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Abstract
This paper deals with moduli of continuity for paths of random processes indexed by a
general metric space�with values in a general metric spaceX . Adapting the moment
condition on the increments from the classical Kolmogorov–Chentsov theorem, the
obtained result on the modulus of continuity allows for Hölder-continuous modifica-
tions if the metric space X is complete. This result is universal in the sense that its
applicability depends only on the geometry of the space �. In particular, it is always
applicable if � is a bounded subset of a Euclidean space or a relatively compact sub-
set of a connected Riemannian manifold. The derivation is based on refined chaining
techniques developed by Talagrand. As a consequence of the main result, a criterion is
presented to guarantee uniform tightness of random processes with continuous paths.
This is applied to find central limit theorems for Banach-valued random processes.

Keywords Kolmogorov–Chentsov type theorems · Covering numbers · Talagrand’s
chaining technique · Uniform tightness · Banach-valued central limit theorems
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1 Introduction andMain Result

Let (�, d�) be a totally bounded metric space. For subsets � ⊆ �, the diameter of
� w.r.t. d� will be denoted by �(�), whereas N (�, d�, η) stands for the minimal
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number to cover � with closed d�-metric balls of radius η > 0 with centers in �. We
will often need the following assumption on the geometry of �:

∃C, t > 0 ∀η ∈]0,�(�)] : N (�, d�, η) ≤ Cη−t . (1)

Furthermore, let (X , dX ) be a metric space. By B(X ), we denote the Borel σ -
algebra on X . Let (Xθ )θ∈� be an X -valued random process on some probability
space (�,F ,P), i.e., for all θ ∈ �, Xθ is a random element in (X ,B(X )). Under
a “Kolmogorov–Chentsov type theorem,” we understand a theorem that, under an
appropriate moment condition on the distance dX (Xθ , Xϑ) for θ, ϑ ∈ �, yields exis-
tence of a continuous or Hölder-continuous modification (cf. [4]). We establish the
following general result.

Theorem 1.1 Assume (1) and

(Xθ , Xϑ) is F − B(X 2)-measurable for all pairs (θ, ϑ) ∈ �2 withθ �= ϑ. (2)

Let M, p > 0 and q > t (with t from (1)) be such that

E
[
dX (Xθ , Xϑ)p

] ≤ Md�(θ, ϑ)q for θ, ϑ ∈ �. (3)

Then, for any β ∈]0, (q − t)/p[, there exists a finite constant L(�,C, t, p, q, β)

dependent on �(�),C, t, p, q and β only such that, for every at most countable
subset � ⊆ � with �(�) > 0,

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p

⎤

⎥⎥
⎦ ≤ L(�,C, t, M, p, q, β) := ML(�,C, t, p, q, β).

(4)

In particular, if dX is complete, then the random process (Xθ )θ∈� has a modification
which satisfies (2) such that all its paths are Hölder-continuous of all orders β ∈
]0, (q − t)/p[.
Remark 1 Technical assumption (2) is always satisfied when X is a separable metric
space because, in this case,B(X 2) = B(X )⊗B(X ). In general, we only have the inclu-
sion B(X 2) ⊇ B(X ) ⊗ B(X ), and the assumption is needed to ensure measurability
of dX (Xθ , Xϑ).

We consider Theorem 1.1 as our main “building block.” In the literature,
Kolmogorov–Chentsov type theorems are sometimes formulated in a localized form.
A localized version of Theorem 1.1 where � is not necessarily totally bounded is
presented in Sect. 2.
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Remark 2 The key assumption on the geometry of the parametric space � is (1),
where the value of t is important, as we need to have q > t in (3).1 We remark that,
if � is a bounded subset of Rm with the Euclidean metric dm,2 = d�, then (1) is
always satisfied with t = m,2 More generally, a relatively compact subset � of an
m-dimensional connected Riemannian manifold always satisfies (1) with t = m (we
provide more detail in Sect. 3).

In the classical formulation of the Kolmogorov–Chentsov theorem, it is assumed
that X is a Banach space and � = [0, 1]m for some m ∈ N (see [22, Theorem I.2.1]),
and the proof relies on the fact that the dyadic rationals are dense in [0, 1]. Since that
time, there appeared many other versions of the Kolmogorov–Chentsov theorem that
essentially allow to treat more general sets �. We mention [19, Theorem 2.1], [6,
Theorem 3.9], [10, Lemma 2.19], [12, Proposition 3.9] for several recent formulations
where� is a subset ofRm . Some versions of the Kolmogorov–Chentsov theorem only
guarantee that sup(dX (Xθ , Xϑ)/d�(θ, ϑ)β) < ∞ a.s. (i.e., it is not claimed that the
expectation of the p-th power of that quantity is finite). However, some applications
such as the ones discussed in Sects. 4 and 5 require that the expectation is finite. As
another example of this kind, we mention that the proof of Theorem 6.1 in [2] would
not work without finiteness of such an expectation (see formula (106) in [2]).

In the aforementioned references, X is (a closed subset of) a Banach space and all
Xθ are assumed to be in L p (with p from (3)), and the proof involves a certain extension
result for Banach-valued Hölder-continuous mappings. That extension result allows
to pass from rectangular regions in R

m to general subsets � ⊆ R
m . In our situation,

when X is only a metric space and we do not assume E[dX (a, Xθ )
p] < ∞ for all

θ and some a ∈ X (or the like) such a method of the proof cannot work, so we use
essentially different ideas to prove Theorem 1.1.

Another approach, used in [21, Theorem 2.9] (also see [17, Corollary 4.3]), is
worth mentioning. In that reference, the existence of a locally Hölder-continuous
modification is proved forX = R under assumptions of a different kind. In particular,
the assumption on � is that it is a dyadically separable metric space. The latter is
a requirement of a different type than (1) on the geometry of �, which allows to
pursue the arguments initially elaborated for rectangular regions inRm inmore general
situations. The setup in [21] is quite different from ours, and the relation between the
approaches still has to be worked out. Notice, however, that in the finite-dimensional
situation � ⊆ R

m , the other approach imposes some restrictions on possible sets �

(see[21, Theorem 4.1]), while our approach allows for arbitrary sets � ⊆ R
m (see

Proposition 2.1 and Remark 3).
We thus summarize the previous discussion by noting that we obtain inequality (4),

essentially, only under requirement (1) on the geometry of the metric space �, which
is satisfied for bounded subsets of Rm (with t = m) and allows to go beyond Rm . It is
also worth noting that the right-hand side of (4) is the same for all countable subsets
� ⊆ � and that (4) is the right way to formulate the result in the case when dX is
incomplete (and thus a continuous modification may fail to exist).

1 On the contrary, the value of C in (1) is not important.
2 More precisely, we have N (�d�, η) ≤ [(

8�(�) + η
)
/η

]m for all η > 0 (see [25, Lemma 2.5]). In
particular, (1) holds with t = m and C = 9�(�)m .
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In order to discuss applications of Theorem 1.1, we formulate the following imme-
diate

Corollary 1.2 Assume (1), (2) and (3). Let β ∈]0, (q − t)/p[ (with p, q from (3) and
t from (1)), and let L(�,C, t, M, p, q, β) be any constant satisfying (4). Then, for
every at most countable subset � ⊆ � and arbitrary δ > 0,

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

d(θ,ϑ)≤δ

dX (Xθ , Xϑ)p

⎤

⎥⎥
⎦ ≤ L(�,C, t, M, p, q, β)δβ p. (5)

Notice that, like in Theorem 1.1, inequality (5) holds universally, i.e., independently
of the random process satisfying (2) and (3). This will turn out to be useful when
analyzing weak convergence of X -valued random processes (see Sects. 4 and 5).

The crucial step for the proof of Theorem 1.1 is provided by the following auxiliary
result. It is interesting in its own right.

Lemma 1.3 Assume (1), (2) and (3). Let � be some finite subset of � with diameter
�(�) > 0. Then, for any δ > 0,

E

⎡

⎢
⎢
⎣ sup

θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ )p

⎤

⎥
⎥
⎦

≤ 4t+2p+3q+2 M

(

N (�, d�, δ/4)
[
ln

(
N (�, d�, δ/4)

)]q
δq + C δq−t

(
2(q−t)/p − 1

)p

)

.

In the case X = R, Theorem B.2.4 in [23] provides a result similar to Lemma 1.3.
For the proof, a refined chaining technique is used there, which we shall adopt to
derive Lemma 1.3.

The structure of the paper is as follows. In Sect. 2, we discuss a localized version of
Theorem 1.1 where� is not necessarily totally bounded. As an example, in Sect. 3 we
explicitly treat the casewhere� is a subset of aRiemannianmanifold. In Sects. 4 and 5,
we present some applications of Theorem 1.1 to weak convergence of Banach-valued
processes. Lemma 1.3 and Theorem 1.1 are proved in Sect. 6.

2 Localized Version of Theorem 1.1

Since the literature in the case� ⊆ R
m sometimes formulates Kolmogorov–Chentsov

type theorems for unbounded � (by localizing the results of the type of Theorem 1.1),
we now formulate and discuss the localized version of Theorem 1.1 for metric spaces
(�, d�) that are not necessarily totally bounded.

The setting is as follows. Let (�, d�) be a metric space satisfying
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Property (P) There exists an increasing sequence {�n}n∈N, �n ⊆ �n+1, n ∈ N, of
totally bounded open subsets of � such that � = ⋃

n∈N �n and

∀n ∈ N ∃Cn, tn > 0 ∀η ∈]0,�(�n)] : N (�n, d�, η) ≤ Cnη
−tn . (6)

Let (X , dX ) be a complete metric space and let (Xθ )θ∈� be an X -valued random
process on some (�,F ,P).

Proposition 2.1 Assume Property (P), that the process (Xθ )θ∈� satisfies (2) and that,
for all n ∈ N, there exist Mn, pn, ρn > 0 and qn > tn (with tn as in Property (P))
such that

E
[
dX (Xθ , Xϑ)pn

] ≤ Mn d�(θ, ϑ)qn for θ, ϑ ∈ �n, d�(θ, ϑ) < ρn, n ∈ N.

