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Abstract
This paper develops a quantitative version of de Jong’s central limit theorem for
homogeneous sums in a high-dimensional setting. More precisely, under appropri-
ate moment assumptions, we establish an upper bound for the Kolmogorov distance
between a multi-dimensional vector of homogeneous sums and a Gaussian vector so
that the bound depends polynomially on the logarithm of the dimension and is gov-
erned by the fourth cumulants and the maximal influences of the components. As a
corollary, we obtain high-dimensional versions of fourth-moment theorems, universal-
ity results and Peccati–Tudor-type theorems for homogeneous sums. We also sharpen
some existing (quantitative) central limit theorems by applications of our result.
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1 Introduction

Let X = (Xi )
∞
i=1 be a sequence of independent centered random variables with unit

variance. A homogeneous sum is a random variable of the form

Q( f ; X) =
N∑

i1,...,i p=1

f (i1, . . . , iq)Xi1 · · · Xiq ,
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where N , q ∈ N, [N ] := {1, . . . , N } and f : [N ]q → R is a symmetric function
vanishing on diagonals, i.e., f (i1, . . . , iq) = 0 unless i1, . . . , iq aremutually different.
Studies of limit theorems for a sequence of homogeneous sums have some history
in probability theory. Rotar’ [53,54] investigated invariance principles for Q( f ; X)

regarding the law of X . In the notable work of de Jong [22], the following striking
result has been established: For every n ∈ N, let fn : [Nn]q → R be a symmetric
function vanishing on diagonals with q fixed and Nn ↑ ∞ as n → ∞. Assume
E[X4

i ] < ∞ for all i and E[Q( fn; X)2] = 1 for all n. Then, Q( fn; X) converges in
law to the standard normal distribution, provided that the following two conditions
hold true:

(i) E[Q( fn; X)4] → 3 as n → ∞.
(ii) max1≤i≤Nn Inf i ( fn) → 0 as n → ∞, where Inf i ( fn) is defined by

Inf i ( fn) :=
Nn∑

i2,...,iq=1

fn(i, i2, . . . , iq)
2 (1.1)

and called the influence of the i th variable of fn .

When q = 1, condition (ii) says that max1≤i≤Nn fn(i)2 → 0 as n → ∞, which is
equivalent to the celebrated Lindeberg condition. In this case condition (i) is always
implied by (ii), and thus it is an extra one. In contrast, when q ≥ 2, condition (ii)
is no longer sufficient for the asymptotic normality of the sequence (Q( fn; X))∞n=1,
so one needs an additional condition. The motivation of introducing condition (i)
in [22] was that one can easily check condition (i) is equivalent to the asymptotic
normality of (Q( fn; X))∞n=1 when q = 2 and X is Gaussian (see also [21]). Later
on, this observation was significantly improved in the influential paper by Nualart
& Peccati [49]: For any q, the asymptotic normality of (Q( fn; X))∞n=1 is implied
just by condition (i) as long as X is Gaussian. Results of this type are nowadays
called fourth-moment theorems and have been extensively studied in the past decade.
In particular, further investigation of the fourth-moment theorem in [49] has led to
the introduction of the so-called Malliavin–Stein method by Nourdin & Peccati [43],
which have produced one of the most active research areas in the recent probabilistic
literature. We refer the reader to the monograph [44] for an introduction to this subject
and the survey [3] for recent developments.

Implication of theMalliavin–Stein method to de Jong’s central limit theorem (CLT)
for homogeneous sums has been investigated in the seminal work of Nourdin, Peccati
& Reinert [47], where several important extensions of de Jong’s result have been
developed. The following three results are particularly relevant to our work:

(I) First, they have established a multi-dimensional extension of de Jong’s CLT
which shows multi-dimensional vectors of homogeneous sums enjoy a CLT if
de Jong’s criterion is satisfied component-wise. More precisely, let d ∈ N and,
for every j = 1, . . . , d, let q j ∈ N and fn, j : [Nn]q j → R be a symmetric
function vanishing on diagonals. Also, let C = (C jk)1≤ j,k≤d be a d × d positive
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semidefinite symmetric matrix and suppose that

max
1≤ j,k≤d

|E[Q( fn, j ; X)Q( fn,k; X)] − C jk | → 0

as n → ∞. Then, the d-dimensional random vector

Q(n)(X) := (Q( fn,1; X), . . . , Q( fn,d; X))

converges in law to the d-dimensional normal distributionNd(0,C)with mean 0
and covariance matrix C as n → ∞ if E[Q( fn, j ; X)4]−3E[Q( fn, j ; X)2]2 → 0
and max1≤i≤Nn Inf i ( fn, j ) → 0 as n → ∞ for every j = 1, . . . , d.

(II) Second, they have found the following universality of Gaussian variables in the
context of homogeneous sums ( [47, Theorem 1.2]): Assume

sup
n

Nn∑

i1,...,iq=1

fn, j (i1, i2, . . . , iq j )
2 < ∞

and C j j > 0 for every j . Then, if Q(n)(G) converges in law to Nd(0,C) as
n → ∞ for a sequence of standard Gaussian variables G = (Gi )

∞
i=1, then

Q(n)(X) converges in law toNd(0,C) as n → ∞ for any sequence X = (Xi )
∞
i=1

of independent centered random variables with unit variance and such that
supi E[|Xi |3] < ∞.

(III) Third, they have established some quantitative versions of de Jong’s CLT for
homogeneous sums; see Proposition 5.4 and Corollary 7.3 in [47] for details (see
also Sect. 2.1.1).

We remark that these results have been generalized in various directions by subse-
quent studies. For example, the universality results analogous to (II) have also been
established for Poisson variables in Peccati & Zheng [52] and i.i.d. variables with zero
skewness and nonnegative excess kurtosis in Nourdin et al. [45,46], respectively. Also,
the recent work of Döbler & Peccati [28] has extended (I) and (II) to more general
degenerate U -statistics which were originally treated in [22].

As the title of the paper suggests, the aim of this paper is to extend the above results
to a high-dimensional setting where the dimension d depends on n and d = dn → ∞
as n → ∞. Of course, in such a setting, the “asymptotic distribution” Nd(0,C) also
depends on n and, even worse, it is typically no longer tight. Therefore, we need
to properly reformulate the above statements in this setting. In this paper, we adopt
the so-called metric approach to accomplish this purpose: We try to establish the
convergence of some metric between the laws of Q(n)(X) andNd(0,C). Specifically,
we take the Kolmogorov distance as the metric between the probability laws. Namely,
letting Z (n) be a dn-dimensional centered Gaussian vector with covariance matrix Cn

for each n, we aim at proving the following convergence:

sup
x∈Rdn

|P(Q(n)(X) ≤ x) − P(Z (n) ≤ x)| → 0 as n → ∞.
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Here, for vectors x = (x1, . . . , xdn ) ∈ R
dn and y = (y1, . . . , ydn ) ∈ R

dn , we write
x ≤ y to express x j ≤ y j for every j = 1, . . . , dn . In addition, we are particu-
larly interested in a situation where the dimension d = dn increases extremely faster
than the “standard” convergence rate of Gaussian approximation for a sequence of uni-
variate homogeneous sums. Given that both

√|E[Q( fn; X)4] − 3E[Q( fn; X)2]2| and
max1≤i≤Nn

√
Inf i ( fn) can be the optimal convergence rates of the Gaussian approx-

imation of Q( fn; X) in the Kolmogorov distance (see [42, Proposition 3.8] for the
former and [30, Remark 1] for the latter), we might consider the quantity

δn := max
1≤ j≤dn

√
|E[Q( fn, j ; X)4] − 3E[Q( fn, j ; X)2]2| + max

1≤i≤Nn
Inf i ( fn, j )

as an appropriate definition of the “standard” convergence rate. Then, we aim at prov-
ing

sup
x∈Rdn

|P(Q(n)(X) ≤ x) − P(Z (n) ≤ x)| ≤ C(log dn)
aδbn (1.2)

for all n ∈ N, where a, b,C > 0 are constants which do not depend on n (here
and below we assume dn ≥ 2). As a byproduct, results of this type enable us to
extend fourth-moment theorems and universality results for homogeneous sums to a
high-dimensional setting (see Theorem 2.2 for the precise statement).

Our formulation of a high-dimensional extension of CLTs for homogeneous sums
is motivated by the recent path-breaking work of Chernozhukov, Chetverikov & Kato
[13,18],where results analogous to (1.2) have been established for sumsof independent
randomvectors.More formally, let (ξn,i )ni=1 be a sequence of independent centered dn-
dimensional random vectors. Set Sn := n−1/2∑n

i=1 ξn,i and assume Cn = E[SnS	
n ]

(	 denotes the transpose of a matrix). Then, under an appropriate assumption on
moments, we have

sup
x∈Rdn

|P(Sn ≤ x) − P(Z (n) ≤ x)| ≤ C ′
(
log7(dnn)

n

)1/6

, (1.3)

where C ′ > 0 is a constant which does not depend on n (see Proposition 2.1 in [18]
for the precise statement). Here, we shall remark that the bound in (1.3) depends
on n through n−1/6, which is suboptimal when the dimension dn is fixed. However,
in [18, Remark 2.1(ii)] it is conjectured that the rate n−1/6 is nearly optimal in a
minimax sense when dn is extremely larger than n (see also [10, Remark 1]). This
conjecture is motivated by the fact that the rate n−1/6 is minimax optimal in CLTs for
sums of independent randomvariables taking values in an infinite-dimensional Banach
space (see, e.g., [8, Theorem 2.6]). Given that high-dimensional CLTs of type (1.3)
are closely related to Gaussian approximation of the suprema of empirical processes
(see, e.g., [15,17]), it would be worth mentioning that a duality argument enables us
to translate the minimax rate for CLTs in a Banach space to the one for Gaussian
approximation of the suprema of empirical processes with a specific class of functions
in the Kolmogorov distance; see [50] for details. For this reason, we also conjecture
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that b = 1/3 would give an optimal dependence on δn of the bound in (1.2) (note
that the rate n−1/2 is the standard convergence rate of CLTs for sums of independent
one-dimensional random variables). In this paper, we indeed establish that the bound
of type (1.2) holds true with b = 1/3 under a moment assumption on X when q j ’s do
not depend on j (see Theorem 2.1 and Remark 2.1).

We remark that there are a number of articles which extend the scope of the
Chernozhukov–Chetverikov–Kato theory (CCK theory for short) in various direc-
tions. We refer the reader to the survey [6] for recent developments. Nevertheless,
most studies focus on linear statistics (i.e., sums of random variables) and there are
only a few articles concernedwith nonlinear statistics. Two exceptions areU -statistics
developed in [10–12,56] andWiener functionals developed in [34,35].On the onehand,
however, the former are mainly concerned with non-degenerateU -statistics which are
approximately linear statistics via Hoeffding decomposition (Chen & Kato [11] also
handle degenerateU -statistics, but they focus on the randomized incomplete versions
that are still approximately linear statistics). On the other hand, although the latter deal
with essentially nonlinear statistics, they must be functionals of a (possibly infinite-
dimensional) Gaussian process, except for [35, Theorem 3.2] that is a version of our
result with q j ≡ 2 (see Sect. 2.1.2 for more details). In this sense, our result would
be the first extension of CCK-type results to essentially nonlinear statistics based on
possibly non-Gaussian variables.

Finally, we mention that the main results of this paper have potential applications
to statistics. In fact, the original motivation of this paper is to improve the Gaussian
approximation result for maxima of high-dimensional vectors of random quadratic
forms given by [35, Theorem 3.2], which is used to ensure the validity of the bootstrap
testing procedure proposed in [35, Section 4.1] (see Sect. 2.2). Another potential
applicationmight be specification test for parametric form innonparametric regression.
In this area, to derive the null distributions of test statistics, one sometimes needs to
approximate the maximum of (essentially degenerate) quadratic forms; see [25,32,40]
for instance.

This paper is organized as follows. Section 2 presents the main results obtained
in the paper, while Sects. 3–7 are devoted to the proof of the main results: Sect. 3
demonstrates a basic scheme of the CCK theory to prove high-dimensional CLTs.
Subsequently, Sect. 4 presents a connection of this scheme to Stein’s method. Based
on this observation, Sect. 5 develops a high-dimensional CLT of the form (1.2) for
homogeneous sums based on normal and gamma variables. Then, Sect. 6 establishes
a kind of invariance principle for high-dimensional homogeneous sums using a ran-
domized version of the Lindeberg method. Finally, Sect. 7 completes the proof of the
main results.

Notation

Z+ denotes the set of all nonnegative integers. For x = (x1, . . . , xd) ∈ R
d , we define

‖x‖�∞ := max1≤ j≤d |x j |. For N ∈ N, we set [N ] := {1, . . . , N }. We set
∑q

i=p ≡ 0
if p > q by convention. For q ∈ N, we denote by Sq the set of all permutations
of [q], i.e., the symmetric group of degree q. For a function f : [N ]q → R, we set
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M( f ) := max1≤i≤N Inf i ( f ) (recall that Inf i ( f ) is defined according to (1.1)). We

also set ‖ f ‖�2 :=
√∑N

i1,...,iq=1 f (i1, . . . , iq)2. For a function h : R
d → R, we set

‖h‖∞ := supx∈Rd |h(x)|. We writeCm
b (Rd) for the set of all real-valuedCm functions

on R
d all of whose partial derivatives are bounded. We write ∂ j1... jm = ∂m

∂x j1 ···∂x jm for

short. Throughout the paper, Z = (Z1, . . . , Zd) denotes a d-dimensional centered
Gaussian random vector with covariance matrix C = (Ci j )1≤i, j≤d (note that we do
not assume that C is positive definite in general). Also, (q j )

∞
j=1 stands for a sequence

of positive integers. Throughout the paper, we will regard (q j )
∞
j=1 as fixed, i.e., it does

not vary when we consider asymptotic results. Given a probability distribution μ, we
write X ∼ μ to express that X is a random variable with distribution μ. For ν > 0,
we write γ (ν) for the gamma distribution with shape ν and rate 1. If S is a topological
space, B(S) denotes the Borel σ -field of S.

