⎪⎩

c(x, y) , x, y ∈ Vn∑
z /∈Vn c(x, z) , y = x

0 , otherwise

.

In particular, we have (cn)x = cx for all x ∈ Vn . We denote by Pn
x the random walk

on Gn starting at x with transition matrix pn given by

pn(x, y) = cn(x, y)

(cn)x
.

Furthermore, let V ∗
n := Vn \ Vn .

Example 5.1 Let G be the lattice Z
2 with unit weights, see Fig. 2. Furthermore,

let Vn := {−n . . . , 0, . . . , n}2. G1 and G1 are illustrated in Fig. 3. Note that
c((1, 1), (1, 1)) = 2 since (1, 1) has two edges leaving V1 in G.

Lemma 5.2 (Relation of pn, pn and p). For x, y ∈ Vn we have

pn(x, y) ≥ p(x, y) = pn(x, y).
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2

2 2

2

Fig. 3 G1 (left) and G1 (right) for G = Z
2

For x, y ∈ V and m ∈ N such that x, y ∈ Vm, we have

lim
n→∞ pn(x, y) = p(x, y) = pm(x, y).

Note that for n ∈ N and x, y ∈ Vn , we have

�Gn (x, y) = �Gn
(x, y; Vn) = �G(x, y; Vn).

By Lemma 5.2, the following holds for all x, y ∈ Vn .

∀ m ≥ n ∀ γ ∈ �G(x, y; Vm) : Px (γ ) = Pm
x (γ ).

The connection betweenPn
x (γ ) andPn

x (γ ) is a bit more intricate. In order to investigate
this connection, first consider what kind of paths exist in Gn . Let x, y ∈ Vn , x 	= y
and γ ∈ �Gn

(x, y) with L(γ ) ≥ 2. Then, by the definition of Gn , there exist l ∈ N

with l ≥ 2, v1, . . . , vl−1 ∈ Vn \ {x, y} and k1, . . . , kl−1 ∈ N0 such that k j = 0 for
any j ∈ {1, . . . , l − 1} with v j /∈ ∂i Vn and

γ = (x, (v1)k1 , . . . , (vn−1)kl−1 , y) (5.1)

where (v)k := (v, v, v, . . . , v, v︸ ︷︷ ︸
k times

) for (v, k) ∈ ((∂i Vn)×N0)∪((Vn \∂i Vn)×{0}). Note

that the representation (5.1) is unique for γ since Gn does not contain any self-loops.

Definition 5.3 For x, y ∈ Vn , x 	= y, letπ : �Gn
(x, y) → �Gn (x, y) be the projection

of �Gn
(x, y) onto �Gn (x, y) which replaces all occurrences of (v, v, v) for any v ∈

∂i Vn by (v).
More precisely, let γ ∈ �Gn

(x, y). If L(γ ) = 1, then γ = (x, y) and we define
π(γ ) := (x, y). If L(γ ) ≥ 2, it is of the form (5.1) and we define

π(γ ) := (x, v1, . . . , vl−1, y). (5.2)
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Lemma 5.4 For all x, y ∈ Vn, x 	= y and γ ∈ �Gn (x, y), we have

P
n
x (γ ) = cx

(cn)x
·

∑

γ∈π−1(γ )

Pn
x (γ ).

Proof For any v,w ∈ Vn , we have

cv

(cn)v
· pn(v,w) = cv

(cn)v
· c(v,w)

cv

= pn(v,w) (5.3)

and, if v ∈ ∂i Vn ,

∞∑

k=0

(pn(v, v) · pn(v, v)︸ ︷︷ ︸
=1

)k = 1

1 − pn(v, v)
= cv

cv − ∑
w/∈Vn c(v,w)

= cv

(cn)v
.

(5.4)

For γ ∈ �Gn (x, y) with L(γ ) = 1, we have γ = (x, y). Since any γ ∈ π−1(γ ) visits
x and y only once, π−1(γ ) = {γ } holds and
cx

(cn)x
·

∑

γ∈π−1(γ )

Pn
x (γ ) = cx

(cn)x
· Pn

x (γ ) = cx
(cn)x

· pn(x, y) = pn(x, y) = P
n
x (γ ).