(7)

Then, the random process (Xθ )θ∈� has amodification (X̃θ )θ∈� satisfying (2) such that
all its paths are locally Hölder-continuous of all orders β ∈ ⋂

n∈N[0, (qn − tn)/pn[,
where the expression “Hölder-continuous of order 0” is understood as “uniformly
continuous.” Moreover, for n ∈ N, θ ∈ �n , there is some open in � neighborhood
V (θ) of θ such that

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈V (θ)

θ �=ϑ

dX (X̃θ , X̃ϑ)pn

d�(θ, ϑ)β pn

⎤

⎥⎥
⎦ < ∞ for all β ∈ [0, (qn − tn)/pn[. (8)

Remark 3 Notice that any � ⊆ R
m satisfies Property (P). We can take3 �n = � ∩

( ] − n, n[m) and all tn = m, n ∈ N, whereas the constants Cn indeed depend on n.
Therefore, in the case of an arbitrary subset� ⊆ R

m Proposition 2.1 includes, e.g., the
following statement: There is a locally Hölder-continuous modification of all orders
β ∈]0, (q −m)/p[ whenever (7) holds with �n = � ∩ (] − n, n[m), pn = p > 0 and
qn = q > m not depending on n (on the contrary, Mn and ρn are allowed to depend
on n). Moreover, in this case, for any θ ∈ �, there exists an open in � neighborhood
V (θ) of θ such that (8) with pn ≡ p holds for all β ∈]0, (q − m)/p[.

Although Proposition 2.1 follows from Theorem 1.1 via standard arguments, we
present a proof to make the paper self-contained.

Proof of Proposition 2.1 Fix any n ∈ N. The set �n from Property (P) is totally
bounded. Therefore, we can find open subsets �n,1, . . . , �n,rn of � with diameters
less than ρn such that

�n =
rn⋃

i=1

�n,i ,

3 We remark that although such sets �n are in general not open in R
m , they are always open in �, as

required in Property (P).
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where �n,i = �n ∩ �n,i . By (7), we can apply Theorem 1.1 on each �n,i . Hence,

each (Xθ )θ∈�n,i
has a modification (X

n,i
θ )θ∈�n,i

which satisfies (2) such that all its

paths are Hölder-continuous on �n,i of all orders β ∈ [0, (qn − tn)/pn[ with

E

⎡

⎢
⎢
⎣ sup

θ,ϑ∈�n,i

θ �=ϑ

dX
(
X
n,i
θ , X

n,i
ϑ

)pn

d�(θ, ϑ)β pn

⎤

⎥
⎥
⎦ < ∞ for all β ∈ [0, (qn − tn)/pn[.

If i, j ∈ {1, . . . , rn} are such that�n,i∩�n, j �= ∅, then the processes (Xn,i
θ )θ∈�n,i∩�n, j

and (X
n, j
θ )θ∈�n,i∩�n, j

are indistinguishable, as they are both continuous,modifications

of each other and �n,i ∩ �n, j is separable (because totally bounded). Using this, it
is straightforward to construct a modification (X

n
θ )θ∈�n of (Xθ )θ∈�n which satisfies

(2) such that all its paths are Hölder-continuous of all orders β ∈ [0, (qn − tn)/pn[ on
each �n,i with

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�n,i

θ �=ϑ

dX
(
X
n
θ , X

n
ϑ

)pn

d�(θ, ϑ)β pn

⎤

⎥⎥
⎦ < ∞ (9)

for all β ∈ [0, (qn − tn)/pn[ and i ∈ {1, . . . , rn}.
Now we vary n ∈ N. Recall that �n ⊆ �n+1. Since (X

n
θ )θ∈�n and (X

n+1
θ )θ∈�n are

modifications of each other, both continuous and �n is separable, then (X
n
θ )θ∈�n and

(X
n+1
θ )θ∈�n are indistinguishable. Therefore, there exists �n ∈ F with P(�n) = 1

such that, for all ω ∈ �n and θ ∈ �n , it holds X
n
θ (ω) = X

n+1
θ (ω). We define

�∞ = ⋂
n∈N �n and the process (X̃θ )θ∈� by the formula

X̃θ (ω) =
{
X
n
θ (ω), ω ∈ �∞, θ ∈ �n \ �n−1, n ∈ N,

x̄, ω /∈ �∞,

where �0 := ∅ and x̄ ∈ X is arbitrary. This is a modification of (Xθ )θ∈� which
satisfies (2), and all its paths are Hölder-continuous of all orders β from the interval
[0, (qn − tn)/pn[ on each �n,i , n ∈ N, i ∈ {1, . . . , rn}. Recalling from Property (P)
that each �n is open in �, we get that each point θ ∈ � belongs to some open subset
�n,i of � (for some n ∈ N and i ∈ {1, . . . , rn}). In particular, all paths of (X̃θ )θ∈�

are locally Hölder-continuous of all orders β ∈ ⋂
n∈N[0, (qn − tn)/pn[, while the last

statement of Proposition 2.1 follows from (9). ��

123



1460 Journal of Theoretical Probability (2023) 36:1454–1486

3 Example: Subsets of RiemannianManifolds

In this section, we discuss applicability of Theorem 1.1 and Proposition 2.1 in the
setting when � is a subset of an m-dimensional connected Riemannian manifold M .
More precisely, we are going to understand restrictions (1) and Property (P) on � in
this setting. Essentially, the results are:

• Every relatively compact � ⊆ M satisfies (1) with t = m (Proposition 3.1);
• Every � ⊆ M satisfies Property (P) with tn = m, n ∈ N (Corollary 3.2).

For basic concepts and results from differential geometry, we refer to standard text-
books, e.g., [7], [8], [14] and [16].

Let (M, g) be any connected m-dimensional Riemannian manifold as defined in
[8]. This means that M denotes an m-dimensional C∞-manifold endowed with the
Riemannian metric g. By definition, g is a mapping which associates with each point
p ∈ M an inner product gp on the tangential space TpM at p such that for C∞-vector
fields V,W on an open subset G of M the mapping

G → R, p �→ gp(Vp,Wp)

is differentiable of class C∞. Furthermore, let for p, q denote by Cpq the set of all
C∞-curves in M joining p to q. The length L(c) of a curve c ∈ Cpq defined on the
closed interval Ic of R is

L(c) :=
∫

Ic

√
gc(t)

(
c′(t), c′(t)

)
dt,

where c′(t) stands for the velocity of c at t . Since M is connected, the sets Cpq are
always nonvoid (see [8, p. 146]), and the mapping

dg : M × M → R, (p, q) �→ inf
c∈Cpq

L(c)

is ametric onM (see [8, Proposition 7.2.5]) sometimes called the innermetric (induced
by g). Moreover, the topology induced by this metric coincides with the original
topology on M (see [8, Proposition 7.2.6]).

Proposition 3.1 (i) Let � be any relatively compact subset of M. Then there exist a
compact subset Km of Rm as well as r ∈ N and δ > 0 such that

N (�, dg, η) ≤ r N (Km, dm,2, η/δ) for all η > 0,

where dm,2 stands for the Euclidean metric on R
m. As a consequence, � satisfies

condition (1) with t = m w.r.t. the metric dg .
(ii) If dg is complete, then every dg-bounded subset� of M satisfies (1) with t = m

w.r.t. the metric dg .

Corollary 3.2 Every � ⊆ M satisfies Property (P) with tn = m, n ∈ N, w.r.t. the
metric dg.
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Proof Since M is a C∞-manifold, we can find an open covering {�n}n∈N of M con-
sisting of relatively compact subsets of M and satisfying �n ⊆ �n+1 for n ∈ N (see,
e.g., [7, (16.1.4)]). By Proposition 3.1, this sequence of subsets satisfies (6) w.r.t. dg
with tn = m for n ∈ N (and the constants Cn indeed depend on n). Hence, every
� ⊆ M satisfies Property (P) with tn = m, n ∈ N, w.r.t. dg , as we can choose4

�n := � ∩ �n , n ∈ N. ��
In the rest of this section, we prove Proposition 3.1. The proof is based on a couple

of auxiliary results.

Lemma 3.3 Let � be a nonvoid compact subset of M and assume � ⊆ G, where G
is an open subset of M allowing a chart u : G → R

m which satisfies that u(�) is
convex. Then, there is some δ > 0 such that

N (�, dg, η) ≤ N
(
u(�), dm,2, η/δ

)
for η > 0.

Proof Let {e1, . . . , em} stand for the standard basis on R
m . For any C∞-mapping

g : U → R on some open subset U of Rm , we shall use notation dxh to denote the
differential of h at x ∈ U .

Let us introduce for p ∈ G the set C∞
M (p) of all real-valuedC∞-mappings on some

open neighborhood of p. By definition, the tangential space TpM of M at p consists
of real-valued mappings on C∞

M (p). The chart u provides the following basis of TpM

∂

∂ui

∣∣
p : C∞

M (p) → R, ϕ �→ dp(ϕ ◦ u−1)(ei ) (i ∈ {1, . . . ,m})

(see [8, p.8]). Moreover,

( ∂

∂u1
, . . . ,

∂

∂um

)
: G →

⋃

p∈G
TpM, p �→

( ∂

∂u1

∣∣
p, . . . ,

∂

∂um

∣∣
p

)

defines some C∞-vector field (see [8, pp. 25f.]).
Next, let for x ∈ u(G) denote by dxu−1 the differential of u−1 at x which is a linear

mapping from R
m into Tu−1(x)M satisfying

dxu
−1(ei ) = ∂

∂ui

∣∣
u−1(x) for i = 1, . . . ,m.

Since gu−1(x) is an inner product on Tu−1(x)M , we may observe for any v =
(v1, . . . , vm) ∈ R

m

gu−1(x)

(
dxu

−1(v), dxu
−1(v)

) =
m∑

i, j=1

vi v j gu−1(x)

( ∂

∂ui

∣∣
u−1(x),

∂

∂u j

∣∣
u−1(x)

)
.