Given a random variable X , we set ‖X‖p := {E[|X |p]}1/p for every p > 0. When
X satisfies E[X4] < ∞, we denote the fourth cumulant of X by κ4(X). Note that
κ4(X) = E[X4] − 3E[X2]2 if X is centered. For α > 0, we define the ψα-norm of X
by ‖X‖ψα := inf{C > 0 : E[ψα(|X |/C)] ≤ 1}, where ψα(x) := exp(xα) − 1. Note
that ‖ · ‖ψα is indeed a norm (on a suitable space) if and only if α ≥ 1. Some useful
properties of the ψα-norm are collected in Appendix A.

2 Main Results

Our first main result is a high-dimensional version of de Jong’s CLT for homogeneous
sums:

Theorem 2.1 Let X = (Xi )
N
i=1 be a sequence of independent centered random vari-

ables with unit variance. Set w = 1
2 if E[X3

i ] = 0 for every i ∈ [N ] and w = 1
otherwise. For every j ∈ [d], let f j : [N ]q j → R be a symmetric function vanishing
on diagonals, and set Q(X) := (Q( f1; X), . . . , Q( fd ; X)). Suppose that d ≥ 2,
σ := min1≤ j≤d ‖Z j‖2 > 0 and max1≤i≤N ‖Xi‖ψα < ∞ for some α ∈ (0, w−1].
Then,

sup
x∈Rd

|P(Q(X) ≤ x) − P(Z ≤ x)|

≤ C(1 + σ−1)
{
(log d)

2
3 δ0[Q(X)] 13

+(log d)μ+ 1
2 δ1[Q(X)] 13 + (log d)

2qd−1
α

+ 3
2 max
1≤k≤d

B
qk
N

√
M( fk)

}
, (2.1)

where BN := max1≤i≤N (‖Xi‖ψα∨|E[X3
i ]|), qd := max1≤ j≤d q j ,μ := max{ 23wqd−

1
6 ,

2(qd−1)
3α + 1

3 }, C > 0 depends only on α, qd and

δ0[Q(X)] := max
1≤ j,k≤d

∣∣E[Q( f j ; X)Q( fk; X)] − C jk
∣∣ ,
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δ1[Q(X)] := A
2wqd−1
N max

1≤ j,k≤d

⎧
⎨

⎩1{q j=qk }

√√√√|κ4(Q( fk; X))| + A
4qk
N

N∑

i=1

Inf i ( fk)2

+1{q j<qk }A
q j
N ‖ f j‖�2

(
|κ4(Q( fk; X))| + A

4qk
N

N∑

i=1

Inf i ( fk)
2

)1/4
⎫
⎬

⎭

with AN := max1≤i≤N (|E[X3
i ]| ∨ ‖Xi‖4).

Remark 2.1 (a) Since
∑N

i=1 Inf i ( fk)
2 ≤ ‖ fk‖2�2M( fk), Theorem 2.1 gives the bound

of the form (1.2) under reasonable assumptions when q1 = · · · = qd . For exam-
ple, this is the case when E[Q( f j ; X)Q( fk; X)] = C jk for all j, k ∈ [d],
supi ‖Xi‖ψα < ∞ and sup j ‖ f j‖�2 < ∞. Here, we keep

∑N
i=1 Inf i ( fk)

2 rather
than ‖ fk‖2�2M( fk) for the convenience of application.

(b) When q j < qk for some j, k ∈ [d], the exponents of |κ4(Q( fk; X))| and M( fk)
appearing in the bound of (2.1) are 1/12, which are halves of those for the case
q j = qk . This phenomenon is not specific to the high-dimensional setting but
common in fourth-moment-type theorems. See Remark 1.9(a) in [29] for more
details.

(c) In Sect. 2.1, we compare Theorem 2.1 to two existing results in some detail. The
results therein show the dependence of the bound in (2.1) on the dimension d is
as sharp as (and sometimes sharper than) the previous results.

We can easily extend Theorem 2.1 to a high-dimensional CLT for homogeneous
sums in hyperrectangles as follows. LetAre(d) be the set of all hyperrectangles in R

d ,
i.e., Are(d) consists of all sets A of the form

A = {(x1, . . . , xd) ∈ R
d : a j ≤ x j ≤ b j for all j = 1, . . . , d}

for some −∞ ≤ a j ≤ b j ≤ ∞, j = 1, . . . , d.

Corollary 2.1 Under the assumptions of Theorem 2.1, we have

sup
A∈Are(d)

|P(Q(X) ∈ A) − P(Z ∈ A)|

≤ C ′(1 + σ−1)
{
(log d)

2
3 δ0[Q(X)] 13

+(log d)μ+ 1
2 δ1[Q(X)] 13 + (log d)

2qd−1
α

+ 3
2 max
1≤k≤d

B
qk
N

√
M( fk)

}
,

where C ′ > 0 depends only on α, qd .

For application, it is often useful to restate Theorem 2.1 in an asymptotic form as
follows.

Corollary 2.2 Let X = (Xi )
∞
i=1 be a sequence of independent centered random

variables with unit variance. Set w = 1
2 if E[X3

i ] = 0 for every i ∈ N
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and w = 1 otherwise. For every n ∈ N, let Nn, dn ∈ N \ {1} and fn,k :
[Nn]qk → R (k = 1, . . . , dn) be symmetric functions vanishing on diagonals,
and set Q(n)(X) := (Q( fn,1; X), . . . , Q( fn,d ; X)). Moreover, for every n ∈ N,
let Z (n) = (Zn,1, . . . , Zn,dn ) be a dn-dimensional centered Gaussian vector with
covariance matrix Cn = (Cn,kl)1≤k,l≤dn . Suppose that q∞ := sup j∈N q j < ∞,
infn∈Nmin1≤k≤dn ‖Zn,k‖2 > 0, supi∈N ‖Xi‖ψα < ∞ for some α ∈ (0, w−1] and

(log dn)
2 max
1≤k,l≤dn

|E[Q( fn,k; X)Q( fn,l; X)] − Cn,kl | → 0 (2.2)

as n → ∞. Moreover, setting a1 := (4wq∞ − 2) ∨ (4α−1(q∞ − 1) + 5) and
a2 := 2α−1(2q∞ − 1) + 3, we suppose that either one of the following conditions is
satisfied:

(i) (log dn)2a1 max1≤ j≤dn |κ4(Q( fn, j ; X))| → 0 and (log dn)2a1∨a2 max1≤ j≤dn
M( fn, j ) → 0 as n → ∞.

(ii) (log dn)a1 max1≤ j≤dn |κ4(Q( fn, j ; X))| → 0 and (log dn)a1∨a2 max1≤ j≤dn
M( fn, j ) → 0 as n → ∞ and q1 = q2 = · · · .

Then, we have supA∈Are(dn) |P(Q(n)(X) ∈ A) − P(Z (n) ∈ A)| → 0 as n → ∞.

Our second main result gives high-dimensional versions of fourth-moment theo-
rems, universality results and Peccati–Tudor-type theorems for homogeneous sums:

Theorem 2.2 Let us keep the same notation as in Corollary 2.2. Suppose that one of
the following conditions is satisfied:

(A) X is a sequence of independent copies of a randomvariable X such that ‖X‖ψα <

∞ for some α > 0 and E[X3] = 0 and E[X4] ≥ 3.
(B) For every i , Xi is a standardized Poisson random variable with intensity λi >

0, i.e., λi + √
λi Xi is a Poisson random variable with intensity λi . Moreover,

inf i∈N λi > 0.
(C) For every i , Xi is a standardized gamma random variable with shape νi > 0 and

unit rate, i.e., νi + √
νi Xi ∼ γ (νi ). Moreover, inf i∈N νi > 0.

Suppose also 2 ≤ inf j∈N q j ≤ sup j∈N q j < ∞, 0 < infn∈Nmin1≤ j≤dn C
(n)
j j ≤

supn∈Nmax1≤ j≤dn C
(n)
j j < ∞ and

(log dn)
a max
1≤ j,k≤dn

|E[Q( fn, j ; X)Q( fn,k; X)] − Cn, jk | → 0

as n → ∞ for every a > 0. Then, we have κ4(Q( f ; X)) ≥ 0 for any symmetric
function f : [N ]q → R vanishing on diagonals. Moreover, the following conditions
are equivalent:

(i) (log dn)a max1≤ j≤dn κ4(Q( fn, j ; X)) → 0 as n → ∞ for every a > 0.
(ii) (log dn)a max1≤ j≤dn supx∈R |P(Q( fn, j ; X) ≤ x) − P(Zn, j ≤ x)| → 0 as

n → ∞ for every a > 0.
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(iii) (log dn)a supx∈Rdn |P(Q(n)(X) ≤ x) − P(Z (n) ≤ x)| → 0 as n → ∞ for
every a > 0.

(iv) (log dn)a supx∈Rdn |P(Q(n)(Y) ≤ x) − P(Z (n) ≤ x)| → 0 as n → ∞ for any
a > 0 and sequence Y = (Yi )i∈N of centered independent variables with unit
variance such that supi∈N ‖Yi‖ψα < ∞ for some α > 0.

Remark 2.2 (a) The implications (i)⇒ (iii), (iii)⇒ (iv) and (ii)⇒ (iii) can be viewed
as high-dimensional versions of fourth-moment theorems, universality results and
Peccati–Tudor-type theorems for homogeneous sums, respectively. Here,Peccati–
Tudor-type theorems refer to statements such that a joint CLT is implied by
component-wise CLTs (Peccati & Tudor [51] have established such a result for
multiple Wiener–Itô integrals with respect to an isonormal Gaussian process).

(b) The proof of Theorem 2.2 relies on the fact that condition (i) automatically yields
(log dn)a max j M( fn, j ) → 0 as n → ∞ for every a > 0. On the one hand, this
fact has already been established in the previouswork for cases (A) and (B) (see the
proof of Lemma 7.2). On the other hand, for case (C), this fact seems not to have
appeared in the literature so far. Indeed, for case (C) we obtain it as a byproduct
of the proof of Proposition 5.2 (see Lemma 5.4). As a consequence, Theorem 2.2
seems new for case (C) even in the fixed-dimensional case. We remark that the
fourth-moment theorem for case (C) has been established by [1] in the univariate
case, which inspired our discussions in Sect. 5 (see also [9]).

2.1 Comparison of Theorem 2.1 to Some Existing Results

2.1.1 Comparison to Corollary 7.3 in Nourdin, Peccati and Reinert [47]

First, we compare our result to the quantitative multi-dimensional CLT for homoge-
neous sums obtained in Nourdin et al. [47]. To state their result, we need to introduce
the notion of contraction, which will also play an important role in Sect. 5.2. For two
symmetric functions f : [N ]p → R, g : [N ]q → R and r ∈ {0, 1 . . . , p ∧ q}, we
define the contraction f 
r g : [N ]p+q−2r → R by

f 
r g(i1, . . . , i p+q−2r ) =
N∑

k1,...,kr=1

f (i1, . . . , i p−r , k1, . . . , kr )g

(i p−r+1, . . . , i p+q−2r , k1, . . . , kr ). (2.3)

In particular, we have

f 
0g(i1, . . . , i p+q) = f ⊗ g(i1, . . . , i p+q) = f (i1, . . . , i p)g(i p+1, . . . , i p+q).

Now we are ready to state the result of [47]. To simplify the notation, we focus
only on the identity covariance matrix case and do not keep the explicit dependence
of constants on q j ’s.

Proposition 2.1 (Nourdin et al. [47], Corollary 7.3) Let us keep the same notation as
in Theorem 2.1. Suppose that C jk = E[Q( f j ; X)Q( fk; X)] for all j, k ∈ [d] and C
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is the identity matrix of size d. Suppose also that β := max1≤i≤N E[|Xi |3] < ∞ and
qd ≥ · · · ≥ q1 ≥ 2. Then, we have

sup
A∈C(Rd )

|P(Q(X) ∈ A) − P(Z ∈ A)|

≤ Kd3/8

⎧
⎪⎨

⎪⎩
� + C(β + 1)

⎛

⎝
d∑

j=1

β(q j−1)/3

⎞

⎠
3√

max
1≤ j≤d

M( f j )

⎫
⎪⎬

⎪⎭

1/4

, (2.4)

where C(Rd) is the set of all convex Borel subsets ofRd , K > 0 is a constant depending
only on qd , C := ∑N

i=1 max1≤ j≤d Inf i ( f j ) and

� :=
∑

1≤ j≤k≤d

⎛

⎝
q j−1∑

r=1

(‖ f j
q j−r f j‖�2 + ‖ fk
qk−r fk‖�2 ) + 1{q j<qk }
√

‖ fk
qk−q j fk‖�2

⎞

⎠ .

To compare Proposition 2.1 to our result, we need to bound the quantity � by
|κ4(Q( f j ; X))| andM( f j ), j ∈ [d]. This can be carried out by the following lemma
(proved in Sect. 7.4):

Lemma 2.1 Let X = (Xi )
N
i=1 be a sequence of independent centered randomvariables

with unit variance and such that M := 1+max1≤i≤N E[X4
i ] < ∞. Also, let q ≥ 2 be

an integer and f : [N ]q → R be a symmetric function vanishing on diagonals. Then,
we have

max
1≤r≤q−1

‖ f 
r f ‖�2 ≤
√

|κ4(Q( f ; X))| + CM‖ f ‖2�2M( f ),

where C > 0 depends only on q.