Now let γ = (x, v1, . . . , vl−1, y) ∈ �Gn (x, y) with l = L(γ ) ≥ 2. We define

A(γ ) :=
{
(k1, . . . , kl−1) ∈ (N0)

l−1 | for each j ∈ {1, . . . , l − 1} : k j = 0 if v j /∈ ∂i Vn
}

.

It follows that

π−1(γ ) =
{
γ ∈ �Gn

(x, y) | π(γ ) = γ
}

= {
(x, (v1)k1 , . . . , (vl−1)kl−1 , y) | (k1, . . . , kl−1) ∈ A(γ )

}

and we compute

∑

γ∈π−1(γ )

P
n
x (γ ) =

∑

(k1,...,kl−1)∈A(γ )

P
n
x ((x, (v1)k1 , . . . , (vl−1)kl−1 , y))

=
∑

(k1,...,kl−1)∈A(γ )

⎡

⎢⎢⎢⎣P
n
x ((x, v1, . . . , vl−1, y)) ·

∏

j=1,...,l−1
v j∈∂i Vn

pn(v j , v j )
k j

⎤

⎥⎥⎥⎦

(5.4)= P
n
x ((x, v1, . . . , vl−1, y)) ·

l−1∏

j=1

cv j

(cn)v j
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(5.3)= (cn)x
cx

· Pnx ((x, v1, . . . , vl−1, y)) = (cn)x
cx

· Pnx (γ ).


�
Proposition 5.5 For x, y ∈ Vn, x 	= y, we have

Pn
x [τy < τ+

x ] = (cn)x
cx

· Pn
x [τy < τ+

x ].

Proof Using

�Gn
(x, y) =

⊔

γ∈�Gn (x,y)

π−1(γ ),

we compute

P
n
x [τy < τ+

x ] =
∑

γ∈�Gn (x,y)

P
n
x (γ ) =

∑

γ∈�Gn (x,y)

⎛

⎝ cx
(cn)x

·
∑

γ∈π−1(γ )

Pn
x (γ )

⎞

⎠

= cx
(cn)x

·
∑

γ∈�Gn
(x,y)

Pn
x (γ ) = cx

(cn)x
· Pn

x [τy < τ+
x ].


�
Since we now have clarified the relation between Pn

x , P
n
x and Px , we can return our

attention to (2.2).

Proposition 5.6 For x, y ∈ V , x 	= y, we have

lim
n→∞P

n
x [τy < τ+

x ] = Px [τy < τ+
x ]

if and only if

lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = 0. (5.5)

Proof We have

Px [τy < τ+
x ] =

∑

γ∈�G (x,y)

Px (γ ) = lim
n→∞

∑

γ∈�G (x,y;Vn)
Px (γ ) (5.6)

= lim
n→∞

∑

γ∈�G (x,y;Vn)
Pn
x (γ )

and

P
n
x [τy < τ+

x ] = cx
(cn)x

· Pn
x [τy < τ+

x ] = cx
(cn)x

·
∑

γ∈�Gn
(x,y)

Pn
x (γ ). (5.7)
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Since �G(x, y; Vn) = �Gn
(x, y; Vn) and (cn)x → cx , it follows that Pn

x [τy < τ+
x ] →

Px [τy < τ+
x ] holds if and only if

lim
n→∞

∑

γ∈�Gn
(x,y)

γ /∈�Gn
(x,y;Vn)

Pn
x (γ ) = 0.

This is the same as

lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = 0.


�
Using the same approach, we can also characterize when (2.3) holds.

Proposition 5.7 For x, y ∈ V , x 	= y, we have

lim
n→∞P

n
x [τy < τ+

x ] = Px [τy ≤ τ+
x ]

if and only if

lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = Px [τ+

x = τy = ∞] (5.8)

which in turn is equivalent to

lim
n→∞Pn

x [τV ∗
n

< τ+
x < τy] = 0. (5.9)

Proof Using (5.6) and (5.7) from the proof of Proposition 5.6, we have

Px [τy ≤ τ+
x ] = Px [τ+

x = τy = ∞] + lim
n→∞

∑

γ∈�Gn
(x,y;Vn)

Pn
x (γ )

and

lim
n→∞P

n
x [τy < τ+

x ] = lim
n→∞

∑

γ∈�Gn
(x,y)

Pn
x (γ )

provided either one of these two limits exists.
Hence, we have convergence as desired if and only if

Px [τ+
x = τy = ∞] = lim

n→∞
∑

γ∈�Gn
(x,y)

γ /∈�Gn
(x,y;Vn)

Pn
x (γ ) = lim

n→∞Pn
x [τV ∗

n
< τy < τ+

x ].