4 Notice that, although such sets �n are in general not open in M , they are always open in �, as required
in Property (P).
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Then, with Sm−1 denoting the Euclidean sphere in R
m , we may conclude from the

defining properties of the Riemannian metric g that the mapping

f : u(�) × Sm−1 → R, (x, v) �→
√
gu−1(x)

(
dxu−1(v), dxu−1(v)

)

is continuouswith strictly positive outcomes.Moreover, its domain is a compact subset
of Rm × R

m so that it attains its maximum δ which is a positive number.
Now, let p, q ∈ � with p �= q. Since u(�) is assumed to be convex, the mapping

c : [0, 1] → R
m, t �→ tu(q) + (1 − t)u(p)

is a C∞-curve in Rm satisfying c(t) ∈ u(�) for t ∈ [0, 1]. Then, c := u−1 ◦ c ∈ Cpq ,
and by chain rule

c′(t) = dc(t)u
−1(u(q) − u(p)

)
t ∈ [0, 1].

Since gu−1(c(t)) is an inner product on T
u−1

(
c(t)

)M and dc(t)u−1 is linear for every

t ∈ [0, 1], we obtain

√
gu−1(c(t))

(
c′(t), c′(t)

) = ‖u(p) − u(q)‖m,2 f
(
c(t), [u(q) − u(p)]/‖u(p) − u(q)‖m,2

)

≤ δ‖u(p) − u(q)‖m,2 for t ∈ [0, 1],

where ‖ · ‖m,2 stands for the Euclidean norm on Rm . Hence, by definition of the inner
metric dg we end up with

dg(p, q) ≤ L(c) ≤ δ‖u(p) − u(q)‖m,2.

Since δ does not depend on p, q, we now easily derive the claim of Lemma 3.3. ��
In the next step, using Lemma 3.3, we prove the result of Proposition 3.1 first for

compact subsets of M .

Lemma 3.4 Let� ⊆ M be nonvoid and compact. Then, there exists a nonvoid compact
subset Km of Rm as well as r ∈ N and δ > 0 such that

N (�, dg, η) ≤ r N
(
Km, dm,2, η/δ

)
for η > 0.

Proof For any p ∈ �, we may find a chart u p, defined on an open subset Gup of M ,
and some εp > 0 such that p ∈ Gup and

Bεp

(
u p(p)

) := {x ∈ R
m | dm,2

(
x, u p(p)

) ≤ εp} ⊆ u p(Gup ).

Setting Uεp

(
u p(p)

) := {x ∈ R
m | dm,2

(
x, u p(p)

)
< εp} and Gp :=

u−1
p

(
Uεp

(
u p(p)

))
, we observe that (Gp)p∈� is an open covering of � because
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Uεp

(
u p(p)

)
is an open subset of R

m . Hence, by compactness of � there exist
p1, . . . , pr ∈ M such that

� ⊆
r⋃

i=1

Gpi ⊆
r⋃

i=1

�i ,

where �i := u−1
pi

(
Bεpi

(
u pi (pi )

))
for i = 1, . . . , r . For any i ∈ {1, . . . , r} the set �i

meets the requirements of Lemma 3.3. Hence, we may find δ1, . . . , δr > 0 such that

N (�i , dg, η) ≤ N
(
Bpi

(
u pi (pi )

)
, dm,2, η/δi

)
for i ∈ {1, . . . , r}, η > 0.

The set

Km :=
r⋃

i=1

Bpi

(
u pi (pi )

)

is a compact subset of Rm . Then, setting δ := 4max{δ1, . . . , δr }, we end up with

N (�, dg, η) ≤
r∑

i=1

N (�i , dg, η/2) ≤
r∑

i=1

N
(
Km, dm,2, η/(4δi )

)

≤ r N
(
Km, dm,2, η/δ

)
for η > 0.

This completes the proof. ��
Finally, we are ready to prove Proposition 3.1.

Proof of Proposition 3.1 (i) Let � be a nonvoid relatively compact subset of M . The
topological closure � is compact, and N (�, dg, η) ≤ N (�, dg, η/2) holds for every
η > 0. Therefore, the first claim immediately follows from Lemma 3.4.
(ii) If dg is complete, then by the Hopf–Rinow theorem (see, e.g., [8, Theorem 7.2.8])
every dg-bounded subset of M is already relatively compact. Therefore, the second
claim follows from the first one. ��

4 Tightness for Sequences of Random Processes

Let (�, d�) be a compact metric space and (X , dX ) a complete metric space. We
denote by C(�,X ) the space of all continuous mappings from� intoX endowed with
uniform metric d∞ w.r.t. the metric dX and the induced Borel σ -algebra B(C(�,X )

)
.

Some of the results we are going to present simplify in the case when C(�,X )

is separable (hence Polish, as it is complete). For some discussions below we recall
that, as � is compact, C(�,X ) is separable if and only if X is separable (see [1,
Lemma 3.99]). We, however, stress at this point that we never assumeX (equivalently,
C(�,X )) to be separable.
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Let us fix any sequence (Xn)n∈N of Borel random elements Xn : � → C(�,X )

on some probability space (�,F ,P). We show how Corollary 1.2 leads to a sufficient
condition for uniform tightness in C(�,X ).

Proposition 4.1 Let� fulfill property (1)with constantsC, t > 0.Let�′ ⊆ �bedense
in �. Assume that

(
Xn(·, θ)

)
n∈N is a uniformly tight sequence of random elements in

(X ,B(X )), for all θ ∈ �′ and that there exist M, p > 0 and q > t such that

sup
n∈N

E
[
dX

(
Xn(·, θ), Xn(·, ϑ)

)p ] ≤ M d�(θ, ϑ)q for θ, ϑ ∈ �. (10)

Then, (Xn)n∈N is a uniformly tight sequence of Borel random elements in C(�,X ).

We recall that (1) need not be assumed if � is a compact subset of Rm endowed
with the Euclidean metric. In this case, it is enough only to require q > m in (10) (see
Remark 2).

Remark 4 Notice that (2) is satisfied for all processes Xn because they are assumed to
be Borel random elements in C(�,X ) in this section and the projection map

πθ,ϑ : C(�,X ) → X 2, f �→ ( f (θ), f (ϑ)),

is continuous for all (θ, ϑ) ∈ �2.

Remark 5 Observe that, if X is separable, then the statements
(A) Xn : � → C(�,X ) is a Borel random element, i.e., a random element in(C(�,X ),B(C(�,X ))

)
; and

(B) Xn = (Xn(·, θ))θ∈� is an X -valued process (i.e., for all θ ∈ �, Xn(·, θ) is
a random element in (X ,B(X ))) with continuous paths are equivalent (see [15,
Lemma 14.1]). Thus, whenever X is a Polish space, in Proposition 4.1 (and in what
follows) we essentially work with sequences of continuous X -valued processes. In
general, when (A) and (B) no longer coincide, the right choice is always (A), i.e.,
always to consider Borel random elements in C(�,X ), as the concept of tightness (in
C(�,X )) discussed in Proposition 4.1 requires the Borel σ -algebra (in C(�,X )).

Proof of Proposition 4.1 We take an arbitrary β ∈]0, (q − t)/p[. By compactness of
�, there exists some at most countable dense subset � of �. Corollary 1.2 together
with the continuity of the processes Xn yields, for all δ > 0 and n ∈ N,

E

⎡

⎢
⎣ sup

θ,ϑ∈�

d�(θ,ϑ)≤δ

dX
(
Xn(·, θ), Xn(·, ϑ)

)p

⎤

⎥
⎦ = E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

d�(θ,ϑ)≤δ

dX
(
Xn(·, θ), Xn(·, ϑ)

)p

⎤

⎥⎥
⎦

≤ L(�,C, t, M, p, q, β)δβ p.

Using the Markov inequality, we conclude that, for every ε > 0,

lim
δ→0+ lim sup

n→∞
P

(
sup

θ,ϑ∈�

d�(θ,ϑ)≤δ

dX
(
Xn(·, θ), Xn(·, ϑ)

) ≥ ε

)
= 0.
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Now the criterion for uniform tightness in C(�,X ) presented in Theorem A.1 applies
and completes the proof. ��

We observe that essentially the same condition achieves rather different aims in
Theorem 1.1 and in Proposition 4.1. In Theorem 1.1, condition (3) ensures existence
of a continuousmodification for the process X (whenX is complete, which is assumed
in Sect. 4), while in Proposition 4.1, condition (10) implies the uniform tightness in
C(�,X ) for the sequence (Xn). (Notice that (10) is nothing else but (3) required
for all Xn uniformly in n.) It is, therefore, tempting to try to shift continuity of the
processes into the conclusion of Proposition 4.1. And, indeed, this easily follows from
the discussions above, although at the cost of requiring X to be separable.

Corollary 4.2 Assume that X is separable. Let � fulfill property (1) with con-
stants C, t > 0. We consider a sequence (Xn)n∈N of X -valued processes Xn =
(Xn(·, θ))θ∈�. Let �′ ⊆ � be dense in �. Assume that (Xn(·, θ))n∈N is a uniformly
tight sequence of random elements in (X ,B(X )), for all θ ∈ �′, and that there exist
M, p > 0 and q > t such that

sup
n∈N

E
[
dX

(
Xn(·, θ), Xn(·, ϑ)

)p ] ≤ M d�(θ, ϑ)q for θ, ϑ ∈ �. (11)

Then, each process Xn admits a modification Xn = (Xn(·, θ))θ∈� that has continuous
paths θ �→ Xn(ω, θ) for all ω ∈ �, the processes Xn , n ∈ N, are Borel random
elements in C(�,X ), and the sequence (Xn)n∈N is uniformly tight in C(�,X ).