Remark 2.3 The bound in Lemma 2.1 is generally sharp. In fact, it is well known that√|κ4(Q( f ; X))| has the same order as max1≤r≤q−1 ‖ f 
r f ‖�2 if X is Gaussian (see,
e.g., Eq.(5.2.6) in [44]). Moreover, if q = 2 and f (i, j) = N−1/21{|i− j |=1}, then both
‖ f 
1 f ‖�2 and ‖ f ‖�2

√M( f ) are of order N−1/2.

With the help of Lemma 2.1, we observe that the bound in (2.4) typically has the same
order as

d3/8
{
d2 max

1≤ j,k≤d
�̂ jk + d3C max

1≤ j≤d

√
M( f j )

}1/4

,

where

�̂ jk := 1{q j=qk }
√

|κ4(Q( f j ; X))| + M( f j )

+1{q j<qk } {|κ4(Q( fk; X))| + M( fk)}1/4 .
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Thus, in the bound of (2.4), the dimension appears as a power of d, while the exponent
of the “standard” convergence rate δ := max1≤ j≤d

√|κ4(Q( f j ; X))| + M( f j ) is
1/4. These are much improved in our result because the former appears as a power
of log d and the latter is 1/3. Nevertheless, we should note that the bound in (2.4) is
given for the much stronger metric than the Kolmogorov distance. In fact, to the best
of the author’s knowledge, all the known bounds for this metric depend polynomially
on the dimension even for sums of independent random variables; see [58, Section
1.1] and references therein.

Remark 2.4 (a) Roughly speaking, the exponent of δ is 1/4 in the bound of (2.4)
because this bound is transferred from an analogous quantitative CLT for the
Gaussian counterpart by the Lindeberg method with matching moments up to the
second order. To overcome this issue, we need to match moments up to the third
order and thus we can no longer rely on the result analogous to Theorem 2.1
for the Gaussian counterpart, which is obtained in [35]. For this reason, we will
develop a high-dimensional CLT for homogeneous sums based on normal and
gamma variables in Sect. 5.

(b) It is worth noting that the quantity C = ∑N
i=1 max1≤ j≤d Inf i ( f j ) in the bound of

(2.4) can be much larger than max1≤ j≤d
∑N

i=1 Inf i ( f j ) = max1≤ j≤d ‖ f j‖2�2 in
high-dimensional situations (seeRemark2.5 for a concrete example). Indeed, naïve
application of the Lindeberg method produces a quantity like C, which prevents
us from using the Lindeberg method in its pure form (this is why Chernozhukov
et al. [13,18] rely on Stein’s method to prove their high-dimensional CLTs; see
[14, Appendix L] for a detailed discussion). In Sect. 6, we will resolve this issue
by randomizing the Lindeberg method as Deng & Zhang [24] have recently done
in the context of sums of independent random vectors.

2.1.2 Comparison to Theorem 3.2 in Koike [35]

Next, we compare our result to the Gaussian approximation result for maxima of
quadratic forms obtained in [35, Theorem 3.2]. Here, for an explicit comparison, we
state this result with applying [35, Corollary 3.1]. For a function f : [N ]2 → R, we
denote the N × N matrix ( f (i, j))1≤i, j≤N by [ f ].

Proposition 2.2 (Koike [35], Theorem 3.2 and Corollary 3.1) Let us keep the same
notation as in Corollary 2.2. Suppose that infn∈Nmin1≤k≤dn ‖Zn,k‖2 > 0, q j = 2 for
all j , supi∈N ‖Xi‖ψ2 < ∞ and (2.2) holds true as n → ∞. Suppose also that

(log dn)
3 max
1≤k≤dn

√
tr
([ fn,k]4

)

+ (log dn)
5
(

max
1≤k≤dn

√
M( fn,k)

) Nn∑

i=1

max
1≤k≤dn

Inf i ( fn,k) → 0 (2.5)
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as n → ∞. Then, we have

sup
t∈R

∣∣∣∣P
(

max
1≤k≤dn

|Q( fn,k; X)| ≤ t

)
− P

(
max

1≤k≤dn
|Zn,k | ≤ t

)∣∣∣∣ → 0 (2.6)

as n → ∞.

When we apply our result to quadratic forms as above, we obtain the following
result.

Proposition 2.3 Let us keep the same notation as in Corollary 2.2. Set

�n := max
1≤k≤dn

√
tr
([ fn,k]4

) + max
1≤k≤dn

√
M( fn,k)‖ fn,k‖�2

for every n. Assume q1 = q2 = · · · = 2, infn∈Nmin1≤k≤dn ‖Zn,k‖2 > 0 and (2.2).
Assume also that either one of the following conditions is satisfied:

(i) supi∈N ‖Xi‖ψ1 < ∞ and (log dn)5�n → 0 as n → ∞.
(ii) supi∈N ‖Xi‖ψ2 < ∞, E[X3

i ] = 0 for all i and (log dn)3�n → 0 as n → ∞.

Then, we have supA∈Are(dn) |P(Q(n)(X) ∈ A) − P(Z (n) ∈ A)| → 0 as n → ∞.

Remark 2.5 (a) Regarding the convergence rate ofmax1≤k≤dn tr
([ fn,k]4

)
, condition (i)

in Proposition 2.3 is stronger than the one in Proposition 2.2. However, the former
imposes aweakermoment condition on X than the latter.More importantly, the second
term of �n is always smaller than or equal to the second term in (2.5), and the latter
can be much larger than the former. For example, let us assume Nn = dn = n and
consider the functions fn,k defined as follows:

fn,k(i, j) =
⎧
⎨

⎩

n−1/2 if |i − j | = 1, i �= k, j �= k,
n−1/4 if |i − j | = 1, i = k or j = k,
0 otherwise.

Then, we have Inf i ( fn,k) = (1 + 1{1<i<n})n−1/2 if i ∈ {k, k ± 1} and Inf i ( fn,k) =
(1 + 1{1<i<n})n−1 otherwise. Therefore, on the one hand

(
max

1≤k≤dn

√
M( fn,k)

) Nn∑

i=1

max
1≤k≤dn

Inf i ( fn,k)

does not converge to0 asn → ∞, but on theother handmax1≤k≤dn

√M( fn,k)‖ fn,k‖�2

= O(n−1/4) as n → ∞. Note that in this case we have max1≤k≤dn

√
tr
([ fn,k]4

) =
O(n−1/4) and ‖ fn,k‖�2 → 1 as n → ∞, so (2.6) holds true due to Proposition 2.3.

(b) Condition (ii) in Proposition 2.3 requires the additional zero skewness assump-
tion, but it always improves the assumption on the functions fn,k than the one in
Proposition 2.2.
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(c) We have �n ≤ 2maxk ‖[ fn,k]‖sp‖ fn,k‖�2 with ‖ · ‖sp the spectral norm of
matrices. So (log dn)a�n → 0 for some a > 0 is implied by (log dn)a maxk ‖[ fn,k]‖sp
‖ fn,k‖�2 → 0.

2.2 Statistical Application: Bootstrap Test for the Absence of Lead–Lag
Relationship

Let Wt = (W 1
t ,W

2
t ) (t ∈ R) be a two-sided bivariate standard Wiener process. Also

let ρ ∈ (−1, 1) and ϑ ∈ R be two (unknown) parameters. We define the bivariate
process Bt = (B1

t , B
2
t ) (t ∈ R) as B1

t = W 1
t and B2

t = ρW 1
t−ϑ + √

1 − ρ2W 2
t . For

each ν = 1, 2, we consider the process Xν = (Xν
t )t≥0 given by

Xν
t = Xν

0 +
∫ t

0
σν(s)dB

ν
s , t ≥ 0, (2.7)

where σν ∈ L2(0,∞) is nonnegative-valued and deterministic. If ρ �= 0, there is
a correlation between X1 and X2 with a time lag of ϑ . We aim to test for whether
such a correlation really exists or not, given (possibly asynchronous) high-frequency
observations of X1 and X2. Specifically, for each ν = 1, 2, we observe the process
Xν on the interval [0, T ] at the deterministic sampling times 0 ≤ tν0 < tν1 < · · · <

tνnν ≤ T , which implicitly depend on the parameter n ∈ N such that

rn := max
ν=1,2

max
i=0,1,...,nν+1

(tνi − tνi−1) → 0

as n → ∞, where we set tν−1 := 0 and tνnν+1 := T for each ν = 1, 2. To test for the
null hypothesis H0 : ρ = 0 against the alternative H1 : ρ �= 0, Koike [35] proposed
the test statistic given by Tn = √

nmaxθ∈Gn |Un(θ)|, where Gn is a finite subset of R

and

Un(θ) =
n1∑

i=1

n2∑

j=1

�n
i X

1�n
j X

2Ki j
θ with �n

i X
ν = Xν

tνi
− Xν

tνi−1
and

Ki j
θ = 1{(t1i−1,t

1
i ]∩(t2j−1−θ,t2j −θ]�=∅}.

The null distribution of Tn can be approximated by its Gaussian analog as follows:

Proposition 2.4 ([35], Proposition 4.1) For each n ∈ N, let (Zn(θ))θ∈Gn be a family
of centered Gaussian variables such that E[Zn(θ)Zn(θ

′)] = n Cov[Un(θ),Un(θ
′)]

for all θ, θ ′ ∈ Gn. Suppose that supt∈[0,T ](σ1(t) + σ2(t)) < ∞ and there are positive
constants v, v such that

v ≤ n
n1∑

i=1

n2∑

j=1

(∫ t1i

t1i−1

σ1(t)
2dt

)(∫ t2j

t2j−1

σ2(t)
2dt

)
Ki j

θ ≤ v
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for all n ∈ N and θ ∈ Gn. Then, under the null hypothesis ρ = 0, we have

sup
x∈R

∣∣∣∣P (Tn ≤ x) − P

(
max
θ∈Gn

|Zn(θ)| ≤ x

)∣∣∣∣ → 0

as n → ∞, provided that nr2n log
6(#Gn) → 0.

Since the distribution of maxθ∈Gn |Zn(θ)| is analytically intractable, Koike [35] pro-
posed awild bootstrap procedure to approximate it. Formally, let (w1

i )
∞
i=1 and (w2

j )
∞
j=1

be mutually independent sequences of i.i.d. random variables independent of X1 and
X2. Assume that E[w1

1] = E[w2
1] = 0, Var[w1

1] = Var[w2
1] = 1 and ‖w1

1‖ψ2 ∨
‖w2

1‖ψ2 < ∞. Define the bootstrapped test statistic as T ∗
n = √

nmaxθ∈Gn |U∗
n (θ)|

where

U∗
n (θ) =

n1∑

i=1

n2∑

j=1

(
w1
i �

n
i X

1
) (

w2
j�

n
j X

2
)
Ki j

θ .

In [35, Proposition B.8], it is shown that

sup
x∈R

∣∣∣∣P
(
T ∗
n ≤ x | X) − P

(
max
θ∈Gn

|Zn(θ)| ≤ x

)∣∣∣∣ →p 0 (2.8)

as n → ∞, provided that rn = O(n−3/4−η) and #Gn = O(nγ ) for some η, γ > 0
in addition to the assumptions of Proposition 2.4. Our result allows us to relax the
condition on rn as follows:

Proposition 2.5 Under the assumptions of Proposition 2.4, we have (2.8) as n → ∞,
provided that rn = O(n−1/2−η) and #Gn = O(nγ ) for some η, γ > 0.

3 Chernozhukov–Chetverikov–Kato Theory

In this section we demonstrate a basic scheme of the CCK theory to establish high-
dimensional CLTs. One main ingredient of the CCK theory is the following smooth
approximation of the maximum function: For each β > 0, we define the function
�β : R

d → R by

�β(x) = β−1 log

⎛

⎝
d∑

j=1

eβx j

⎞

⎠ , x = (x1, . . . , xd) ∈ R
d .

Eq.(1) in [16] states that

0 ≤ �β(x) − max
1≤ j≤d

x j ≤ β−1 log d (3.1)
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for any x ∈ R
d . Therefore, the larger β is, the better �β approximates the maximum

function. The next lemma, which is a summary of [24, Lemmas 5–6], highlights the
key properties of this smooth max function:

Lemma 3.1 For any β > 0, m ∈ N and Cm function h : R → R, there is an R
⊗m-

valued function ϒβ(x) = (ϒ
j1,..., jm
β (x))1≤ j1,..., jm≤d on R

d satisfying the following
conditions:

(i) For any x ∈ R
d and j1, . . . , jm ∈ [d], we have |∂ j1... jm (h ◦ �β)(x)| ≤

ϒ
j1,..., jm
β (x).

(ii) For every x ∈ R
d , we have

d∑

j1,..., jm=1

ϒ
j1,..., jm
β (x) ≤ cm max

1≤k≤m
βm−k‖h(k)‖∞,

where cm > 0 depends only on m.
(iii) For any x, t ∈ R

d and j1, . . . , jm ∈ [d], we have

e−8‖t‖�∞βϒ
j1,..., jm
β (x + t) ≤ ϒ

j1,..., jm
β (x) ≤ e8‖t‖�∞βϒ

j1,..., jm
β (x + t).

Remark 3.1 An explicit expression of the constant cm in Lemma 3.1 can be derived
from [24, Lemma 5]. In particular, we have c1 = 1 and c2 = 3.

Another important ingredient of the CCK theory is the so-called anti-concentration
inequality. For our purpose, the following one is particularly useful (see [19] for the
proof):

Lemma 3.2 (Nazarov’s inequality) If σ := min1≤ j≤d ‖Z j‖2 > 0, for any x ∈ R
d and

ε > 0 we have

P(Z ≤ x + ε) − P(Z ≤ x) ≤ ε

σ

(√
2 log d + 2

)
.