123



Journal of Theoretical Probability (2023) 36:1956–1971 1967

Fig. 4 Embedding T into a
transient graph

F

z

x

y

v′ v

On the other hand, we have

Px [τ+
x = τy = ∞] = lim

n→∞Px [τV \Vn < min(τ+
x , τy)]

= lim
n→∞Pn

x [τV ∗
n

< min(τ+
x , τy)]

= lim
n→∞

(
Pn
x [τV ∗

n
< τ+

x < τy] + Pn
x [τV ∗

n
< τy < τ+

x ]
)

(5.10)

which implies the second claim. 
�
Remark 5.8 An equivalent approach would be to consider a lazy random walk on Gn

which has the same transition probabilities p(v,w) as Px for v 	= w but stays at v

with probability

∑

w∈V \Vn
p(v,w) = Pv[ω1 ∈ V \ Vn].

In that case the notion of “stepping out of Vn” would be modeled by staying at any
vertex v ∈ Vn .

6 Embedding T into Transient Graphs

We will show that whenever a graph G is transient and not part of an infinite line, one
can find a subgraph of G which is similar to T from Sect. 3. We will also show that
this is sufficient for (5.5) not to hold.

Proposition 6.1 Let G be a transient, connected graph which is not a subgraph of a
line. Then, there exist x, y, z ∈ V such that x 	= y, (x, z, y) is a path in G and

Pz[τx = τy = ∞] > 0.

Proof Since G is transient, it is infinite. If G is not a subgraph of a line, then there
exists some z ∈ V with at least three adjacent vertices. Let F be a set of exactly three
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neighbors of z. Since G is transient and F is finite, there exists v ∈ ∂oF such that

Pv[τF = ∞] > 0.

If v = z, we can choose x, y ∈ F , x 	= y, and get

Pz[τx = τy = ∞] ≥ Pv[τF = ∞] > 0.

If v 	= z, then there exists v′ ∈ F such that (z, v′, v) is a path in G. Let x, y ∈ V be
such that F = {

x, y, v′}, see Fig. 4. It follows that

Pz[τx = τy = ∞] ≥ Pz[ω1 = v′, ω2 = v, τx = τy = ∞]
= p(z, v′) · p(v′, v) · Pv[τx = τy = ∞]
≥ p(z, v′) · p(v′, v) · Pv[τF = ∞] > 0.


�
Theorem 6.2 Let G be a transient, connected graph. Then,

∀ x, y ∈ V , x 	= y : lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = 0

holds if and only if G is a subgraph of an infinite line.

Proof First, assume that G is a subgraph of an infinite line and let x, y ∈ V , x 	= y.
Then, for any n ∈ N sufficiently big, we have

�Gn
(x, y) \ �Gn

(x, y; Vn) = ∅,

i.e., there exists no path x → y which leaves Vn before reaching y. Hence,

lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = 0.

To prove the converse direction, suppose that G is not a subgraph of a line. By
Proposition 6.1,weknow that there exist distinct vertices x, y, z ∈ V such that (x, z, y)
is a path in G and Pz[τx = τy = ∞] > 0. Hence,

0 < Pz[τx = τy = ∞]
= lim

n→∞Pz[τ∂oVn < min(τx , τy)]
= lim

n→∞Pn
z [τV ∗

n
< min(τx , τy)]

= lim
n→∞

(
Pn
z [τV ∗

n
< τx < τy] + Pn

z [τV ∗
n

< τy < τx ]
)