Proof Theorem 1.1 ensures the existence of the continuous modifications Xn , n ∈ N.
As X is separable, then, due to the equivalence between (A) and (B) in Remark 5,
each Xn is a Borel random element in C(�,X ). The uniform tightness of the sequence
(Xn)n∈N now follows from Proposition 4.1. ��
Remark 6 If in Corollary 4.2 we additionally require that each process Xn is sepa-
rable (the definition is recalled below), then we obtain that each process Xn is itself
continuous almost surely, so that we obtain the uniform tightness for the sequence
(Xn)n∈N itself.5 This immediately follows from Lemma 4.3. For when this remark
can be useful, we observe that, in some situations, we are given processes that are a
priori separable (e.g., càdlàg X -valued processes in the case � = [0, 1]).

It remains to justify the previous remark. Recall that an X -valued process
(Y (·, θ))θ∈� on some (�,F ,P) is called separable6 if there exist an at most countable
subset �0 ⊆ � dense in � and an event �0 ∈ F with P(�0) = 1 such that for every
open subset G of �, and any closed subset D of X the following equality holds true

{
ω∈�0 |Y (ω, θ)∈D for all θ ∈G∩�0

}={
ω∈�0 |Y (ω, θ)∈D for all θ ∈G}

(see [9]).

5 Formally, we need to identify each process Xn with almost all continuous paths with an indistinguishable
process with all continuous paths, in order to view Xn as a Borel random element in C(�,X ).
6 In the sense of Doob.
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Lemma 4.3 Let Y = (
Y (·, θ)

)
θ∈�

be a separable X -valued process that admits a
continuous modification. Then, Y = (

Y (·, θ)
)
θ∈�

is itself continuous almost surely,
and hence there is an indistinguishable from Y process Ỹ such that all its paths are
continuous.

It is worth noting that, contrary to the general setting in Sect. 4, for this lemma the
metric space X does not need to be complete.

Proof Let Ỹ = (
Ỹ (·, θ)

)
θ∈�

be a continuous modification of Y , i.e., for all θ ∈ � we
have P({Ỹ (·, θ) = Y (·, θ)}) = 1 and the paths θ �→ Ỹ (ω, θ) are continuous for all
ω ∈ �. As Y is separable, we can find an at most countable �0 ⊆ � dense in � and
�0 ∈ F with P(�0) = 1 as described prior to Lemma 4.3. Define

�1 =
⋂

θ∈�0

{Ỹ (·, θ) = Y (·, θ)} ∩ �0

and observe that P(�1) = 1. It suffices to show that Y (ω, θ) = Ỹ (ω, θ) holds for
ω ∈ �1 and θ ∈ �. So let us fix ω ∈ �1 and θ ∈ �.

For k ∈ N set Gk := {ϑ ∈ � | d�(θ, ϑ) < 1/k}, and let Dk denote the closure
of the set {Y (ω, ϑ) | ϑ ∈ Gk ∩ �0}. Now, separability of Y yields Y (ω, θ) ∈ Dk . In
particular, there is some sequence (ϑk

n )n∈N in Gk ∩�0 such that Y (ω, ϑk
n ) → Y (ω, θ),

as n → ∞. This implies Ỹ (ω, ϑk
n ) → Y (ω, θ), as n → ∞, due to definition of �1.

Moreover, we may select by compactness of � a subsequence (ϑk
i(n))n∈N of (ϑk

n )n∈N
which converges to some ϑ

k ∈ �. Then, by continuity of Ỹ ,

Y (ω, θ) = lim
n→∞ Ỹ (ω, θki(k)) = Ỹ (ω, ϑ

k
).

As d�(θ, ϑ
k
) ≤ 1/k, the sequence (ϑ

k
)k∈N converges to θ . Hence, drawing on the

continuity of Ỹ again, we end up with

Ỹ (ω, θ) = lim
k→∞ Ỹ (ω, ϑ

k
) = Y (ω, θ).

This completes the proof. ��

5 Central Limit Theorems for Banach-Valued Random Processes

Let (�, d�) be a compact metric space, and let (X , ‖ · ‖X ) be a Banach space. We
shall denote by C(�,X ) the space of all continuous mappings from � into X . It
will be endowed with sup-norm ‖ · ‖∞ w.r.t. ‖ · ‖X , and the induced Borel σ -algebra
B(C(�,X )

)
.

Consider any i.i.d. sequence (Xi )i∈N of Bochner-integrable Borel random elements
in C(�,X ) on some probability space (�,F ,P). We want to investigate weak con-
vergence of the sequence (Sn)n∈N consisting of Borel random elements in C(�,X )

123



Journal of Theoretical Probability (2023) 36:1454–1486 1467

defined by

Sn := 1√
n

n∑

i=1

(
Xi − E

B[Xi ]
)

for n ∈ N,

where EB[Xi ] denotes the Bochner-integral of Xi . We start with the following obser-
vation.

Proposition 5.1 Let ‖X1‖∞ be square integrable.
(i) The following statements are equivalent:

a) The sequence (Sn)n∈N is uniformly tight;
b) The sequence (Sn)n∈N convergesweakly to some centeredGaussian randomelement
in

(C(�,X ),B(C(�,X ))
)
.

(ii) If the equivalent statements in part (i) are satisfied, then the limiting law in b)
is tight.

We remark that, as every Borel probability measure in a Polish space is tight,
statement (ii) in Proposition 5.1 has a message only when C(�,X ) (equivalently, X )
is non-separable.

Proof As the Borel random element X1 is Bochner integrable, it is almost surely
separably valued. Then, we can find a closed separable linear subspace Ĉ of C(�,X )

such that P({X1 ∈ Ĉ}) = 1 (note that Ĉ is itself a Polish space and Ĉ ∈ B(C(�,X ))).
It follows that EB[X1] ∈ Ĉ . This yields P({X1 − E

B[X1] ∈ Ĉ}) = 1, hence P({Sn ∈
Ĉ}) = 1 for all n ∈ N. In view of the portmanteau lemma, this yields that every weak
limit point of the laws of Sn , n ∈ N, is concentrated on Ĉ (in particular, is tight), thus
establishing part (ii). Moreover, the implication b) ⇒ a) in part (i) now follows from
Prokhorov’s theorem, which applies due to the fact that all measures are concentrated
on a Polish space.

We turn to the implication a) ⇒ b) in part (i). By Prokhorov’s theorem, the uni-
formly tight sequence (Sn)n∈N is relatively weakly sequentially compact. It remains
to prove uniqueness of a limit point and its Gaussianity. To this end, let r ∈ N and
� j : C(�,X ) → R, j = 1, . . . , r , be continuous linear functionals. Classical mul-
tivariate central limit theorem applies to the sequence

(
(�1 ◦ Sn, . . . �r ◦ Sn)

)
n∈N

because

E

[
|� j ◦ X1|2

]
≤ ‖� j‖2 E

[
‖X1‖2∞

]
< ∞, j = 1, . . . , r

(‖� j‖ denotes the operator norm of � j ) and yields weak convergence to a centered
Gaussian law in R

r . This identifies every weak limit point of the laws of Sn , n ∈ N,
as a Gaussian measure and uniquely determines every weak limit point on the σ -
algebra E generated by continuous linear functionals C(�,X ) → R. Notice that
E ⊆ B(C(�,X )), and the inclusion can be strict (when C(�,X ) is non-separable).
However, restricted to Ĉ both σ -algebras coincide:

Ĉ ∩ E = Ĉ ∩ B(C(�,X ))
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(see [24, Theorem I.2.1]). Recalling that every weak limit point is concentrated on Ĉ
completes the proof. ��

For application of Proposition 5.1, we can utilize our criterion in Proposition 4.1
and obtain the following result.

Corollary 5.2 Let � satisfy condition (1) with constants C, t > 0, and let ‖X1‖∞ be
square integrable. Assume that there is a dense subset �′ ⊆ � such that

(
Sn(·, θ)

)
n∈N is a uniformly tight sequence of random elements in X , for all θ ∈ �′, (12)

and that there exist M, p > 0 as well as q > t with

sup
n∈N

E
[‖Sn(·, θ) − Sn(·, ϑ)‖p

X
] ≤ M d�(θ, ϑ)q for θ, ϑ ∈ �. (13)

Then, the sequence (Sn)n∈N converges weakly to a tight centered Gaussian random
element in

(C(�,X ),B(C(�,X )
))
.

We want to discuss the requirements of Corollary 5.2 for special choices of the
Banach space X . Let us start with type 2-Banach spaces. To recall, the Banach space
X is called a type 2 - Banach space if there is a constant C > 0 such that, for all
n ∈ N and X -valued independent centered Borel random elements W1, . . . ,Wn such
that ‖Wi‖X are square integrable, we have the following inequality

E

⎡

⎣

∥∥∥∥
∥

n∑

i=1

Wi

∥∥∥∥
∥

2

X

⎤

⎦ ≤ C
n∑

i=1

E

[
‖Wi‖2X

]

(see, e.g., [11, Theorem 2.1]). Prominent examples of type 2 - Banach space are the
following:

• X is a finite-dimensional vector space,
• X is an L p-space on some σ -finite measure space (X,A, ν) with L p-norm ‖ · ‖p

for p ∈ [2,∞[ (see [18, Section 9.2]).

If X is a type 2-Banach space, then conditions (12) and (13) can be simplified in the
following way.

Proposition 5.3 Let X be a type 2-Banach space, let � satisfy condition (1) with
constants C, t > 0, and let ‖X1‖∞ be square integrable. Then, it holds:

(1) The sequence (Sn)n∈N always satisfies condition (12), even with �′ = �.
(2) The sequence (Sn)n∈N satisfies condition (13) with p = 2 whenever there exist

M > 0 and q > t such that

E

[
‖X1(·, θ) − X1(·, ϑ)‖2X

]
≤ M d�(θ, ϑ)q for θ, ϑ ∈ �. (14)
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In particular, under (14), the sequence (Sn)n∈N converges weakly to a tight centered
Gaussian random element in

(C(�,X ),B(C(�,X )
))
.

It is worth noting that, even in the separable case, we cannot get this result from the
general central limit theorem in type 2 - Banach spaces (see, e.g., [18, Theorem 10.5])
because, in Proposition 5.3, it is only the space X and not C(�,X ) that has type 2.