These tools enable us to establish the following form of smoothing inequality:

Proposition 3.1 Let g0 : R → [0, 1] be a measurable function such that g0(t) = 1 for
t ≤ 0 and g0(t) = 0 for t ≥ 1. Also, let ε > 0 and set β := ε−1 log d. Suppose that
σ := min1≤ j≤d ‖Z j‖2 > 0. Then, for any d-dimensional random vector F, we have

sup
x∈Rd

|P(F ≤ x) − P(Z ≤ x)| ≤ �ε(F, Z) + 2ε

σ

(√
2 log d + 2

)
, (3.2)

where

�ε(F, Z) := sup
y∈Rd

∣∣∣E[g0(ε−1�β(F − y))] − E[g0(ε−1�β(Z − y))]
∣∣∣ . (3.3)
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Proof This result has been essentially shown in Step 2 in the proof of [18, Lemma
5.1]. ��
Remark 3.2 Proposition 3.1 can be seen as a special version ofmore general smoothing
inequalities such as [7, Lemma 2.1]. An important feature of bound (3.2) is that the
quantity �ε(F, Z) contains only test functions of the form x �→ g0(�β(x − y)) for
some y ∈ R

d . If g0 is sufficiently smooth, derivatives of such a test function admit
good estimates with respect to the dimension d, as seen from Lemma 3.1.

It might be worth mentioning that we can use Proposition 3.1 to derive a bound for
the Kolmogorov distance by the Wasserstein distance. Let us recall the definition of
the Wasserstein distance.

Definition 3.1 (Wasserstein distance) For d-dimensional random vectors F,G with
integrable components, the Wasserstein distance between the laws of F and G is
defined by

W1(F,G) := sup
h∈H

|E[h(F)] − E[h(G)]|,

where H denotes the set of all functions h : R
d → R such that

‖h‖Lip := sup
x,y∈Rd :x �=y

|h(x) − h(y)|
‖x − y‖ ≤ 1.

Here, ‖ · ‖ is the usual Euclidian norm on R
d .

Corollary 3.1 Under the assumptions of Proposition 3.1, we have

sup
x∈Rd

|P(F ≤ x) − P(Z ≤ x)| ≤
√
2
(√

2 log d + 2
)

σ
W1(F, Z).

Proof It suffices to consider the case W1(F, Z) > 0. Let us define the function
g0 : R → [0, 1] by g0(x) = min{1,max{1−x, 0}}, x ∈ R. Then, for any x, x ′, y ∈ R

d

and ε > 0, we have |g0(ε−1�β(x − y) − g0(ε−1�β(x ′ − y)| ≤ ε−1‖x − x ′‖�∞
by [13, Lemma A.3], so we obtain �ε(F, Z) ≤ ε−1W1(F, Z). Now, setting ε =√
σW1(F, Z)/(2

√
2 log d + 4), we infer the desired result from Proposition 3.1. ��

When d = 1, Corollary 3.1 recovers the standard estimate (cf. Eq.(C.2.6) in [44]). We
shall remark that a bound similar to the above (with a slightly different constant) has
already appeared in [4, Theorem 3.1].

Remark 3.3 It is generally impossible to derive (1.2)-type bounds from the corre-
sponding ones for the Wasserstein distance. To see this, let F = (F1, . . . , Fd) be
a d-dimensional random vector such that the laws of F1, . . . , Fd are identical (and
integrable). Also, letG = (G1, . . . ,Gd) be another d-dimensional random vector sat-
isfying the same condition. Then, we can easily verify W1(F,G) ≥ √

dW1(F1,G1)

by definition.
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4 Stein Kernels and High-Dimensional CLTs

In the rest of the paper, we fix a C∞ function g0 : R → [0, 1] such that g0(t) = 1
for t ≤ 0 and g0(t) = 0 for t ≥ 1: For example, we can take it as g0(t) = f0(1 −
t)/{ f0(t) + f0(1 − t)}, where the function f0 : R → R is defined by f0(t) = e−1/t

if t > 0 and f0(t) = 0 otherwise.
To make Proposition 3.1 useful, we need to obtain a “good” upper bound for the

quantity�ε(F, Z). As brieflymentioned inRemark 2.4, Chernozhukov et al. [13] have
pointed out that Stein’s method effectively solves this task. Moreover, discussions in
[16,35] implicitly suggest that the CCK theory would have a nice connection to Stein
kernels. In this section, we illustrate this idea.

Definition 4.1 (Stein kernel) Let F = (F1, . . . , Fd) be a centered d-dimensional ran-
dom variable. A d × d matrix-valued measurable function τF = (τ

i j
F )1≤i, j≤d on R

d

is called a Stein kernel for (the law of) F if max1≤i, j≤d E[|τ i jF (F)|] < ∞ and

d∑

j=1

E[∂ jϕ(F)Fj ] =
d∑

i, j=1

E[∂i jϕ(F)τ
i j
F (F)] (4.1)

for any ϕ ∈ C∞
b (Rd).

Remark 4.1 In this paper, we adopt C∞
b (Rd) as the class of test functions for which

identity (4.1) holds true because of convenience, but other classes are also used in the
literature; see [20] for instance.

Lemma 4.1 Let F = (F1, . . . , Fd) be a centered d-dimensional random vector. Also,
let τF = (τ

i j
F )1≤i, j≤d be a Stein kernel for F. Then, we have

sup
y∈Rd

∣∣E
[
h
(
�β(F − y)

)] − E
[
h
(
�β(Z − y)

)]∣∣ ≤ 3

2
max{‖h′′‖∞, β‖h′‖∞}�

for any β > 0 and h ∈ C∞
b (R), where

� := E

[
max

1≤i, j≤d
|τ i jF (F) − Ci j |

]
.

Proof The proof is essentially same as that of [16, Theorem 1] or [35, Proposition
2.1], so we omit it. ��
Proposition 4.1 Suppose that d ≥ 2 and σ := min1≤ j≤d ‖Z j‖2 > 0. Under the
assumptions of Lemma 4.1, there is a universal constant C > 0 such that

sup
x∈Rd

|P(F ≤ x) − P(Z ≤ x)| ≤ C(1 + σ−1)�1/3(log d)2/3. (4.2)
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Proof Thanks to [44, Lemma 4.1.3], it suffices to consider the case � > 0. By
Lemma 4.1, for any ε > 0 we have �ε(F, Z) ≤ C ′ε−2(log d)�, where C ′ > 0
is a universal constant. Therefore, Proposition 3.1 yields

sup
x∈Rd

|P(F ≤ x) − P(Z ≤ x)| ≤ C ′ε−2(log d)� + 2ε

σ

(√
2 log d + 2

)
.

Now, setting ε = �1/3(log d)1/6, we obtain the desired result. ��

5 A High-Dimensional CLT for Normal-Gamma Homogeneous Sums

In view of the results in Sect. 4, we naturally seek a situation where a vector of
homogeneous sums has a Stein kernel. This is the case when all the components are
eigenfunctions of a Markov diffusion operator (cf. Proposition 5.1 in [39]). Moreover,
as clarified in [1,9,38], only some spectral properties of the Markov diffusion operator
are essential for deriving a fourth-moment-type bound for the variance of the corre-
sponding Stein kernel. This spectral property is especially satisfied when each Xi is
either a Gaussian or (standardized) gamma variable, so this section focuses on such a
situation and derives a high-dimensional CLT for this special case.

For each ν > 0, we denote by γ±(ν) the distribution of the random variable±(X −
ν)/

√
ν with X ∼ γ (ν). Also, for every q ∈ N we set cq := ∑q

r=1 r !
(q
r

)2
.

Proposition 5.1 Let us keep the same notation as in Theorem 2.1 and assume d ≥ 2.
Let Y = (Yi )Ni=1 be a sequence of independent random variables such that the law of
Yi belongs to {N (0, 1)} ∪ {γ+(ν) : ν > 0} ∪ {γ−(ν) : ν > 0} for all i . For every i ,
define the constants vi and ηi by

vi :=
{
2 if Yi ∼ N (0, 1),
2(1 + ν−1) if Yi ∼ γ±(ν),

ηi :=
{
1 if Yi ∼ N (0, 1),
1 ∧ √

ν if Yi ∼ γ±(ν).

We also set w∗ = 1/2 if Yi ∼ N (0, 1) for all i and w∗ = 1 otherwise. Then,
κ4(Q( f j ;Y)) ≥ 0 for all j and

sup
y∈Rd

∣∣E[h (�β(Q(Y) − y)
)] − E[h (�β(Z − y)

)]∣∣

≤ 3

2
max{‖h′′‖∞, β‖h′‖∞} (δ0[Q(Y)] + Cδ2[Q(Y)]) (5.1)

for any β > 0 and h ∈ C∞
b (R), where C > 0 depends only on qd and

δ2[Q(Y)] := max
1≤ j,k≤d

{η−1
N

(log d)}w∗(q j+qk)−1
{
1{q j<qk }‖Q( f j ;Y)‖4κ4(Q( fk;Y))1/4

+1{q j=qk }

√√√√2κ4(Q( f j ;Y)) +
(
2−q j v

q j
N − 1

)
(2q j )!cq j

N∑

i=1

Inf i ( f j )2

⎫
⎬

⎭
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with vN := max1≤i≤N vi and η
N

:= min1≤i≤N ηi .

The rest of this section is devoted to the proof of Proposition 5.1. In the remainder
of this section, we assume that the probability space (�,F , P) is given by the product
probability space (

∏N
i=1 �i ,

⊗N
i=1 Fi ,

⊗N
i=1 Pi ), where

(�i ,Fi , Pi ) :=
{
(R,B(R),N (0, 1)) if Yi ∼ N (0, 1),
((0,∞),B((0,∞)), γ (ν)) if Yi ∼ γ±(ν).

Then, we realize the variables Y1, . . . ,YN as follows: For ω = (ω1, . . . , ωN ) ∈ �,
we define

Yi (ω) :=
{
ωi if Yi ∼ N (0, 1),
±(ωi − ν)/

√
ν if Yi ∼ γ±(ν).

5.1 0-Calculus

Our first aim is to construct a suitable Markov diffusion operator whose eigenspaces
contain all the components of Q(Y). In the following, for an open subset U of R

m ,
we write C∞

p (U ) for the set of all real-valued C∞ functions onU all of whose partial
derivatives have at most polynomial growth.

First, we denote by LOU the Ornstein–Uhlenbeck operator on R. Next, for every
ν > 0, we write Lν for the Laguerre operator on (0,∞) with parameter ν. We then
define the operators L1, . . . ,LN by

Li :=
{
LOU if Yi ∼ N (0, 1),
Lν if Yi ∼ γ±(ν).

Finally, we construct the densely defined symmetric operator L in L2(P) by ten-
sorization ofL1, . . . ,LN (see Section 2.2 of [2] for details). We will use the following
properties of L (cf. [1] and Section 2.2 of [2]):

(i) If F and G are eigenfunctions of −L associated with eigenvalues p and q,
respectively, FG belongs to

⊕p+q
k=0 Ker(L+k Id).

(ii) The eigenspaces of LOU and Lν associated with eigenvalue k ∈ Z+ are given
by Ker(LOU +k Id) = {aHk : a ∈ R} and Ker(Lν +k Id) = {aL(ν−1)

k : a ∈ R},
respectively. Here, Hk and L(α)

k denote the Hermite polynomial of degree k and
Laguerre polynomial of degree k and parameter α > −1, respectively.

(iii) The eigenspace of L associated with eigenvalue k is given by

Ker(L+k Id) =
⊕

k1+···+kN=k
k1,...,kN∈Z+

Ker(L1 + k1 Id) ⊗ · · · ⊗ Ker(LN + kN Id).

(5.2)
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Let us write S = C∞
p (�). We define the carré du champ operator of L by

�(F,G) = 1

2
(L(FG) − F LG − G L F)

for all F,G ∈ S. The following lemma is a special case of [39, Proposition 5.1].

Lemma 5.1 For every (i, j) ∈ [d]2, define the function τ i j : R
d → R

d ⊗ R
d by

τ i j (x) = 1

q j
E[�(Q( fi ;Y), Q( f j ;Y)) | Q(Y) = x], x ∈ R

d .

Then, τ = (τ i j )1≤i, j≤d is a Stein kernel for Q(Y).

We refer to [5] for more details about these operators.

5.2 A Bound for the Variance of the Carré du Champ Operator

In view of Lemmas 4.1 and 5.1 , we obtain (5.1) once we show that

E

[
max

1≤ j,k≤d

∣∣∣∣
1

qk
�
(
Q( f j ;Y), Q( fk;Y)

) − C jk

∣∣∣∣

]
≤ δ0[Q(Y)] + Cδ2[Q(Y)],(5.3)

where C > 0 depends only on qd . As a first step, we estimate Var[�(Q( f j ;Y), Q
( fk;Y))] for every ( j, k) ∈ [d]2.More precisely, our aim here is to prove the following
result:

Proposition 5.2 Let p ≤ q be two positive integers. Let f : [N ]p → R and g :
[N ]q → R be symmetric functions vanishing on diagonals and set F := Q( f ;Y)

and G := Q(g;Y). Then, κ4(F) ≥ 0, κ4(G) ≥ 0 and

Var

[
1

q
�(F,G)

]

≤ 1{p<q}
√
E[F4]√κ4(G)

+1{p=q}

⎧
⎨

⎩2
√
κ4(F)

√
κ4(G)+

(
2−pv

p
N −1

)
(2p)!cp

√√√√
N∑

i=1

Inf i ( f )2

√√√√
N∑

i=1

Inf i (g)2

⎫
⎬

⎭ .

(5.4)

Before starting the proof, we remark how this result is related to the preceding
studies. When f = g, Azmoodeh et al. [1] have derived a better estimate than (5.4)
in a more general setting. Their technique of the proof can also be applied to the case
f �= g, and this has been implemented in Campese et al. [9]. However, this leads to
a bound containing the quantity Cov[F2,G2] − 2 E [FG]2, so we need an additional
argument to estimate it. For this reason, we take an alternative route for the proof,
which is inspired by the discussions in Zheng [59] as well as [9, Proposition 3.6]. As a
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byproduct of this strategy, we obtain inequality (5.11) which leads to the universality
of gamma variables.