≤ lim sup
n

Pn
z [τV ∗

n
< τx < τy] + lim sup

n
Pn
z [τV ∗

n
< τy < τx ].
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Without loss of generality assume that lim supn→∞ Pn
z [τV ∗

n
< τy < τx ] > 0. It follows

that lim supn→∞ Pn
x [τV ∗

n
< τy < τ+

x ] > 0 because for all n ∈ N with {x, y, z} ⊆ Vn ,
we have

Pn
x [τV ∗

n
< τy < τx ] ≥ Pn

x [τz < τV ∗
n

< τy < τx ]
= Pn

x [τz < min(τV ∗
n
, τx , τy)] · Pn

z [τV ∗
n

< τy < τx ]
≥ p(x, z) · Pn

z [τV ∗
n

< τy < τx ]. (6.1)


�
Corollary 6.3 Let G be a transient, connected graph with |N (x)| < ∞ for any x ∈ V .
Then,

RF (x, y) = 1

cx · Px [τy < τ+
x ]

holds for all x, y ∈ V with x 	= y if and only if G is a subgraph of an infinite line.

Proof As seen in (2.2), the desired probabilistic representation (1.5) holds if and only
if

lim
n→∞P

n
x [τy < τ+

x ] = Px [τy < τ+
x ].

By Proposition 5.6, this is equivalent to

lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = 0

and the claim follows by Theorem 6.2. 
�
Theorem 6.4 Let G be an infinite, connected graph. If

∀ x, y ∈ V , x 	= y : lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = Px [τ+

x = τy = ∞]

holds, then G is recurrent.

Proof By Proposition 5.7, we have

∀ x, y ∈ V , x 	= y : lim
n→∞Pn

x [τV ∗
n

< τ+
x < τy] = 0. (6.2)

Suppose that G is transient and not a subgraph of a line. Using the same arguments
as in the proof of Theorem 6.2, we see that there exist distinct vertices x, y, z ∈ V
such that (x, z, y) ∈ �G(x, y) and

lim sup
n

Pn
z [τV ∗

n
< τx < τy] + lim sup

n
Pn
z [τV ∗

n
< τy < τx ] > 0.
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Since the same argument as in (6.1) yields

Pn
x [τV ∗

n
< τ+

x < τy] ≥ p(x, z) · Pn
z [τV ∗

n
< τx < τy]

for all n ∈ N with {x, y, z} ⊆ Vn , it follows from (6.2) that

lim sup
n

Pn
z [τV ∗

n
< τx < τy] = 0

which implies

lim sup
n→∞

Pn
z [τV ∗

n
< τy < τx ] > 0.

However, we also have

Pn
y[τV ∗

n
< τ+

y < τx ] ≥ p(y, z) · Pn
z [τV ∗

n
< τy < τx ]

for all n ∈ Nwith {x, y, z} ⊆ Vn by the same argument as in (6.1), and it follows that

lim sup
n

Pn
y[τV ∗

n
< τ+

y < τx ] > 0

which is a contradiction to (6.2).
Hence, if G is transient, then it must be a subgraph of a line. In this case,

lim
n→∞Pn

x [τV ∗
n

< τy < τ+
x ] = 0

follows for all x, y ∈ V with x 	= y by Theorem 6.2. Together with (6.2) and (5.10),
this implies

Px [τ+
x = τy = ∞] = 0

for all x, y ∈ V with x 	= y. However, this is a contradiction to the transience of G. 
�
Corollary 6.5 Let G be an infinite, connected graph with |N (x)| < ∞ for any x ∈ V .
Then,

RF (x, y) = 1

cx · Px [τy ≤ τ+
x ] (6.3)

holds for all x, y ∈ V with x 	= y if and only if G is recurrent.

Proof If G is recurrent, we have Px [τ+
x = τy = ∞] = 0 for all x, y ∈ V . Hence,

Px [τ+
x < τy] = Px [τ+

x ≤ τy]

and (1.4) implies the claim.
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If (6.3) holds for all x, y ∈ V with x 	= y, then by (2.3) we have

lim
n→∞P

n
x [τy < τ+

x ] = Px [τy ≤ τ+
x ]

for all x, y ∈ V with x 	= y, and Proposition 5.7 and Theorem 6.4 imply the recurrence
of G. 
�

This shows that the lower bound in (1.4) is actually a strict inequality for some
x, y ∈ V with x 	= y for any transient graph G = (V , c).
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