Proof Consider for θ ∈ � the continuous linear operator πθ : C(�,X ) → X defined
by πθ ( f ) := f (θ). Then by Bochner-integrability of the Borel random element X1
in C(�,X ), we may conclude that the Borel random element X1(·, θ) = πθ ◦ X1
of X is Bochner-integrable with Bochner-integral EB

[
X1(·, θ)

] = πθ

(
E
B
[
X1

])
.

In particular, it is almost surely separably valued. Hence, the Borel random ele-
ment X1(·, θ) − E

B
[
X1(·, θ)

]
is almost surely separably valued too. This means that

X1(·, θ) − E
B
[
X1(·, θ)

]
is concentrated on some separable closed subset of X . Due

to completeness of ‖ · ‖∞, this implies that X1(·, θ) −E
B
[
X1(·, θ)

]
is a Radon Borel

random element of X (see [24, p. 29, Corollary]). Now, statement 1) follows from the
general central limit theorem in type 2-Banach spaces (see [11, Theorem 3.6] or [18,
Theorem 10.5]) along with the version of Prokhorov’s theorem for Radon measures
(see, e.g., [24, Theorem I.3.6]).

Concerning statement 2), by the above definition of type 2-Banach spaces, we can
find some constant C > 0 such that

sup
n∈N

E

[
‖Sn(·, θ) − Sn(·, ϑ)‖2X

]
≤ C E

[∥∥X1(·, θ) − X1(·, ϑ) − E
B[X1(·, θ) − X1(·, ϑ)

]∥∥2
X
]
.

We now observe that

E

[∥
∥X1(·, θ) − X1(·, ϑ) − E

B[X1(·, θ) − X1(·, ϑ)
]∥∥2X

]

≤ 2E
[∥∥X1(·, θ) − X1(·, ϑ)

∥∥2X
]

+ 2
∥∥∥EB[X1(·, θ) − X1(·, ϑ)

]∥∥∥
2

X
≤ 4E

[∥
∥X1(·, θ) − X1(·, ϑ)

∥
∥2X

]
,

where in the last step we use Jensen’s inequality. This completes the proof. ��
Let us turn to cotype 2-Banach spaces. The Banach space X is called a cotype 2-

Banach space if there is a constant C > 0 such that, for all n ∈ N and X -valued
independent centered Borel random elementsW1, . . . ,Wn such that ‖Wi‖X are square
integrable, we have the following inequality

E

⎡

⎣

∥∥∥∥∥

n∑

i=1

Wi

∥∥∥∥∥

2

X

⎤

⎦ ≥ C
n∑

i=1

E

[
‖Wi‖2X

]

(see, e.g., [5]). For a further preparation, let us also recall that a centered tight Borel
random elementW inX is called pre-gaussian if there is some centered tight Gaussian
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random element G in X such that

E [L1(W ) L2(W )] = E [L1(G) L2(G)]

holds for every pair L1, L2 of continuous linear forms on X .
If X is cotype 2-Banach space, we can obtain the following criterion for prop-

erty (12).

Proposition 5.4 Let X be a cotype 2-Banach space, let � satisfy condition (1) with
constants C, t > 0, and let ‖X1‖∞ be square integrable. Assume that there is a dense
subset �′ ⊆ � such that

X1(·, θ) − E
B[X1(·, θ)] is pre-gaussian for all θ ∈ �′.

Then, the sequence (Sn)n∈N satisfies property (12) (with this �′).

Proof First note that X1(·, θ) is a tight Borel random element in X for every θ ∈ �

(cf. the proof of Proposition 5.3). Now the claim of Proposition 5.4 follows from the
general central limit theorem in cotype 2-Banach spaces (see [5, Theorem 4.1] or [18,
Theorem 10.7]) along with the version of Prokhorov’s theorem for Radon measures
(see, e.g., [24, Theorem I.3.6]). ��
Remark 7 As a prominent example let X be an L p-space on some σ -finite measure
space (X,A, ν) with L p-norm ‖ · ‖p for p ∈ [1, 2]. Then, it is a cotype 2-Banach
space (see [3, p. 188]). Moreover, for any θ ∈ �, the tight Borel random element
X1(·, θ) − E

B[X1(·, θ)] is pre-gaussian if and only if L ◦ (
X1(·, θ) − E

B[X1(·, θ)])
is square integrable for every continuous linear form L on X , and

∫

X

(
E

[(
X1(·, θ)|x − E

B[X1(·, θ)]|x
)2])p/2

ν(dx) < ∞

(see [13, Theorem 11]).

6 Proofs

Let us retake general assumptions and notations from Sect. 1. One key of our proofs
is the following auxiliary technical result which extends Lemma B.2.7 in [23]. For a
finite set B, we shall use notation card(B) to denote its cardinality.

Lemma 6.1 Let � be some nonvoid finite subset of �, and let A ≥ 1 as well as r ∈ N

such that Ar ≥ card(�). Then, for c > 0 there exists some U ⊆ � × � satisfying

card(U ) ≤ A · card(�). (15)

(θ, ϑ) ∈ U ⇒ d�(θ, ϑ) ≤ c r . (16)

sup
θ,ϑ∈�

d�(θ,ϑ)≤c

dX (Xθ , Xϑ) ≤ 2 sup
(θ,ϑ)∈U

dX (Xθ , Xϑ). (17)
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Proof According to the proof of LemmaB.2.7 in [23], wemay find a sequence (Vl)l∈N
of subsets of �, a sequence (θl)l∈N in � as well as a sequence (rl)∈N in {1, . . . , r}
such that the following properties are satisfied

• V1 = � and ∃ l0 ∈ N ∀ l ∈ N, l ≥ l0 : Vl = ∅.
• θl ∈ Vl if Vl �= ∅.
• card

({θ ∈ Vl | d�(θ, θl) ≤ rlc}
) ≤ Arl if Vl �= ∅.

• Vl+1 = Vl \ {θ ∈ Vl | d�(θ, θl) ≤ (rl − 1)c} = {θ ∈ Vl | d�(θ, θl) > (rl − 1)c}
if Vl �= ∅.

•
∞∑
l=1
Vl �=∅

Arl ≤ A · card(�).

We shall show that the set

U :=
∞⋃

l=1
Vl �=∅

{(θl , θ) | θ ∈ Vl , d�(θl , θ) ≤ crl}

is as required.
First of all

card(U ) ≤
∞∑

l=1
Vl �=∅

card ({(θl , θ) | θ ∈ Vl , d�(θl , θ) ≤ crl})

=
∞∑

l=1
Vl �=∅

card ({θ ∈ Vl | d�(θl , θ) ≤ crl}) ≤
∞∑

l=1
Vl �=∅

Arl ≤ A · card(�)

so that U fulfills (15).
Secondly, let (θ, ϑ) ∈ U . Then θ = θl and ϑ ∈ Vl with d�(θl , ϑ) ≤ crl for some

l ∈ N with Vl �= ∅. This means d�(θ, ϑ) ≤ cr because rl ≤ r . Thus, (16) holds for
U . So it remains to show that (17) is valid for U .

Let θ, ϑ ∈ � with d�(θ, ϑ) ≤ c. By construction, θ, ϑ ∈ V1, whereas neither θ

nor ϑ belongs to Vl for l ≥ l0. So we may choose l∗ := max{l ∈ N | θ, ϑ ∈ Vl}.
Then, θ /∈ Vl∗+1 or ϑ /∈ Vl∗+1, without loss of generality ϑ /∈ Vl∗+1. This means
d�(θl∗ , ϑ) ≤ (rl∗ − 1)c so that also

d�(θl∗ , θ) ≤ d�(θl∗ , ϑ) + d�(ϑ, θ) ≤ rl∗c.

Hence, (θl∗ , θ), (θl∗ , ϑ) ∈ U , and thus,

dX (Xθ , Xϑ) ≤ dX (Xθ , Xθl∗ ) + dX (Xθl∗ , Xϑ) ≤ 2 sup
(θ,ϑ)∈U

dX (Xθ , Xϑ).

This shows (17) and completes the proof. ��
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6.1 Proof of Lemma 1.3

In the first step, we want to point out the central chaining argument that we shall use
for the proof of Lemma 1.3.

Lemma 6.2 Let � ⊆ � be finite with at least two elements. Let n0 be the largest
element in Z such that �(�) ≤ 2−n0 , and let

n1 := min

⎧
⎪⎨

⎪⎩
n ∈ Z | 2−n < inf

θ,ϑ∈�

θ �=ϑ

d�(θ, ϑ)

⎫
⎪⎬

⎪⎭
.

Then, n0 < n1, and the following statements are valid.

(1) There exists a family {�n | n = n0, . . . , n1} of subsets of � satisfying

card(�n) = N (�, d�, 2−n) for n ∈ {n0, . . . , n1}, (18)

inf
ϑ∈�n

d�(θ, ϑ) ≤ 2−n for n ∈ {n0, . . . , n1} and θ ∈ �. (19)

(2) The family {�n | n = n0, . . . , n1} from statement 1) may be associated with a
family {ϕn | n = n0, . . . , n1} of mappings ϕn : � → �n which fulfill the following
properties:

ϕn1 : � → �, θ �→ θ, (20)

ϕn0 ≡ θ0 for some ϑ0 ∈ �. (21)

d�

(
ϕn+1(θ), ϕn(θ)

) ≤ 2−n for n ∈ {n0, . . . , n1 − 1} and θ ∈ �, (22)

card
({(

ϕn+1(θ), ϕn(θ)
) |θ ∈�

})≤N (�, d�, 2−(n+1)) if n ∈ {n0, . . . , n1−1},
(23)

d�

(
ϕn(θ), ϕn(ϑ)

) ≤ 2−n+2 + d�(θ, ϑ) for n ∈ {n0, . . . , n1} and θ, ϑ ∈ �.