We begin by introducing some notation. We write Jk for the orthogonal projection
of L2(P) onto the eigenspaceKer(L+k Id). For every i , we define the randomvariable
p2(Yi ) by

p2(Yi ) :=
{
H2(Yi ) if Yi ∼ N (0, 1),
± 2

ν
L(ν−1)
2 (±√

ν(Yi + 1)) if Yi ∼ γ±(ν).

The following lemma can be proved by a straightforward computation.

Lemma 5.2 For every i , E[p2(Yi )] = E[Yip2(Yi )] = 0 and E[p2(Yi )2] = vi .

Next, given h′ : [N ]r → R, we define

〈h, h′〉 :=
N∑

i1,...,ir=1

h(i1, . . . , ir )h
′(i1, . . . , ir ).

Note that ‖h‖2�2 = 〈h, h〉. For every r ∈ {0, 1, . . . , p ∧ q}, we define the function

f 
̂0r g : [N ]p+q−r → R by

f 
̂0r g(i1, . . . , i p+q−2r , k1, . . . , kr )

:= 1

(p + q − 2r)!
∑

σ∈Sp+q−2r

f (iσ(1), . . . , iσ(p−r), k1, . . . , kr )

×g(iσ(p−r+1), . . . , iσ(p+q−2r), k1, . . . , kr ).

Note that we have

f̃ 
r g(i1, . . . , i p+q−2r ) =
∑

(k1,...,kr )∈�N
r

f 
̂0r g(i1, . . . , i p+q−2r , k1, . . . , kr ), (5.5)

where f̃ 
r g is the symmetrization of f 
r g (recall (2.3)). Finally, we set �N
q :=

{(i1, . . . , iq) ∈ [N ]q : i j �= ik if j �= k}.
The next lemma is a key part in our proof.

Lemma 5.3 Under the assumptions of Proposition 5.1, we have

E[Jp+q(FG)2] ≥ (p + q)!‖ f ⊗̃ g‖2�2 . (5.6)

Moreover, if p = q, we have

∣∣∣E[J2p(F2)J2p(G
2)] − (2p)!〈 f ⊗̃ f , g ⊗̃ g〉

∣∣∣

≤ (
2−pv

p
N − 1

)
(2p)!cp

√√√√
N∑

i=1

Inf i ( f )2

√√√√
N∑

i=1

Inf i (g)2. (5.7)
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Proof We can deduce from [48, Proposition 2.9] and (5.5)

Jp+q(FG) =
p∧q∑

r=0

r !
(
p

r

)(
q

r

) ∑

(i1,...,i p+q−r )∈�N
p+q−r

f 
̂0r g(i1, . . . , i p+q−r )Yi1

· · · Yip+q−2r p2(Yip+q−2r+1) · · · p2(Yip+q−r ). (5.8)

Next, let (i1, . . . , i p+q−r ) ∈ �N
p+q−r and ( j1, . . . , jp+q−l) ∈ �N

p+q−l . Thanks to
Lemma 5.2,

E[Yi1 · · · Yip+q−2r p2(Yip+q−2r+1) · · · p2(Yip+q−r )Y j1

· · · Y jp+q−2lp2(Y jp+q−2l+1) · · · p2(Y jp+q−l )]

does not vanish if and only if the following condition is satisfied:

(
) (i1, . . . , i p+q−2r ) is a permutation of ( j1, . . . , jp+q−2l) and (i p+q−2r+1, . . . ,

i p+q−r ) is a permutation of ( jp+q−2l+1, . . . , jp+q−l).

Note that the condition (
) can hold true only if r = l. Moreover, if the condition (
)
is satisfied, we have

E[Yi1 · · · Yip+q−2r p2(Yip+q−2r+1) · · · p2(Yip+q−r )Y j1

· · · Y jp+q−2lp2(Y jp+q−2l+1) · · · p2(Y jp+q−l )] = vi p+q−2r+1 · · · vi p+q−r

by Lemma 5.2. Since there are totally (p+q−2r)! permutations of (i1, . . . , i p+q−2r )

and r ! permutations of (i p+q−2r+1, . . . , i p+q−r ), respectively, (5.8) yields

E[Jp+q(FG)2]

=
p∧q∑

r=0

r !2
(
p
r

)2 (q
r

)2

(p + q − 2r)!r !

×
∑

(i1,...,i p+q−r )∈�N
p+q−r

f 
̂0r g(i1, . . . , i p+q−r )
2vi p+q−2r+1 · · · vi p+q−r . (5.9)

Now, (5.9) is especially true when all the Yi ’s follow the standard normal distribution.
Therefore, the product formula for multiple integrals with respect to an isonormal
Gaussian process yields

(p + q)!‖ f ⊗̃ g‖2�2 =
p∧q∑

r=0

r !2
(
p
r

)2 (q
r

)2

(p + q − 2r)!r !

×
∑

(i1,...,i p+q−r )∈�N
p+q−r

f 
̂0r g(i1, . . . , i p+q−r )
2 · 2r ,

where f ⊗̃ g is the symmetrization of f ⊗ g. Combining this formula with (5.9), we
obtain (5.6).
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Next, we prove (5.7). Similar arguments to the above yield

∣∣∣E[J2p(F2)J2p(G
2)] − (2p)!〈 f ⊗̃ f , g ⊗̃ g〉

∣∣∣

≤ (
2−pv

p
N − 1

) p∑

r=1

r !2
(
p
r

)4

(2p − 2r)!r !

×
∑

(i1,...,i2p−r )∈�N
2p−r

∣∣∣ f 
̂0r f (i1, . . . , i2p−r )g 
̂0r g(i1, . . . , i2p−r )

∣∣∣ · 2r

and

p∑

r=1

r !2
(
p

r

)4

(2p − 2r)!r !
∑

(i1,...,i2p−r )∈�N
2p−r

f 
̂0r f (i1,

. . . , i2p−r )g 
̂0r g(i1, . . . , i2p−r ) · 2r

= (2p)!
〈
f ⊗̃ f , g ⊗̃ g1(�N

2p)
c

〉
.

Combining these results with the Schwarz inequality, we infer that

∣∣∣E[J2p(F2)J2p(G
2)] − (2p)!〈 f ⊗̃ f , g ⊗̃ g〉

∣∣∣

≤ (
2−pv

p
N − 1

)√
(2p)!‖ f ⊗̃ f 1(�N

2p)
c‖2�2

√
(2p)!‖g ⊗̃ g1(�N

2p)
c‖2�2 .

The desired result now follows from Eq.(50) in [27] and Hölder’s inequality. ��
Lemma 5.4 Under the assumptions of Proposition 5.1, we have

p+q−1∑

k=1

E[Jk(FG)2] ≤ Cov[F2,G2] − 2E[FG]2 (5.10)

and

2p−1∑

k=1

E[Jk(F2)2] + p!2
p−1∑

r=1

(
p

r

)2

‖ f 
r f ‖2�2 ≤ E[F4] − 3E[F2]2. (5.11)

Proof The proof is parallel to that of [59, Lemma 3.1] but using Lemma 5.3 instead
of [59, Lemma 2.1]. ��
Proof of Proposition 5.2 The nonnegativity of κ4(F) and κ4(G) follows from (5.11).
(5.4) can be shown in a similar manner to the proof of [59, Theorem 1.1] but using
Lemmas 5.3 and 5.4 instead of Lemmas 2.1 and 3.1 in [59], respectively. ��
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5.3 Proof of Proposition 5.1

We have already established the nonnegativity of κ4(Q( f j ;Y))’s in Proposition 5.2.
The remaining claim of the proposition follows once we prove (5.3). By Proposi-
tion 5.2 and Lemma A.2, this follows once we show that, under the assumptions of
Proposition 5.1,

‖�(F,G) − E[�(F,G)]‖ψ
(w∗(p+q)−1)−1 ≤ Cp,qη

−(w∗(p+q)−1)
N

√
Var[�(F,G)],

(5.12)

where Cp,q > 0 depends only on p, q. To prove (5.12), note that

�(F,G) = 1

2
(L(FG) + qFG + pGF)

= p + q

2
E[FG] +

p+q−1∑

k=1

p + q − k

2
Jk(FG). (5.13)

Hence, using Lemma A.5, we can deduce (5.12) by a hypercontractivity argument
similar to those in [33, Section 5] and [41, Section 3.2]. ��

6 Randomized LindebergMethod

For any � ≥ 0 and x ≥ 0, we set

χ� (x) =
{
exp(−x1/� ) if � > 0,
1[0,1)(x) if � = 0.

The aim of this section is to prove the following result.

Proposition 6.1 Set �i := (log d)(qd−1)/α max1≤k≤d Mqk−1
N

√
Inf i ( fk) for i ∈ [N ].

Let X = (Xi )
N
i=1 and Y = (Yi )Ni=1 be two sequences of independent centered random

variableswith unit variance. Suppose that MN := max1≤i≤N (‖Xi‖ψα ∨‖Yi‖ψα ) < ∞
for some α ∈ (0, 2]. Suppose also that there is an integer m ≥ 3 such that E[Xr

i ] =
E[Yr

i ] for all i ∈ [N ] and r ∈ [m − 1]. Then, for any h ∈ Cm
b (R), β > 0 and τ, ρ ≥ 0

with τρMN max1≤i≤N �i ≤ β−1, we have

sup
y∈Rd

∣∣E
[
h
(
�β(Q(X) − y)

)] − E
[
h
(
�β(Q(Y) − y)

)]∣∣

≤ C

(
max

1≤ j≤m
βm− j‖h( j)‖∞

){
(log d)m(qd−1)/α max

1≤k≤d
Mmqk

N

N∑

i=1

Inf i ( fk)
m/2

+
(
e
−
(

τ
K1

)α
+ χ(qd−1)/α

(
ρ

K2

)
(ρ ∨ 1)m + exp

(
−
(

τρ

K3

)α/qd
)
(τρ ∨ 1)m

)
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×Mm
N

N∑

i=1

�m
i

}
, (6.1)

where C > 0 depends only on m, α, qd , K1 depends only on α, and K2, K3 > 0
depend only on α, qd .

Remark 6.1 Proposition 6.1 can be viewed as a version of [47, Theorem 7.1]. Apart
from that we take account of higher moment matching, there are important differences
between these two results. On the one hand, the latter takes all C3 functions with
bounded third-order partial derivatives as test functions, while the former focuses
only on test functions of the form x �→ h(�β(x − y)) for some h ∈ Cm

b (R) and

y ∈ R
d . On the other hand, in the bound of (6.1), terms like

∑N
i=1 max1≤k≤d Inf i ( fk)

always appear with exponential factors, so we can remove such terms by appropriately
selecting the parameters τ, ρ. In contrast, such a quantity appears (as the constant
C) in the dominant term of the bound given by [47, Theorem 7.1]. As pointed out in
Remark 2.4(b), this can be crucial in a high-dimensional setting, and this phenomenon
originates from a (naïve) application of the Lindeberg method. To avoid this difficulty,
weuse a randomizedversionof theLindebergmethod,whichwas originally introduced
in [24] for sums of independent random vectors.

For the proof, we need three auxiliary results. The first one is a generalization of
[36, Lemma S.5.1]:

Lemma 6.1 Let ξ be a nonnegative random variable such that P(ξ > x) ≤ Ae−(x/B)α

for all x ≥ 0 and some constants A, B, α > 0. Then, we have

E
[
ξ p1{ξ>t}

] ≤ A

(
1 + 2p − α

p − α

)(
t ∨ {(2(p/α − 1))1/αB}

)p
e−(t/B)α

for any p > α and t > 0.

Proof The proof is analogous to that of [36, Lemma S.5.1] and elementary, so we omit
it. ��

The second one is a moment inequality for homogeneous sums with a sharp con-
stant:

Lemma 6.2 Let X = (Xi )
N
i=1 be a sequence of independent centered random vari-

ables. Suppose that M := max1≤i≤N ‖Xi‖ψα < ∞ for some α ∈ (0, 2]. Also, let
q ∈ N and f : [N ]q → R be a symmetric function vanishing on diagonals. Then,

‖Q( f ; X)‖p ≤ Kα,q p
q/αMq‖ f ‖�2

for any p ≥ 2, where Kα,q > 0 depends only on α, q.

Since we need additional lemmas to prove Lemma 6.2, we postpone its proof to
Appendix B.

The third one is well known and immediately follows from the commutativity of
addition, but it will deserve to be explicitly stated for later reference.
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Lemma 6.3 Let S be a finite set and ϕ be a real-valued function on S. Also, let b :
S → S be a bijection. Then,

∑
x∈A ϕ(b(x)) = ∑

x∈b(A) ϕ(x) for any A ⊂ S.

Now we turn to the main body of the proof. Throughout the proof, we will use
the standard multi-index notation. For a multi-index λ = (λ1, . . . , λd) ∈ Z

d+, we set
|λ| := λ1 + · · · + λd , λ! := λ1! · · · λd ! and ∂λ := ∂

λ1
1 · · · ∂λd

d as usual. Also, given a

vector x = (x1, . . . , xd) ∈ R
d , we write xλ = xλ11 · · · xλdd .

Proof of Proposition 6.1 Without loss of generality, we may assume X and Y are inde-
pendent. Throughout the proof, for two real numbers a and b, the notation a � b
means that a ≤ cb for some constant c > 0 which depends only on m, α, qd .