(24)

(3) The chaining inequality

dX (Xθ , Xϕn(θ)) ≤
n1−1∑

k=n

dX (Xϕk+1(θ), Xϕk (θ)) for θ ∈ � (25)

is satisfied if n ∈ {n0, . . . , n1 − 1}.
(4) Under assumptions (1) and (3) from Theorem 1.1 with C > 0, q > t > 0, the

inequality

E

[

sup
θ∈�

dX (Xθ , Xϕn(θ))
p

]

≤ M

(
n1−1∑

k=n

N (�, d�, 2−(k+1))1/p

2kq/p

)p

(26)

123



Journal of Theoretical Probability (2023) 36:1454–1486 1473

holds for every n ∈ {n0, . . . , n1 − 1}. Furthermore,

E

[

sup
θ∈�

dX (Xθ , Xϕn (θ))
p

]

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M C 22t
2(−n+1)(q−t)

(
2(q−t)/p − 1

)p , n1 ≤ 0

M C 22t
(2(−n+1)(q−t)/p + 2(q−t)/p

2(q−t)/p − 1

)p
, n < 0 < n1

M C 2q+t 2−n(q−t)
(
2(q−t)/p − 1

)p , n ≥ 0

(27)

for n ∈ {n0, . . . , n1 − 1}.
Proof Statement (1) follows immediately from the definition of covering numbers.
Furthermore, by construction we have

n0 < n1 and N (�, d�, 2−n0) = 1, N (�, d�, 2−n1) = card(�). (28)

Then, the proof of statement 2) canbe found in [23, pp. 608f.]. In viewof (20), statement
3) may be verified easily by backward induction along with triangle inequality. So it
remains to show statement 4). Let n ∈ {n0, . . . , n1 − 1}. By chaining inequality (25),
we have

sup
θ∈�

dX (Xθ , Xϕn(θ))
p ≤ sup

θ∈�

( n1−1∑

k=n

dX (Xϕk+1(θ), Xϕk (θ))
)p

≤
( n1−1∑

k=n

sup
θ∈�

dX (Xϕk+1(θ), Xϕk (θ))
)p

This implies by Minkowski’s inequality

(

E

[

sup
θ∈�

dX (Xθ , Xϕn(θ))
p

])1/p

≤
n1−1∑

k=n

(

E

[

sup
θ∈�

dX (Xϕk+1(θ), Xϕk (θ))
p

])1/p

.

(29)

Next, set for abbreviation

Ik := {(
ϕk+1(θ), ϕk(θ)

) | θ ∈ �
} (

k ∈ {n0, . . . , n1 − 1}).

Then, we obtain in view of (3) along with (22) and (23)

E

[

sup
(α,α̃)∈Ik

dX (Xα, X α̃)p

]

≤
∑

(α,α̃)∈Ik
E
[
dX (Xα, X α̃)p

]

(22),(3)≤ M card(Ik)

2kq
(23)≤ M N (�, d�, 2−(k+1))

2kq
.

123



1474 Journal of Theoretical Probability (2023) 36:1454–1486

By (29), we end up with

E

[

sup
θ∈�

dX (Xθ , Xϕn(θ))
p

]
(29)≤

⎛

⎝
n1−1∑

k=n

(

E

[

sup
(α,α̃)∈Ik

dX (Xα, X α̃)p

])1/p
⎞

⎠

p

≤ M

(
n1−1∑

k=n

N (�, d�, 2−(k+1))1/p

2kq/p

)p

.

This shows (26) of statement 4). For the remaining part of the proof, we additionally
assume that property (1) is satisfied with constants C > 0, t ∈]0, q[. Then, we have

N (�, d�, 2−(k+1)) ≤ N (�, d�, 2−(k+2)) ≤ C 2t(k+2) for k ∈ {n0, . . . , n1 − 1}.

Note that 2−(k+1) < �(�) ≤ �(�) holds for every k ∈ {n0, . . . , n1 − 1} due to
choice of n0. Now, (27) can be derived easily by routine calculations using geometric
summation formulas. This concludes the proof. ��

Proof of Lemma 1.3 If δ < inf{d�(θ, ϑ) | θ, ϑ ∈ �, θ �= ϑ}, then

{
(θ, ϑ) ∈ � × � | d�(θ, ϑ) ≤ δ

} = {
(θ, θ) | θ ∈ �

}
.

In this case, the statement of Lemma 1.3 is trivial. From now on, let us assume δ ≥
inf{d�(θ, ϑ) | θ, ϑ ∈ �, θ �= ϑ}. In addition, let n0 be the largest element in Z such
that �(�) ≤ 2−n0 , and let

n1 := min

⎧
⎪⎨

⎪⎩
n ∈ Z | 2−n < inf

θ,ϑ∈�

θ �=ϑ

d�(θ, ϑ)

⎫
⎪⎬

⎪⎭
.

We may find a family {�n | n = n0, . . . , n1} of subsets of � and a family
{ϕn | n = n0, . . . , n1} of mappings ϕn : � → �n as in Lemma 6.2.

If N (�, d�, δ/2) = 1, then �(�) ≤ δ so that

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ)p

⎤

⎥⎥
⎦ = E

[

sup
θ,ϑ∈�

dX (Xθ , Xϑ)p

]

,
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and in view of (21) along with (27)

E

[

sup
θ,ϑ∈�

dX (Xθ , Xϑ )p

]

≤ 2p E

[

sup
θ∈�

dX (Xθ , Xϕn0 (θ))
p

]

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M C 22t+p 2(−n0+1)(q−t)

(
2(q−t)/p − 1

)p , n1 ≤ 0

M C 22t+p
(2(−n0+1)(q−t)/p + 2(q−t)/p

2(q−t)/p − 1

)p
, n0 < 0 < n1

M C 2q+p+t 2−n0(q−t)

(
2(q−t)/p − 1

)p , n0 ≥ 0

.

Moreover, by choice of n0 we have 2−n0+1 < 4�(�) ≤ 4δ so that routine calculations
yield

E

[

sup
θ,ϑ∈�

dX (Xθ , Xϑ)p

]

≤ 22q+2p M C
(
2(q−t)/p − 1

)p δq−t .

This shows Lemma 1.3 in case of N (�, d�, δ/2) = 1. Next, let us assume that
N (�, d�, δ/2) ≥ 2 is valid, and let us choose

n2 := max{n ∈ Z | δ ≤ 2−n+2}, n3 := n1 ∧ n2 and r := min{r ∈ N | 2r ≥ N (�, d�, δ/4)}.

We have 2−n2+1 < δ < 2�(�) ≤ 2−n0+1 so that n2 > n0. By choice of n2, we
obtain

sup
θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ) ≤ sup
θ,ϑ∈�

d�(θ,ϑ)≤2−n2+2

dX (Xθ , Xϑ).

Moreover, for θ, ϑ ∈ � with d�(θ, ϑ) ≤ 2−n2+2 we may further observe

dX (Xθ , Xϑ) ≤ dX (Xθ , Xϕn3 (θ)) + dX (Xϕn3 (θ), Xϕn3 (ϑ)) + dX (Xϑ , Xϕn3 (ϑ))

≤ dX (Xϕn3 (θ), Xϕn3 (ϑ)) + 2 sup
θ∈�

dX (Xθ , Xϕn3 (θ)).

Then, invoking (24), we obtain

d�

(
ϕn3(θ), ϕn3(ϑ)

) ≤ 2−n3+2 + d�(θ, ϑ) ≤ 2−n3+2 + 2−n2+2 ≤ 2−n3+3.

Hence,

sup
θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ) ≤ sup
θ,ϑ∈�n3

d�(θ,ϑ)≤2−n3+3

dX (Xθ , Xϑ) + 2 sup
θ∈�

dX (Xθ , Xϕn3 (θ)).

(30)
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Furthermore, by (18) we may observe

2r ≥ N (�, d�, δ/4) ≥ N (�, d�, 2−n2) ≥ N (�, d�, 2−n3) = card(�n3).

Therefore, we may apply Lemma 6.1 to �n3 and r , choosing c := 2−n3+3 and A = 2.
Hence, we may find some U ⊆ �n3 × �n3 satisfying conditions (15), (16) and (17).
Combination of (30) with (17) yields

sup
θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ) ≤ 2 sup
(θ,ϑ)∈U

dX (Xθ , Xϑ) + 2 sup
θ∈�

dX (Xθ , Xϕn3 (θ))

so that

sup
θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ)p ≤ 4p
(

sup
(θ,ϑ)∈U

dX (Xθ , Xϑ)p + sup
θ∈�

dX (Xθ , Xϕn3 (θ))
p

)

.

Hence,

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

d�(θ,ϑ)≤δ

dX (Xθ , Xϑ)p

⎤

⎥⎥
⎦

≤ 4p E

[

sup
(θ,ϑ)∈U

dX (Xθ , Xϑ)p

]

+ 4p E

[

sup
θ∈�

dX (Xθ , Xϕn3 (θ))
p

]

. (31)

If n3 = n1, then ϕn3(θ) = θ for θ ∈ � due to (20). Hence,

4p E

[

sup
θ∈�

dX (Xθ , Xϕn3 (θ))
p

]

= 0 if n3 = n1. (32)

So let us assume for a moment n3 < n1. Then invoking property (1) and assumption
(3), we may conclude from Lemma 6.2, (27)

E

[
sup
θ∈�

dX (Xθ , Xϕn3 (θ))
p
]

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M C 22t
2(−n3+1)(q−t)

(
2(q−t)/p − 1

)p , n1 ≤ 0

M C 22t
(2(−n3+1)(q−t)/p + 2(q−t)/p

2(q−t)/p − 1

)p
, n3 < 0 < n1

M C 2q+t 2−n3(q−t)

(
2(q−t)/p − 1

)p , n3 ≥ 0

. (33)
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We also have n3 = n2 so that the inequality 2−n3+1 ≤ δ is valid. Hence, in view of
(33) by easy calculations, we end up with

4p E

[

sup
θ∈�

dX (Xθ , Xϕn3 (θ))

]

≤ 22t+3p M C
(
2(q−t)/p − 1

)p δq−t if n3 < n1. (34)

Furthermore, applying sequentially (3), (16), (15) and (18) we may observe

E

[

sup
(θ,ϑ)∈U

dX (Xθ , Xϑ)p

]

≤
∑

(θ,ϑ)∈U
E
[
dX (Xθ , Xϑ)p

]

(3)≤ M
∑

(θ,ϑ)∈U
d�

(
θ, ϑ

)q

(16)≤ M card(U ) 2q (−n3+3) rq

(15)≤ 2M card
(
�n3

)
2q (−n3+3) rq

(18)≤ 2M N (�, d�, 2−n3) 2q (−n3+3) rq

≤ 2M N (�, d�, 2−n2) 2q (−n3+3) rq

By choice of n1 and δ, we have 2−n3+3 = 2−n1+3 < 16δ if n3 < n2. Otherwise,
we obtain 2−n3+3 = 2−n2+14 < 4δ due to definition of n2. In addition, 2−n2 ≥ δ/4.
Hence,

E

[

sup
(θ,ϑ)∈U

dX (Xθ , Xϑ)p

]

≤ 2M N (�, d�, δ/4) δq (16r)q

The choice of r implies 2r−1 < N (�, d�, δ/4) so that

r ≤ 2 ln
(
N (�, d�, δ/4)

)

ln(2)
.

Therefore,

4p E

[

sup
(θ,ϑ)∈U

dX (Xθ , Xϑ )p

]

≤ 4p+3q+1 M N (�, d�, δ/4)
[
ln

(
N (�, d�, δ/4)

)]q
δq . (35)

Putting (31), (32), (34) and (35) together, we now easily derive the statement of
Lemma 1.3 if N (�, d�, δ/2) ≥ 2. The proof is complete. ��
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6.2 Proof of Theorem 1.1

Let (1) be satisfied with constants C, t > 0, and let (Xθ )θ∈� fulfill inequality (3) with
constants M > 0, q > t . Moreover, let us fix β ∈]0, (q − t)/p[. First, we want to
show inequality (4) for finite subsets of �.

Proposition 6.3 There exists a finite constant L(�,C, t, M, p, q, β) that depends on
�(�), C, t , M, p, q, and β only such that, for any finite subset � ⊆ � with at least
two elements, it holds

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p

⎤

⎥⎥
⎦ ≤ L(�,C, t, M, p, q, β).

Moreover, L(�,C, t, M, p, q, β) can be chosen to depend linearly on M:
L(�,C, t, M, p, q, β) = ML(�,C, t, p, q, β).

Proof Let � be any finite subset of � with at least two elements. Set
ηk := 2−k

(
�(�) + 1

)
for k ∈ N, and let the set J be defined to consist of all

k ∈ N with ηk < d�(θ, ϑ) ≤ 2ηk for some θ, ϑ ∈ �. Note J �= ∅. Then,

E

⎡

⎢
⎢
⎣ sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ )p

d�(θ, ϑ)β p

⎤

⎥
⎥
⎦ ≤

∑

k∈J

E

[
sup

{
dX (Xθ , Xϑ )p

d�(θ, ϑ)β p

∣∣∣ θ, ϑ ∈ �, ηk < d�(θ, ϑ) ≤ 2ηk

}]

≤
∑

k∈J

η
−β p
k E

[
sup

{
dX (Xθ , Xϑ )p

∣∣∣ θ, ϑ ∈ �, d�(θ, ϑ) ≤ 2ηk
}]

≤
∑

k∈J

2kβ p
E

[
sup

{
dX (Xθ , Xϑ )p

∣
∣∣ θ, ϑ ∈ �, d�(θ, ϑ) ≤ 2ηk

}]
(36)

For k ∈ J , the application of Lemma 1.3 yields

E

[
sup

{
dX (Xθ , Xϑ)p

∣∣
∣ θ, ϑ ∈ �, d�(θ, ϑ) ≤ 2ηk

}]

≤ 42p+4q+2 M

(

Vk(�,�) (2ηk)
q + C (2ηk)q−t

(
2(q−t)/p − 1

)p

)

≤ 42p+4q+2 M
(
�(�) + 1

)q
(

Vk(�,�) 2(−k+1)q + C 2(−k+1)(q−t)

(
2(q−t)/p − 1

)p

)

, (37)

where

Vk(�,�) := N
(
�, d�, ηk+1

) [
ln

(
N
(
�, d�, ηk+1

))]q
.
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Moreover, the set {k ∈ N | ηk+1 ≤ �(�)} is nonvoid so that we may select its
minimum say k0. In view of (1), this means

N
(
�, d�, ηk+1

) ≤ C

(
2k+1

�(�) + 1

)t

≤ C 2(k+1)t for k ∈ N, k ≥ k0.

Hence, for k ∈ J with k ≥ k0 we may give a further upper estimate of inequality (37)
by

E

[
sup

{
dX (Xθ , Xϑ )p

∣∣∣ θ, ϑ ∈ �, d�(θ, ϑ) ≤ 2ηk
}]

≤ 42p+4q+2 2(−k+1)(q−t) M C
(
�(�) + 1

)q
(

4t
[
ln

(
C · 2(k+1)t )]q + 1

(
2(q−t)/p − 1

)p

)

.

Then,

2kβ p
E

[
sup

{
dX (Xθ , Xϑ )p

∣∣
∣ θ, ϑ ∈ �, d�(θ, ϑ) ≤ 2ηk

}]

≤ 42p+5q+2 M C
(
�(�) + 1

)q
(
2(q−t)/p − 1

)p 2(β p−(q−t))k
(
4t
[
ln

(
C · 2(k+1)t )]q · (2(q−t)/p − 1

)p + 1
)

(38)

holds for k ∈ J with k ≥ k0. Next, setting

ak := 42p+5q+2 M C
(
�(�) + 1

)q
(
2(q−t)/p − 1

)p 2(β p−(q−t))k
(
4t
[
ln

(
C · 2(k+1)t )]q · (2(q−t)/p − 1

)p + 1
)

we may observe

lim
k→∞

|ak+1|
|ak | = 2β p−(q−t) lim

k→∞
4t
[
ln

(
C · 2(k+2)t )]q · (2(q−t)/p − 1

)p + 1

4t
[
ln

(
C · 2(k+1)t

)]q · (2(q−t)/p − 1
)p + 1

= 2β p−(q−t) < 1.

Therefore,

L1(�,C, t, M, p, q, β)

:= 42p+5q+2 M C
(
�(�) + 1

)q
(
2(q−t)/p − 1

)p

∞∑

k=k0

2(β p−(q−t))k
(
4t
[
ln

(
C · 2(k+1)t )]q · (2(q−t)/p − 1

)p + 1
)

< ∞. (39)

Moreover, by choice of k0 we have

N
(
�, d�, ηk+1

) = 1 if k ∈ N, k < k0
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which implies that Vk(�,�) = 0 is valid for k ∈ J with k < k0. Then with
∑

∅
:= 0,

the application of (37) yields

k0−1∑

k=1
k∈J

2kβ p
E

[
sup

{
dX (Xθ , Xϑ)p

∣∣∣ θ, ϑ ∈ �, d�(θ, ϑ) ≤ 2−k+1(�(�) + 1
)}]

≤ 42p+4q+2 M
(
�(�) + 1

)q
(
2(q−t)/p − 1

)p

k0−1∑

k=1

C 2(−k+1)(q−t) 2kβ p

≤ 42p+5q+2 M
(
�(�) + 1

)q
(
2(q−t)/p − 1

)p C
∞∑

k=1

2(β p−(q−t))k . (40)

Since β p < q − t , we obtain that

L2(�,C, t, M, p, q, β) := 42p+5q+2 M
(
�(�) + 1

)q
(
2(q−t)/p − 1

)p C
∞∑

k=1

2(β p−(q−t))k < ∞.

(41)

Combining (36), (38) and (40) with (39) and (41), we end up with

E

⎡

⎢⎢
⎣ sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p

⎤

⎥⎥
⎦≤

2∑

j=1

L j (�,C, t, M, p, q, β)=:L(�,C, t, M, p, q, β).

This yields the first claim of Proposition 6.3. The second claim is a direct consequence
of the expressions in (39) and (41). ��
Proof of Theorem 1.1 We first fix any β ∈]0, (q − t)/p[. Let the constant
L(�,C, t, M, p, q, β) be chosen according to Proposition 6.3, and let us consider
any at most countable subset � of � which consists of at least two elements θ, ϑ . We
may select some sequence (�k)k∈� of nonvoid finite subsets of � with at least two
elements satisfying

θ, ϑ ∈ �k ⊆ �k+1 for k ∈ N and
∞⋃

k=1

�k = �.

Then,

sup
θ,ϑ∈�k

θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p
↗ sup

k∈N
sup

θ,ϑ∈�k
θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p
= sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p

and thus by monotone convergence theorem along with Proposition 6.3
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E

⎡

⎢
⎢
⎣ sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ )p

d�(θ, ϑ)β p

⎤

⎥
⎥
⎦ = lim

k→∞E

⎡

⎢
⎢
⎣ sup

θ,ϑ∈�k
θ �=ϑ

dX (Xθ , Xϑ )p

d�(θ, ϑ)β p

⎤

⎥
⎥
⎦ ≤ L(�,C, t, M, p, q, β). (42)

This shows (4) due to the second statement of Proposition 6.3.
For the remaining part of the proof let us assume that dX is complete, and let � be

some at most countable subset of�which is dense w.r.t. d�. As a further consequence
of (42), we have P(A) = 1, where

A :=

⎧
⎪⎪⎨

⎪⎪⎩
sup

θ,ϑ∈�

θ �=ϑ

dX (Xθ , Xϑ)p

d�(θ, ϑ)β p
< ∞

⎫
⎪⎪⎬

⎪⎪⎭
.