Take a vector y ∈ R
d anddefine the function� : R

d → Rby�(x) = h(�β(x−y))
for x ∈ R

d . For any i ∈ [N ], σ ∈ SN and k ∈ [d], we define

Wσ
i = (W σ

i,1, . . . ,W
σ
i,N ) := (Xσ(1), . . . , Xσ(i),Yσ(i+1), . . . ,Yσ(N ))

and

Uσ
k,i :=

N∑

i1,...,iqk=1
i1 �=i,...,iqk �=i

fk(σ (i1), . . . , σ (iqk ))W
σ
i,i1 · · ·W σ

i,iqk
,

V σ
k,i :=

N∑

i1,...,iqk=1
∃ j :i j=i

fk(σ (i1), . . . , σ (iqk ))
∏

l:il �=i

W σ
i,il .

Then, we set Uσ
i = (Uσ

k,i )
d
k=1 and V σ

i = (V σ
k,i )

d
k=1. By construction, Uσ

i and V σ
i are

independent of Xσ(i) and Yσ(i). Moreover, we have Q( fk;Wσ
i−1) = Uσ

k,i + Yσ(i)V σ
k,i

and Q( fk;Wσ
i ) = Uσ

k,i + Xσ(i)V σ
k,i (with Wσ

0 := (Yσ(1), . . . ,Yσ(N ))). In particular,
by Lemma 6.3 it holds that Q( fk;Wσ

0 ) = Q( fk;Y) and Q( fk;Wσ
N ) = Q( fk; X).

Therefore, we obtain

∣∣E
[
�(Q(X))

] − E
[
�(Q(Y))

]∣∣

= 1

N !
∑

σ∈SN

∣∣E
[
�(Q(Wσ

N ))
] − E

[
�(Q(Wσ

0 ))
]∣∣

≤ 1

N !
∑

σ∈SN

N∑

i=1

∣∣E
[
�(Q(Wσ

i ))
] − E

[
�(Q(Wσ

i−1))
]∣∣ . (6.2)

Taylor’s theorem and the independence of Xσ(i) and Yσ(i) from Uσ
i and V σ

i yield

E
[
�(Uσ

i + ξV σ
i )
] =

∑

λ∈Zd+:|λ|≤m−1

1

λ! E
[
∂λ�(Uσ

i )
(
V σ

i

)λ]E
[
ξ |λ|] + Rσ

i [ξ ]
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for ξ ∈ {Xσ(i),Yσ(i)}, where

Rσ
i [ξ ] :=

∑

λ∈Zd+:|λ|=m

m

λ!
∫ 1

0
(1 − t)m−1 E

[
∂λ�(Uσ

i + tξVσ
i )ξ

m(V σ
i )

λ
]
dt .

Since E[Xr
i ] = E[Yr

i ] for all i ∈ [N ] and r ∈ [m − 1] by assumption, we obtain

∣∣E
[
�
(
Qσ

i )
] − E

[
�(Qσ

i−1

)]∣∣ ≤ |Rσ
i [Xσ(i)]| + |Rσ

i [Yσ(i)]| ≤ Iσi + IIσi , (6.3)

where Iσi := Iσi [Xσ(i)] + Iσi [Yσ(i)], IIσi := IIσi [Xσ(i)] + IIσi [Yσ(i)] and

Iσi [ξ ] :=
∑

λ∈Zd+:|λ|=m

m

λ!
∫ 1

0
(1 − t)m−1 E

[|∂λ�(Uσ
i + tξV σ

i )||ξ |m |(V σ
i )

λ|; Eσ,i
]
dt,

IIσi [ξ ] :=
∑

λ∈Zd+:|λ|=m

m

λ!
∫ 1

0
(1 − t)m−1 E

[|∂λ�(Uσ
i + tξV σ

i )||ξ |m |(V σ
i )

λ|; Ec
σ,i

]
dt

for ξ ∈ {Xσ(i),Yσ(i)} and Eσ,i := {(|Xσ(i)| + |Yσ(i)|)‖V σ
i ‖�∞ ≤ τρMN�σ(i)}.

First, we consider Iσi . Since τρMN max1≤i≤N �i ≤ β−1 by assumption,
Lemma 3.1 and the independence of Xσ(i),Yσ(i) from Uσ

i , V
σ
i imply that

Iσi ≤ e8

m!
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i − y)(|Xσ(i)|m + |Yσ(i)|m)|V σ
j1,i |m

]

≤ e8

m!
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i − y)|V σ
j1,i |m

]
E
[|Xσ(i)|m + |Yσ(i)|m

]

≤ e8

m! sup
1≤i≤N

E[|Xi |m + |Yi |m] {I(1)σi + I(2)σi + I(3)σi
}
, (6.4)

where

I(1)σi :=
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i − y)|V σ
j1,i |m; Cσ,i ∩ Dσ,i

]
,

I(2)σi :=
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i − y)|V σ
j1,i |m; Ccσ,i

]
,

I(3)σi :=
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i − y)|V σ
j1,i |m;Dc

σ,i

]

and Cσ,i := {|Xσ(i)| + |Yσ(i)| ≤ τMN },Dσ,i := {‖V σ
i ‖�∞ ≤ ρ�σ(i)}.
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We begin by estimating I(1)σi . Let (δi )
N
i=1 be a sequence of i.i.d. Bernoulli variables

independent of X and Y with P(δi = 1) = 1 − P(δi = 0) = i/(N + 1). We
set ζi,a := δi Xa + (1 − δi )Ya for all i, a ∈ [N ]. Then, since ‖ζi,σ (i)V σ

i ‖�∞ ≤
τρMN max1≤i≤N �i ≤ β−1 on the set Cσ,i ∩ Dσ,i , by Lemma 3.1 we obtain

I(1)σi ≤ e8
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i + ζi,σ (i)V σ
i − y)|V σ

j1,i |m
]
.

The subsequent discussions are inspired by the proof of [24, Lemma 2] and we intro-
duce some notation analogous to theirs. For any i, a ∈ [N ], we set

Ai,a = {(A, B) : A ⊂ [N ], B ⊂ [N ], A ∪ B = [N ] \ {a}, #A = i − 1, #B = N − i},

where #S denotes the number of elements in a set S. We also set

Ai = {(A, B) : A ⊂ [N ], B ⊂ [N ], A ∪ B = [N ], #A = i, #B = N − i}

for every i ∈ {0, 1 . . . , N }. Moreover, for any A, B ⊂ [N ] with A ∩ B = ∅ and
i ∈ A ∪ B, we define the random variable W (A,B)

i by W (A,B)
i := Xi if i ∈ A and

W (A,B)
i := Yi if i ∈ B. Then, we define

Q(A,B)
k :=

N∑

i1,...,iqk=1

fk(i1, . . . , iqk )W
(A,B)
i1

· · ·W (A,B)
iqk

for any k ∈ [d] and (A, B) ∈ ⋃∞
i=0 Ai , and set Q(A,B) := (Q(A,B)

k )dk=1. We also
define

U (A,B)
k,a :=

N∑

i1,...,iqk=1
i1 �=a,...,iqk �=a

fk(i1, . . . , iqk )W
(A,B)
i1

· · ·W (A,B)
iqk

,

V (A,B)
k,a :=

N∑

i1,...,iqk=1
∃ j :i j=a

fk(i1, . . . , iqk )
∏

l:il �=a

W (A,B)
il

for any k ∈ [d], i, a ∈ [N ] and (A, B) ∈ ⋃N
j=1A j,a and set U (A,B)

a := (U (A,B)
k,a )dk=1

and V (A,B)
a := (V (A,B)

k,a )dk=1. Finally, for any σ ∈ SN and i ∈ [N ] we set Aσ
i :=

{σ(1), . . . , σ (i − 1)} and Bσ
i := {σ(i + 1), . . . , σ (N )}.
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Now, sincewe haveW σ
i, j = W

(Aσ
i ,B

σ
i )

σ ( j) for j ∈ [N ]\{i}, it holds thatUσ
i = U

(Aσ
i ,B

σ
i )

σ (i)

and V σ
i = V

(Aσ
i ,B

σ
i )

σ (i) by Lemma 6.3. Therefore, we obtain

1

N !
∑

σ∈SN

N∑

i=1

I(1)σi

≤ e8

N !
∑

σ∈SN

N∑

i=1

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
U

(Aσ
i ,B

σ
i )

σ (i) + ζi,σ (i)V
(Aσ

i ,B
σ
i )

σ (i) − y
) ∣∣∣V (Aσ

i ,B
σ
i )

j1,σ (i)

∣∣∣
m]

= e8

N !
N∑

i=1

N∑

a=1

∑

σ∈SN :σ(i)=a

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
U

(Aσ
i ,B

σ
i )

a

+ζi,aV
(Aσ

i ,B
σ
i )

a − y
) ∣∣∣V (Aσ

i ,B
σ
i )

j1,a

∣∣∣
m]

= e8

N !
N∑

i=1

N∑

a=1

∑

(A,B)∈Ai,a

#{σ ∈ SN : Aσ
i = A, σ (i) = a}

×
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
U (A,B)

a + ζi,aV (A,B)
a − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

= e8
N∑

i=1

(i − 1)!(N − i)!
N !

N∑

a=1

∑

(A,B)∈Ai,a

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
U (A,B)

a + ζi,aV (A,B)
a − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

.

Now, for (A, B) ∈ Ai,a we have U (A,B)
a + XaV

(A,B)
a = Q(A∪{a},B) and U (A,B)

a +
YaV

(A,B)
a = Q(A,B∪{a}), so we obtain

1

N !
∑

σ∈SN

N∑

i=1

I(1)σi

≤ e8
N∑

i=1

(i − 1)!(N − i)!
N !

N∑

a=1

∑

(A,B)∈Ai,a

d∑

j1,..., jm=1
{

i

N + 1
E
[
ϒ

j1,..., jm
β

(
Q(A∪{a},B) − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

+N + 1 − i

N + 1
E
[
ϒ

j1,..., jm
β

(
Q(A,B∪{a}) − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]}
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= e8
N∑

i=1

i !(N − i)!
(N + 1)!

N∑

a=1

∑

(A,B)∈Ai,a

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
Q(A∪{a},B) − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

+ e8
N∑

i=1

(i − 1)!(N + 1 − i)!
(N + 1)!

N∑

a=1

∑

(A,B)∈Ai,a

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
Q(A,B∪{a}) − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

= e8
N∑

i=1

i !(N − i)!
(N + 1)!

N∑

a=1

∑

(A,B)∈Ai,a

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
Q(A∪{a},B) − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

+ e8
N−1∑

i=0

i !(N − i)!
(N + 1)!

N∑

a=1

∑

(A,B)∈Ai+1,a

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
Q(A,B∪{a}) − y

) ∣∣∣V (A,B)
j1,a

∣∣∣
m]

= e8
N∑

i=1

i !(N − i)!
(N + 1)!

N∑

a=1

∑

(A,B)∈Ai :a∈A

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
Q(A,B) − y

) ∣∣∣V (A\{a},B)
j1,a

∣∣∣
m]

+ e8
N−1∑

i=0

i !(N − i)!
(N + 1)!

N∑

a=1

∑

(A,B)∈Ai :a∈B

d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β

(
Q(A,B) − y

) ∣∣∣V (A,B\{a})
j1,a

∣∣∣
m]

= e8
N∑

i=0

i !(N − i)!
(N + 1)!

∑

(A,B)∈Ai

d∑

j1,..., jm=1

E

[
ϒ

j1,..., jm
β

(
Q(A,B) − y

) N∑

a=1

∣∣∣V (A\{a},B\{a})
j1,a

∣∣∣
m
]

≤ e8
N∑

i=0

i !(N − i)!
(N + 1)!

∑

(A,B)∈Ai

d∑

j1,..., jm=1

E

[
ϒ

j1,..., jm
β

(
Q(A,B) − y

)
max
1≤k≤d

N∑

a=1

∣∣∣V (A\{a},B\{a})
k,a

∣∣∣
m
]
.
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Hence, Lemma 3.1 yields

1

N !
∑

σ∈SN

N∑

i=1

I(1)σi � max
1≤ j≤m

βm− j‖h( j)‖∞
N∑

i=0

i !(N − i)!
(N + 1)!

∑

(A,B)∈Ai

E

[
max
1≤k≤d

N∑

a=1

∣∣∣V (A\{a},B\{a})
k,a

∣∣∣
m
]
.

Now, by Lemma 6.2 we have

∥∥∥V (A\{a},B\{a})
k,a

∥∥∥
r

≤ Cα,qd r
(qk−1)/αMqk−1

N

√
Infa( fk) (6.5)

for any r ≥ 1, where Cα,qd > 0 depends only on α, qd . Hence, the Minkowski
inequality yields

∥∥∥∥∥

N∑

a=1

∣∣∣V (A\{a},B\{a})
k,a

∣∣∣
m
∥∥∥∥∥
r

≤ Cα,qd (mr)m(qk−1)/αMm(qk−1)
N

N∑

a=1

Infa( fk)
m/2. (6.6)

Thus, if qd > 1, Lemma A.5 yields

∥∥∥∥∥

N∑

a=1

∣∣∣V (A\{a},B\{a})
k,a

∣∣∣
m
∥∥∥∥∥
ψα/{m(qd−1)}

� Mm(qk−1)
N

N∑

a=1

Infa( fk)
m/2.

Therefore, by Lemmas A.2 and A.6 we conclude that

E

[
max
1≤k≤d

N∑

a=1

∣∣∣V (A\{a},B\{a})
k,a

∣∣∣
m
]

� (log d)m(qd−1)/α max
1≤k≤d

Mm(qk−1)
N

N∑

a=1

Infa( fk)
m/2.

This inequality also holds true when qd = 1 because in this case V (A\{a},B\{a})
k,a ’s are

non-random and thus it is a direct consequence of (6.6). As a result, we obtain

1

N !
∑

σ∈SN

N∑

i=1

I(1)σi �
(

max
1≤ j≤m

βm− j‖h( j)‖∞
)

×
(
(log d)m(qd−1)/α max

1≤k≤d
Mm(qk−1)

N

N∑

a=1

Inf a( fk)
m/2

)
.