This implies that on A the random process (Xθ )θ∈� has Hölder-continuous paths of
order β. By completeness of dX , we may define a new random process (X θ )θ∈� via

X θ (ω) :=

⎧
⎪⎨

⎪⎩

lim
ϑ→θ

ϑ∈�

Xϑ(ω), ω ∈ A,

x̄, ω /∈ A,

where x̄ ∈ X is arbitrary. Clearly, this process has Hölder-continuous paths of order β.
Furthermore, it can be shown by standard arguments that this random process satis-
fies (2). We now show that it is a modification of (Xθ )θ∈�. For this purpose, let us fix
any θ ∈ �, and let (ϑk)k∈N be a sequence from � which converges to θ w.r.t. d�. By
construction of (X θ )θ∈�, we may invoke inequality (3) to conclude

E
[
dX (Xθ , Xϑk )

p] ≤ E
[
1A · dX (Xθ , Xϑk )

p] ≤ M d�(θ, ϑk)
q → 0 for k → ∞.

In particular, on the one hand the sequence
(
dX (Xθ , Xϑk )

)
k∈N converges in probability

to 0. On the other hand by definition of (X θ )θ∈�, the sequence
(
dX (X θ , Xϑk )

)
k∈N

converges in probability to 0. Then, if l ∈ N

0 ≤ lim sup
k→∞

P
({
dX (Xθ , X θ ) > l

})

≤ lim sup
k→∞

P
({
dX (Xθ , Xϑk ) + dX (Xϑk , X θ ) > l

})

≤ lim sup
k→∞

[
P
({
dX (Xθ , Xϑk ) > l/2

}) + P
({
dX (Xϑk , X θ ) > l/2

})] = 0,

and thus,

P
({
dX (Xθ , X θ ) > 0

}) = lim
l→∞P

({
dX (Xθ , X θ ) > l

}) = 0.
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Hence, P
({
Xθ �= X θ

}) = 0, i.e., (X θ )θ∈� is a modification of (Xθ )θ∈�.
Finally, consider an increasing sequence (βn)n∈N ⊂ ]0, (q − t)/p[ such that βn →

(q − t)/p, as n → ∞. The argument above shows that, for any n ∈ N, the process
(Xθ )θ∈� has a modification (X

n
θ )θ∈� with Hölder-continuous paths of order βn and

satisfying (2). Let us fix for a moment an arbitrary n ∈ N. The processes (X
n
θ )θ∈� and

(X
n+1
θ )θ∈� are indistinguishable because they are modifications of each other, both

continuous, and � is separable (as a totally bounded metric space). We can, therefore,
find an event �n ∈ F with P(�n) = 1 such that, for all ω ∈ �n and θ ∈ �, it holds
X
n
θ (ω) = X

n+1
θ (ω). We then define the set

�∞ =
⋂

n∈N
�n

and notice that P(�∞) = 1 and, for all ω ∈ �∞, θ ∈ � and n ∈ N \ {1}, it holds

X
1
θ (ω) = X

n
θ (ω).

Consequently, the process (X̃θ )θ∈� defined via

X̃θ (ω) =
{
X
1
θ (ω), ω ∈ �∞,

x̄, ω /∈ �∞,

where x̄ ∈ X is arbitrary, is amodification of (Xθ )θ∈� such thatall its paths areHölder-
continuous of all orders β ∈]0, (q − t)/p[. Note that (X̃θ )θ∈� also satisfies (2). This
concludes the proof. ��
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Appendix A: Criterion for Uniform Tightness

Let (�, d�) be a compact metric space and (X , dX ) a complete metric space. We use
the notation w(·, ·) for the modulus of continuity on C(�,X ), i.e.,

w : C(�,X )×]0,∞[→ R, ( f , δ) �→ sup
d�(θ,ϑ)≤δ

θ,ϑ∈�

dX
(
f (θ), f (ϑ)

)
.

To make the paper self-contained, we present here the precise formulation of the
criterion for uniform tightness, which was applied in the proof of Proposition 4.1.

Theorem A.1 Let (Xn)n∈N be a sequence of Borel random elements Xn in C(�,X ) on
some probability space (�,F ,P). Let �′ ⊆ � be dense in �. The sequence (Xn)n∈N
is uniformly tight if and only if

(
Xn(·, θ)

)
n∈N is a uniformly tight sequence of random elements in X , for all θ ∈ �′,

(A1)

and, for every ε > 0,

lim
δ→0+ lim sup

n→∞
P (w(Xn, δ) ≥ ε) = 0. (A2)

We remark that since, for any δ > 0, the mapping w(·, δ) is continuous, w(Xn, δ)

is a random variable for every n ∈ N (in particular, the probability in (A2) is well
defined).

Proof The result is well known for X = R (see [26, Theorem 1.5.7]), and a similar
one is shown in the proof of Theorem 14.5 from [15] in the case of separable and
complete dX . We shall use arguments from the proof of Theorem 14.5 in [15].

Firstly, let us assume that (Xn)n∈N is a uniformly tight sequence in C(�,X ), and
let ε, η ∈]0, 1[. Then, there exists some compact subset K ⊆ C(�,X ) such that

sup
n∈N

P({Xn ∈ C(�,X ) \ K}) ≤ η. (A3)

By a general version of the Arzela–Ascoli theorem (see [20, Theorem 47.1]), the set
K is equicontinuous which means that we may find for any θ ∈ � some δθ > 0 such
that dX

(
f (ϑ), f (θ)

)
< ε/2 for every f ∈ K whenever dθ (ϑ, θ) < δθ . Since � is

compact, we may apply Lebesgue’s number lemma (see [20, Lemma 27.5]) to the
open cover of � consisting of the open metric balls Bδθ (θ) around θ with radius δθ .
In this way, we may select some δ > 0 such that w( f , δ) < ε holds for every f ∈ K.
Then, for all n ∈ N,

P({w(Xn, δ) ≥ ε}) ≤ P({Xn ∈ C(�,X ) \ K}) ≤ η,
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and thus,

lim
δ→0+ lim sup

n→∞
P
({

w(Xn, δ) ≥ ε
}) ≤ η. (A4)

Moreover, for θ ∈ � the projection mapping

πθ : C(�,X ) → X , f �→ f (θ)

is continuous so that πθ (K) is a compact subset of X . Furthermore, by (A3)

sup
n∈N

P
({Xn(·, θ) ∈ X \ πθ (K)}) ≤ sup

n∈N
P({Xn ∈ C(�,X ) \ K}) ≤ η. (A5)

Then,we conclude from (A4) and (A5) that (Xn)n∈N satisfies conditions (A1) and (A2)
because ε, η were chosen arbitrarily in ]0, 1[. This finishes the proof of the only if
part.

For the if part, let (Xn)n∈N fulfill conditions (A1) and (A2). Fix any γ ∈]0, 1[.
Since � is compact, the mappings Xn(ω, ·) are uniformly continuous for ω ∈ � and
n ∈ N. Hence, for ω ∈ � and n ∈ N, we have w(Xn, δ) → 0, as δ → 0. Combining
this observation with condition (A2), we may find for any k ∈ N some δk > 0 such
that

sup
n∈N

P
({

w(Xn, δk) > 2−k}) ≤ 2−k−1 γ. (A6)

Since� is compact, the metric on�′ is separable. In addition,�′ is dense. Then, there
is some sequence (θk)k∈N in �′ which is a dense subset of �. Hence, in view of (A1)
we may find for every k ∈ N some compact subset Kk of X such that

sup
n∈N

P
({
Xn(·, θk) /∈ Kk}

) ≤ 2−k−1 γ. (A7)

Now define

B :=
∞⋂

k=1

{
f ∈ C(�,X ) | f (θk) ∈ Kk, w( f , δk) ≤ 2−k

}
,

and denote the topological closure of B w.r.t. d∞ by cl(B). Then, we have

sup
n∈N

P ({Xn ∈ C(�,X ) \ cl(B)})
≤ sup

n∈N
P ({Xn ∈ C(�,X ) \ B})

≤ sup
n∈N

∞∑

k=1

[
P({Xn(·, θk) ∈ X \ Kk}) + P({w(Xn, δk) > 2−k})

]
.
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So invoking (A6) along with (A7), we end up with

sup
n∈N

P ({Xn ∈ C(�,X ) \ cl(B)}) ≤
∞∑

k=1

[
2−k−1 γ + 2−k−1 γ

]
= γ.

Hence, it is left to show that B is a relatively compact subset of C(�,X ).
For an arbitrary ε > 0 and for every θ ∈ �, choose some k ∈ N such that

2−k < ε. Then, by construction of B, we obtainw( f , δk) < ε for f ∈ B. In particular,
dX

(
f (ϑ), f (θ)

)
< ε for every f ∈ B and any ϑ ∈ � with d�(ϑ, θ) < δk . Thus, we

have shown that B is some equicontinuous subset of C(�,X ). Therefore, by a general
version of the Arzela–Ascoli theorem [20, Theorem 47.1] it remains to show that the
set { f (θ) | f ∈ B} is a relatively compact subset of X for any θ ∈ �. This means to
show that this set is totally bounded w.r.t. dX due to completeness of dX .

Let us fix any θ ∈ �. Choose, for an arbitrary ε > 0, some k0 ∈ N such that
2−k0 < ε/2. Since {θk | k ∈ N} is dense, we may find some k1 ∈ N such that
d�(θk1 , θ) < δk0 . This implies by the construction of the set B that

f (θk1) ∈ Kk1 and dX
(
f (θk1), f (θ)

)
< ε/2 for every f ∈ B. (A8)

The set Kk1 is assumed to be compact, in particular, it is totally bounded w.r.t. dX , so
that there exist m ∈ N and x1, . . . , xm ∈ X satisfying

Kk1 ⊆
m⋃

i=1

Bε/2(xi ),

where, for r > 0, Br (xi ) denotes the open dX -metric ball around xi with radius r .
Then, we may conclude from (A8)

{ f (θ) | f ∈ B} ⊆
m⋃

i=1

Bε(xi ).

This shows that the set { f (θ) | f ∈ B} is totally bounded w.r.t. dX , which completes
the proof. ��
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