(6.7)
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Next, we estimate I(2)σi . Since Xσ(i) and Yσ(i) are independent of Uσ
i and V σ

i ,

I(2)σi ≤
d∑

j1,..., jm=1

E
[
ϒ

j1,..., jm
β (Uσ

i − y)‖V σ
i ‖m�∞

]
P
(Ccσ,i

)
.

Hence, Lemma 3.1 yields

I(2)σi �
(

max
1≤ j≤m

βm− j‖h( j)‖∞
)
E
[‖V σ

i ‖m�∞
]
P
(Ccσ,i

)
.

Now, if qd > 1, (6.5) and Lemma A.5 yield

‖V σ
k,i‖ψα/(qd−1) ≤ cα,qd M

qk−1
N

√
Infσ(i)( fk),

where cα,qd > 0 depends only on α, qd . Hence, Lemmas A.2 and A.6 yield

‖‖V σ
i ‖�∞‖r ≤ c′

α,qd
r (qd−1)/α�σ(i) (6.8)

for every r ≥ 1 with c′
α,qd

> 0 depending only on α, qd . This inequality also holds
true when qd = 1 because in this case V σ

i is non-random and thus it is a direct con-

sequence of (6.5). Meanwhile, (A.3) and Lemma A.3 yield P(Ccσ,i ) ≤ 2e−(τ/21∨α−1
)α .

Consequently, we obtain

1

N !
∑

σ∈SN

N∑

i=1

I(2)σi �
(

max
1≤ j≤m

βm− j‖h( j)‖∞
)
e−(τ/21∨α−1

)α
N∑

i=1

�m
i . (6.9)

Third, we estimate I(3)σi . Lemma 3.1 yields

I(3)σi �
(

max
1≤ j≤m

βm− j‖h( j)‖∞
)
E
[‖V σ

i ‖m�∞;Dc
σ,i

]
.

If qd > 1, (6.8) and Lemma A.4 yield

P
(‖V σ

i ‖�∞ ≥ x
) ≤ e(qd−1)/α exp

(
−
(

x

Kα,qd�σ(i)

)α/(qd−1)
)

for every x > 0 with Kα,qd > 0 depending only on α, qd . Hence, Lemma 6.1 yields

E
[‖V σ

i ‖m�∞;Dc
σ,i

]
� (ρ ∨ 1)m�m

σ(i) exp

(
−
(

ρ

Kα,qd

)α/(qd−1)
)
.
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Meanwhile, if qd = 1, V σ
i is non-random, so (6.8) yields E

[
‖V σ

i ‖m�∞;Dc
σ,i

]
�

�m
σ(i)1{c′

α,qd
>ρ}. Consequently, setting K ′

α,qd
:= Kα,qd ∨ c′

α,qd
, we obtain

1

N !
∑

σ∈SN

N∑

i=1

I(3)σi

�
(

max
1≤ j≤m

βm− j‖h( j)‖∞
)
χ(qd−1)/α

(
ρ

K ′
α,qd

)
(ρ ∨ 1)m

N∑

i=1

�m
i . (6.10)

Now, combining (6.4), (6.7), (6.9), (6.10) with Lemma A.6, we obtain

1

N !
∑

σ∈SN

N∑

i=1

Iσi

�
(

max
1≤ j≤m

βm− j‖h( j)‖∞
){

(log d)m(qd−1)/α max
1≤k≤d

Mmqk
N

N∑

i=1

Inf i ( fk)
m/2

+e−(τ/21∨α−1
)αMm

N

N∑

i=1

�m
i + χ(qd−1)/α

(
ρ

K ′
α,qd

)
(ρ ∨ 1)mMm

N

N∑

i=1

�m
i

}
.

(6.11)

Next, we consider IIσi . Lemma 3.1 yields

1

N !
∑

σ∈SN

N∑

i=1

IIσi � 1

N !
(

max
1≤ j≤m

βm− j‖h( j)‖∞
)

×
∑

σ∈SN

N∑

i=1

E

[
(|Xσ(i)|m + |Yσ(i)|m) max

1≤k≤d

∣∣V σ
k,i

∣∣m ; Ec
σ,i

]
.

Since Xσ(i) and Yσ(i) are independent of V σ
i , Lemma A.6 and (6.8) imply that

‖(|Xσ(i)| + |Yσ(i)|)‖V σ
i ‖�∞‖r ≤ Lα,qd r

qd/αMN�σ(i)

for every r ≥ 1 with Lα,qd > 0 depending only on α, qd . Thus, by Lemma A.4 we
obtain

P
(
(|Xσ(i)| + |Yσ(i)|)‖V σ

i ‖�∞ ≥ x
) ≤ eqd/α · exp

⎛

⎝−
(

x

L ′
α,qd

MN�σ(i)

)α/qd
⎞

⎠
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for every x > 0 with L ′
α,qd

> 0 depending only on α, qd . So Lemma 6.1 yields

1

N !
∑

σ∈SN

N∑

i=1

IIσi

�
(

max
1≤ j≤m

βm− j‖h( j)‖∞
) N∑

i=1

(τρ ∨ 1)m Mm
N�m

i exp

⎛

⎝−
(

τρ

L ′
α,qd

)α/qd
⎞

⎠ .

Combining this inequality with (6.2), (6.3) and (6.11), we complete the proof. ��

7 Proof of theMain Results

7.1 Proof of Theorem 2.1

The following result is a version of [47, Lemma 4.3]. The proof is aminormodification
of the latter’s, so we omit it.

Lemma 7.1 Let q ∈ N and f : [N ]q → R be a symmetric function vanishing on
diagonals. Also, let X = (Xi )

N
i=1 and Y = (Yi )Ni=1 be two sequences of independent

centered random variables with unit variance. Suppose that there are integers 3 ≤
m ≤ l such that MN := max1≤i≤N (‖Xi‖l ∨ ‖Yi‖l) < ∞ and E[Xr

i ] = E[Yr
i ] for all

i ∈ [N ] and r ∈ [m − 1]. Then, we have Q( f ; X), Q( f ;Y) ∈ Ll(P) and

|E[Q( f ; X)l ] − E[Q( f ;Y)l ]|

≤ CMql
N (1 ∨ ‖ f ‖�2)

l−m
N∑

i=1

max{Inf i ( f )m
2 , Inf i ( f )

l
2 },

where C > 0 depends only on q, l.

Proof of Theorem 2.1 Throughout the proof, for two real numbers a and b, the notation
a � b means that a ≤ cb for some constant c > 0 which depends only on α, qd .

Moreover, if (log d)μ+ 1
2 δ1[Q(X)] 13 ≥ 1, then the claim evidently holds true with

C = 1, so we may assume (log d)μ+ 1
2 δ1[Q(X)] 13 < 1.

Set si := E[X3
i ] for every i . We take a sequence Y = (Yi )Ni=1 of independent

random variables such that

Yi ∼
⎧
⎨

⎩

N (0, 1) if si = 0,
γ+(4/s2i ) if si > 0,
γ−(4/s2i ) if si < 0.

By construction, we have E[Xr
i ] = E[Yr

i ] for any i ∈ [N ] and r ∈ [3]. Moreover, one
can easily check that ‖Yi‖r ≤ BN (r − 1)w for any i ∈ [N ] and r ≥ 2. Hence, by
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Lemma A.5 we have max1≤i≤N ‖Yi‖ψα ≤ cαBN with cα ≥ 1 depending only on α.
Therefore, applying Proposition 6.1 with m = 4, we obtain

�ε(Q(X), Q(Y))

≤ C1ε
−4(log d)3

{
(log d)4(qd−1)/α max

1≤k≤d
B
4qk
N

N∑

i=1

Inf i ( fk)
2

+
(
e
−
(

τ
K1

)α
+ χ(qd−1)/α

(
ρ

K2

)
(ρ ∨ 1)4

+ exp

(
−
(

τρ

K3BN

)α/qd
)
(τρ ∨ 1)4

)
B
4
N

N∑

i=1

�4
i

}

=: C1ε
−4(log d)3 (I + II)

for any ε > 0 and τ, ρ ≥ 0 with τρcαBN max1≤i≤N �i ≤ ε/ log d, where

C1, K1, K2, K3 > 0dependonlyonα, qd , and�i := (log d)(qd−1)/α max1≤k≤d B
qk−1
N√

Inf i ( fk). We apply this inequality with τ := (log d2)1/α{K1 ∨ (K3/K2)}, ρ :=
(log d2)(qd−1)/αK2 and

ε := (log d)1/6δ0[Q(X)]1/3 + (log d)μδ1[Q(X)]1/3 + (log d)τρcαBN max
1≤i≤N

�i .

By construction, we have

II � d−1
N∑

i=1

d∑

k=1

B
4qk
N Inf i ( fk)

2 ≤ max
1≤k≤d

B
4qk
N

N∑

i=1

Inf i ( fk)
2.

Therefore, we obtain

�ε(Q(X), Q(Y)) � ε−4(log d)3+4(qd−1)/α max
1≤k≤d

B
4qk
N

N∑

i=1

Inf i ( fk)
2

� ε−4(log d)3+4(qd−1)/αδ1[Q(X)]2
≤ (log d)3+4{(qd−1)/α−μ}δ1[Q(X)]2/3.

Since 3+4{(qd−1)/α−μ} ≤ 4
3α (qd−1)+ 5

3 ≤ 2μ+1 and (log d)μ+ 1
2 δ1[Q(X)] 13 <

1, we conclude that

�ε(Q(X), Q(Y)) � (log d)2μ+1δ1[Q(X)]2/3 ≤ (log d)μ+ 1
2 δ1[Q(X)] 13 . (7.1)

Meanwhile, Proposition 5.1 yields

�ε(Q(Y), Z) � ε−2(log d) (δ0[Q(Y)] + δ2[Q(Y)]) .
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Now, in the present situation, the constantsw∗, vN and ηN appearing in Proposition 5.1

satisfy w∗ = w, vN ≤ 2 + A
2
N/2 and η−1

N ≤ AN/2, so we have

δ2[Q(Y)]
≤ (AN/2)2wqd−1(log d)2wqd−1 max

1≤ j,k≤d

{
1{q j<qk }‖Q( f j ;Y)‖4κ4(Q( fk;Y))1/4

+1{q j=qk }

√√√√2κ4(Q( fk;Y)) +
(
(1 + A

2
N/4)qk − 1

)
(2qk)!cqk

N∑

i=1

Inf i ( fk)2

⎫
⎬

⎭ .

Moreover, by a standard hypercontractivity argument, we have ‖Q( f j ;Y)‖4 �
A
q j
N ‖Q( f j ;Y)‖2 for every j . Also, sinceLemmaA.5 yieldsmax1≤i≤N ‖Yi‖ψα � η−1

N
,

by Lemma 7.1 (with l = m = 4) we obtain

|E[Q( fk; X)4] − E[Q( fk;Y)4]| � A
4qk
N

N∑

i=1

Inf i ( fk)
2

for every k. Since we have ‖Q( fk;Y)‖2 = √
qk !‖ fk‖�2 = ‖Q( fk; X)‖2 for every k,

it holds that δ2[Q(Y)] � (log d)2wqd−1δ1[Q(X)]. Consequently, we obtain

�ε(Q(Y), Z) � (log d)2/3δ0[Q(X)]1/3 + (log d)2(wqd−μ)δ1[Q(X)]1/3.

Since 2(wqd − μ) ≤ 2
3wqd + 1

3 ≤ μ + 1
2 , we conclude that

�ε(Q(Y), Z) � (log d)2/3δ0[Q(X)]1/3 + (log d)μ+ 1
2 δ1[Q(X)]1/3. (7.2)

Now, (7.1)–(7.2) imply that

�ε(Q(X), Z) ≤ �ε(Q(X), Q(Y)) + �ε(Q(Y), Z)

� (log d)2/3δ0[Q(X)]1/3 + (log d)μ+ 1
2 δ1[Q(X)]1/3.

Therefore, Proposition 3.1 yields

sup
x∈Rd

|P(Q(X) ≤ x) − P(Z ≤ x)|

� (log d)2/3δ0[Q(X)]1/3 + (log d)μ+ 1
2 δ1[Q(X)]1/3 + σ−1ε

√
log d

� (1 + σ−1){(log d)2/3δ0[Q(X)]1/3 + (log d)μ+ 1
2 δ1[Q(X)]1/3}

+ σ−1(log d)(2qd−1)/α+ 3
2 max
1≤k≤d

B
qk
N

√
M( fk).

This completes the proof. ��
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7.2 Proof of Corollaries 2.1 and 2.2

Corollary 2.1 can be shown in an analogous manner to the proof of [18, Corollary 5.1]
with applying Theorem 2.1 instead of [18, Lemma 5.1]. Corollary 2.2 immediately
follows from Corollary 2.1. ��

7.3 Proof of Theorem 2.2

Lemma 7.2 Let q ≥ 2 and f : [N ]q → R be a symmetric function vanishing on
diagonals. Suppose that the sequence X satisfies one of conditions (A)–(C). Then, we
have κ4(Q( f ; X)) ≥ 0 and

M( f ) ≤ max
1≤r≤q−1

‖ f 
r f ‖�2 ≤ 1

q · q!
√
κ4(Q( f ; X)). (7.3)

Proof The first inequality in (7.3) is a consequence of Eq.(1.9) in [47] (note that they
define Inf i ( f ) with dividing ours by (q − 1)!). To prove the second inequality in
(7.3), first we suppose that X satisfies condition (A). Let G = (Gi )i∈N be a sequence
of independent standard normal variables. Then, by [45, Proposition 3.1] we have
κ4(Q( f ; X)) ≥ κ4(Q( f ; G)). Therefore, (5.11) yields the desired result. Next, when
X satisfies condition (B), the desired result follows fromEq.(5.3) in [29]. Finally, when
X satisfies condition (C), the desired result follows from (5.11). Hence, we complete
the proof. ��
Lemma 7.3 Let F,G be two random variables such that ‖F‖ψα ∨ ‖G‖ψα < ∞ for
some α > 0. Then, we have

|E[|F |r ] − E[|G|r ]| ≤ 2r(‖F‖rψα
+ ‖G‖rψα

)

αb
�
( r

αb

)
sup
x∈R

|P(F ≤ x) − P(G ≤ x)|b

for any r ≥ 1 and b ∈ (0, 1), where � denotes the gamma function.

Proof This is an easy consequence of [55, Theorem 8.16] and Lemma A.3. ��
Proof of Theorem 2.2 The inequality κ4(Q( f ; X)) ≥ 0 is proved in Lemma 7.2. The
implication (iv) ⇒ (iii) ⇒ (ii) is obvious. The implication (i) ⇒ (iv) follows from
Corollary 2.2 and Lemma 7.2.

It remains to prove (ii) ⇒ (i). In view of Lemma 7.3, it is enough to prove
supn∈Nmax1≤ j≤dn (‖Q( fn, j ; X)‖ψβ + ‖Zn, j‖ψβ ) < ∞ for some β > 0. This fol-
lows from Lemmas 6.2 and A.5. ��

7.4 Proof of Lemma 2.1

Let us define the sequence of random variables (Yi )Ni=1 in the same way as in the proof
of Theorem 2.1. Then, since E[Y 4

i ] = 3 + 3
2 |E[X3

i ]| ≤ 9
2M , Lemma 7.1 yields

|E[Q( f ; X)4] − E[Q( f ;Y)4]| ≤ C1M
qM( f )‖ f ‖2�2 ,
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where C1 > 0 depends only on q. Now, since E[Q( f ; X)2] = q!‖ f ‖2�2 =
E[Q( f ;Y)2] and

√
κ4(Q( f ;Y)) ≥ q · q!max1≤r≤q−1 ‖ f 
r f ‖�2 by Lemma 7.2,

we obtain the desired result. ��

7.5 Proof of Proposition 2.3

Lemma 7.4 Let X = (Xi )
N
i=1 be a sequence of independent centered randomvariables

with unit variance and such that M := max1≤i≤N E[X4
i ] < ∞. Also, let f : [N ]2 →

R be a symmetric function vanishing on diagonals. Then, we have

|κ4(Q( f ; X))| ≤ C
{
(1 + M)‖ f ‖2�2M( f ) + tr([ f ]4)

}
,

where C > 0 is a universal constant.

Proof By Proposition 3.1 and Eq.(3.1) in [21], we have

|E[Q( f ; X)4] − 6GV| ≤ GI + 18GII + 24|GIV|,

where

GI = 23
∑

(i, j)∈�N
2

f (i, j)4E[X4
i ]E[X4

j ],

GII = 23
∑

(i, j,k)∈�N
3

f (i, j)2 f (i, k)2E[X4
i ],

GIV = 2
∑

(i, j,k,l)∈�N
4

f (i, j) f (i, k) f (l, j) f (l, k),

GV = 2
∑

(i, j,k,l)∈�N
4

f (i, j)2 f (k, l)2.

Since we have 2‖ f ‖4�2 − GV ≤ 8‖ f ‖2�2M( f ), it holds that |κ4(Q( f ; X))| ≤
|E[Q( f ; X)4] − 6GV| + 48‖ f ‖2�2M( f ). Meanwhile, a straightforward computation
yields

tr([ f ]4) =
∑

(i, j)∈�N
2

f (i, j)4 + 2
∑

(i, j,k)∈�N
3

f (i, k)2 f ( j, k)2

+
∑

(i, j,k,l)∈�N
4

f (i, k) f ( j, k) f (i, l) f ( j, l).

Hence, we obtain

|E[Q( f ; X)4] − 6GV|
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≤ C1

⎧
⎪⎨

⎪⎩
(1 + M)

⎛

⎜⎝
N∑

i,k=1

f (i, k)4 +
∑

(i, j,k)∈�N
3

f (i, k)2 f ( j, k)2

⎞

⎟⎠

+ tr([ f ]4)
}
,

where C1 > 0 is a universal constant. Since it holds that

max

⎧
⎪⎨

⎪⎩

∑

(i, j)∈�N
2

f (i, j)4,
∑

(i, j,k)∈�N
3

f (i, k)2 f ( j, k)2

⎫
⎪⎬

⎪⎭
≤ ‖ f ‖2�2M( f ),

we obtain the desired result. ��

Proof of Proposition 2.3 The desired result immediately follows from Corollary 2.2
and Lemma 7.4. ��

7.6 Proof of Proposition 2.5

Define the n1 × n2 matrix !n(θ) by !n(θ) = ( 12�
n
i X

1Ki j
θ �n

j X
2)i, j , and set

!̃n(θ) =
(

O !n(θ)

!n(θ)
	 O

)
.

Note that U∗
n (θ) = w	!̃n(θ)w with w = ((w1

i )
n1
i=1, (w

2
j )
n2
j=1)

	. Hence, by Proposi-
tion 2.3, it suffices to prove

log2(#Gn) · √
n max

θ,θ ′∈Gn

∣∣E[Un(θ)Un(θ
′)] − E[U∗

n (θ)U
∗
n (θ

′) | X ]∣∣ →p 0, (7.4)

log5(#Gn)max
θ∈Gn

√
tr
(
!̃n(θ)4

) →p 0, (7.5)

log5(#Gn) · max
θ∈Gn√√√√ max

1≤i≤n1
n

n2∑

j=1

(�n
i X

1)2(�n
j X

2)2K i j
θ + max

1≤ j≤n2
n

n1∑

i=1

(�n
i X

1)2(�n
j X

2)2K i j
θ →p 0. (7.6)

(7.4) and (7.5) are established in the proof of [35, Proposition B.8] under the cur-
rent assumptions. Moreover, as in bounding the quantity E[R∗

n,1] in the proof of [35,
Proposition B.8], we deduce for any p ≥ 1

E

⎡

⎣

∣∣∣∣∣∣
max
θ∈Gn

max
i

n
∑

j

(�n
i X

1)2(�n
j X

2)2Ki j
θ

∣∣∣∣∣∣

p⎤

⎦
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≤ n p
∑

i

E

⎡

⎣(�n
i X

1)2p max
θ∈Gn

∣∣∣∣∣∣

∑

j

(�n
j X

2)2Ki j
θ

∣∣∣∣∣∣

p⎤

⎦

≤ n p
∑

i

√√√√√√E
[
(�n

i X
1)4p

]
E

⎡

⎢⎣max
θ∈Gn

∣∣∣∣∣∣

∑

j

(�n
j X

2)2Ki j
θ

∣∣∣∣∣∣

2p
⎤

⎥⎦

= O
(
n pr p−1

n (rn log(#Gn))p
)
.

Exchanging X1 and X2, we obtain a similar estimate. Hence, (7.6) holds by assump-
tion. ��
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Appendix

A Properties of theÃ˛-norm

Herewe collect several properties of theψα-norm used in this paper. Letα be a positive
number. Recall that the ψα-norm of a random variable X is defined by

‖X‖ψα := inf{C > 0 : E[ψα(|X |/C)] ≤ 1}, (A.1)
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whereψα(x) := exp(xα)−1. From the definition, we can easily deduce the following
useful identity:

‖X‖ψα = ‖|X |α‖1/αψ1
. (A.2)

Using this relation, we can derive the properties of the ψα-norm from those of the ψ1-
norm. This is very convenient because the latter ones are well-studied in the literature.
For example, since ‖ · ‖ψ1 satisfies the triangle inequality, we have

‖X + Y‖ψα ≤ 21∨α−1−1(‖X‖ψα + ‖Y‖ψα ) (A.3)

for any random variables X ,Y . Also, using Young’s inequality for products and
Hölder’s inequality, one can prove ‖X‖ψ1 ≤ (log 2)1/p−1‖X‖ψp for any random
variable X and p > 1. So we obtain ‖X‖ψα ≤ (log 2)1/β−1/α‖X‖ψβ for any
0 < α ≤ β < ∞. Other useful results can be obtained from [57, Lemmas 2.2.1–
2.2.2]:

Lemma A.1 Suppose that there are constants C, K > 0 such that P(|X | > x) ≤
Ke−Cxα for all x > 0. Then, we have ‖X‖ψα ≤ ((1 + K )/C)1/α .

Lemma A.2 There is a universal constant K > 0 such that
∥∥∥∥ max
1≤ j≤d

|X j |
∥∥∥∥
ψα

≤ K 1/α(log(d + 1))1/α max
1≤ j≤d

‖X j‖ψα

for any α > 0 and random variables X1, . . . , Xd.

It is also easy to check that ‖X‖ψα attains the infimum in (A.1) if ‖X‖ψα < ∞. That
is, E[ψα(|X |/‖X‖ψα )] ≤ 1. Therefore, the Markov inequality yields the following
converse of Lemma A.1:

Lemma A.3 If ‖X‖ψα < ∞, we have P(|X | ≥ x) ≤ 2e−(x/‖X‖ψα )
α
for every x > 0.

Next, we investigate the relation between the ψα-norm and moment growth. First,
[26, Lemma A.1] yields the following result:

Lemma A.4 If there is a constant A > 0 such that ‖X‖p ≤ Ap1/α for all p ≥ 1, then

P(|X | ≥ x) ≤ e1/αe−(αe)−1(x/A)α for every x > 0.

Combining Lemma A.4 with Lemma A.1, we obtain the following result:

Lemma A.5 Suppose that there is a constant A > 0 such that ‖X‖p ≤ Ap1/α for all

p ≥ 1. Then, we have ‖X‖ψα ≤ (
(1 + e1/α)αe

)1/α
A.

Lemma A.3 and [26, Lemma A.2] yield the following converse of Lemma A.5:

Lemma A.6 For all p ≥ 1, it holds that ‖X‖p ≤ cα‖X‖ψα p
1/α with cα :=

e1/2e−1/αα−1/α max

{
1, 2

√
2π
α
eα/12

}
.

123



42 Journal of Theoretical Probability (2023) 36:1–45

Finally, we have the following Hölder-type inequality for the ψα-norm:

Lemma A.7 ([36], Proposition S.3.2) Let X1, X2 be two random variables such that
‖X1‖ψα1

+ ‖X2‖ψα2
< ∞ for some α1, α2 > 0. Then, we have ‖X1X2‖ψα ≤

‖X1‖ψα1
‖X2‖ψα2

, where α > 0 is defined by the equation 1/α = 1/α1 + 1/α2.

B Proof of Lemma 6.2

Lemma B.1 (Strong domination) Let (ξi )Ni=1 and (θi )
N
i=1 be two sequences of indepen-

dent symmetric random variables. Suppose that there is an integer k > 0 such that
P(|ξi | > t) ≤ kP(|θi | > t) for all i ∈ [N ] and t > 0. Then, for any p ≥ 1 and
a1, . . . , aN ∈ R we have

∥∥∥∥∥

N∑

i=1

aiξi

∥∥∥∥∥
p

≤ (2k)1/pk

∥∥∥∥∥

N∑

i=1

aiθi

∥∥∥∥∥
p

.

Proof This is a consequence of Theorem 3.2.1 and Corollary 3.2.1 in [37]. ��
Lemma B.2 Let (ξi )i∈N be a sequence of independent copies of a symmetric random
variable ξ satisfying P(|ξ | ≥ t) = e−|t |α for every t ≥ 0 and some 0 < α ≤ 2. Then,
there is a constant Cα > 0 which depends only on α such that

∥∥∥∥∥

N∑

i=1

aiξi

∥∥∥∥∥
p

≤ Cα p
1/α

√√√√
N∑

i=1

a2i

for any p ≥ 2, N ∈ N and a1, . . . , aN ∈ R.

Proof Note that, by Lemmas A.1 and A.6, there is a constant Kα > 0 depending only
on α such that ‖ξ‖r ≤ Kαrα for all r ≥ 1. Then, the result follows from [31, Theorem
1.1] when α ≤ 1 and the Gluskin–Kwapień inequality (cf. page 17 of [31]) when
α > 1. ��
Lemma B.3 Let (ζi )Ni=1 be a sequence of independent centered random variables such
that M := max1≤i≤N ‖ζi‖ψα < ∞ for some 0 < α ≤ 2. Then, we have

∥∥∥∥∥

N∑

i=1

aiζi

∥∥∥∥∥
p

≤ KαMp1/α

√√√√
N∑

i=1

a2i

for any p ≥ 1 and a1, . . . , aN ∈ R, where Kα > 0 depends only on α.

Proof Thanks to symmetrization inequalities (see, e.g., [57, Lemma 2.3.1]), it suffices
to consider the case that ζi is symmetric for all i . Then, the result follows from
Lemmas A.3, B.1 and B.2 . ��
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Lemma B.4 Let (Xi, j )1≤i≤N ,1≤ j≤q be an array of independent centered random vari-
ables. Assume M := max1≤i≤N ,1≤ j≤q ‖Xi, j‖ψα < ∞ for some 0 < α ≤ 2. Then,

∥∥∥∥∥∥

N∑

i1,...,iq=1

f (i1, . . . , iq)Xi1,1 · · · Xiq ,q

∥∥∥∥∥∥
p

≤ Kq
α p

q/αMq‖ f ‖�2

for any p ≥ 2 and f : [N ]q → R, where Kα > 0 is the same as in Lemma B.3.

Proof This can easily be shown by induction on q and using Lemma B.3. ��
Proof of Lemma 6.2 The claim is an immediate consequence of [23, Theorem 1], [55,
Theorem 8.16] and Lemma B.4. ��
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