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Abstract
We present concentration inequalities on the multislice which are based on (modified)
log-Sobolev inequalities. This includes bounds for convex functions and multilinear
polynomials. As an application, we show concentration results for the triangle count
in the G(n, M) Erdős–Rényi model resembling known bounds in the G(n, p) case.
Moreover, we give a proof of Talagrand’s convex distance inequality for themultislice.
Interpreting the multislice in a sampling without replacement context, we furthermore
present concentration results for n out of N sampling without replacement. Based
on a bounded difference inequality involving the finite-sampling correction factor
1 − (n/N ), we present an easy proof of Serfling’s inequality with a slightly worse
factor in the exponent, as well as a sub-Gaussian right tail for the Kolmogorov distance
between the empirical measure and the true distribution of the sample.
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1 Introduction

In the past few years, in particular in the analysis of Boolean functions, a model
which has found emerging interest is the multislice. It can be regarded as a natural
generalization of several well-known models like slices of the hypercube. In detail, let
L ≥ 2 be a natural number, κ = (κ1, . . . , κL) ∈ N

L (where by convention, 0 /∈ N),
N := κ1+· · ·+κL , and letX = {x1, . . . , xL} ⊂ R be a set of L distinct real numbers.
Typically, X = {0, 1, . . . , L − 1} or X = {1, 2, . . . , L}, but we prefer not to specify
X since the most natural choice usually depends on the situation under consideration.
The multislice is defined as

Ωκ :=
{

ω = (ω1, . . . , ωN ) ∈ X N :
N∑
i=1

1{ωi=x�} = κ� for � = 1, . . . , L

}
.

In other words, anyω ∈ Ωκ is a sequence of elements from {x1, . . . , xL} in which each
feature x� appears exactly κ� times. In the context of sampling without replacement, it
describes the procedure of (fully) sampling from a population with a set of character-
istics {x1, . . . , xL }, such that a proportion of κ�/N of the population has characteristic
x�. We discuss and extend this relation in Sect. 1.2.

To gain an intuition into the multislice, let us consider some special choices of L
and κ . For L = 2, κ = (k, N − k) and X = {0, 1}, the multislice reduces to k-slices
on the hypercube, while the case of L = N , κ = (1, . . . , 1) and X = {1, . . . , N }
can be interpreted as the symmetric group SN . If L = 2, Ωκ can be interpreted as
all possible realizations of an Erdős–Rényi random graph (see Corollary 1 for more
details). Moreover, the multislice gives rise to a Markov chain known as the multi-urn
Bernoulli–Laplace diffusion model, but we will not pursue this aspect. For examples,
see [25].

We equip Ωκ with the uniform distribution which we denote by Pκ or sometimes
also simply P. In other words,

Pκ({ω}) = |Ωκ |−1 =
(

N

κ1, . . . , κL

)−1

= κ1! · · · κL !
N !

for any ω ∈ Ωκ . If f is any real-valued function on Ωκ , we write Eκ f or E f for its
expectation with respect to Pκ . Moreover, to fix some conventions, we always assume
the x� to be ordered such that x1 < x2 < . . . < xL . In particular, |X | := xL − x1
denotes the diameter of X . Furthermore, we shall write κmin := min{κ1, . . . , κL}.
Finally, for any 1 ≤ i �= j ≤ N , let τi j be the “switch” operator which switches the
i th and j th component of the vector ω. In other words, τi j transforms ω into the vector
τi jω given by

τi jω = (
ω1, . . . , ωi−1, ω j , ωi+1, . . . , ω j−1, ωi , ω j+1, . . . , ωN

)
. (1)

Multislices equipped with the uniform measure were also considered in earlier
works. Logarithmic Sobolev inequalities were proven in [16,25], while in [15], the
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Friedgut–Kalai–Naor (FKN) theorem was extended to the multislice. We shall make
use of the functional inequalities proven by Salez [25] to apply the entropy method
and prove concentration inequalities in the above-mentioned settings.

1.1 Concentration Inequalities for Various Types of Functionals

In the first section, we present concentration inequalities for some functions on the
multislice which are comparable to known concentration results in the independent
case. We begin with a number of elementary inequalities.

Proposition 1 1. Let f : Ωκ → R be a function such that | f (ω)− f (τi jω)| ≤ ci j for
all ω ∈ Ωκ , all 1 ≤ i < j ≤ N and suitable constants ci j ≥ 0. For any t ≥ 0, we
have

Pκ ( f − Eκ f ≥ t) ≤ exp

(
− Nt2

4
∑

1≤i< j≤N c2i j

)
. (2)

2. Let f : [x1, xL ]N → R be convex and 1-Lipschitz. Then, for any t ≥ 0 we have

Pκ ( f − Eκ f ≥ t) ≤ exp

(
− t2

16|X |2
)

. (3)

Proposition 1 follows by a classic approach of Ledoux [23] (the entropy method),
i.e., by exploiting suitable log-Sobolev-type inequalities, some of which might be of
independent interest (cf. Propositions 4 and 5 ). Note that the bounded differences-type
inequality (2) is invariant under the change f �→ − f , so that in particular, this result
extends to the concentration inequality

Pκ (| f − Eκ f | ≥ t) ≤ 2 exp

(
− Nt2

4
∑

1≤i< j≤N c2i j

)
. (4)

By contrast, the assumption of convexity used in (3) is clearly not invariant under
the change f �→ − f , but by different techniques discussed in Sect. 1.3, (3) can be
extended to the lower tails as well.

While results for Lipschitz-type functions as in Proposition 1 are fairly standard in
concentration of measure theory, in the past decade there has been increasing interest
in non-Lipschitz functions. A case in point is so-called multilinear polynomials, i.e.,
polynomials which are affine with respect to every variable. Clearly, any multilinear
polynomial f = f (ω) of degree d may be written as

f (ω) = a0 +
N∑

i1=1

ai1ωi1 + · · · +
∑

i1<...<id

ai1...idωi1 · · ·ωid . (5)

Typically, multilinear polynomials of degree d ≥ 2 no longer have sub-Gaussian
tails, but the tails show different regimes or levels of decay, corresponding to a larger
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family of norms of the tensors of derivatives ∇k f , k = 1, . . . , d. For t large, terms of
the form exp(−(t/βd)

2/d) dominate, where βd depends on the dth order derivatives.
Tail inequalities of this type are also called multilevel tail inequalities, a term phrased
by Adamczak [2,3].

In detail, we need a family of norms ‖·‖I on the space of d-tensors for each partition
I = {I1, . . . , Ik} ∈ Pd , where Pd denotes the set of all partitions of {1, . . . , d}. For
any 1 ≤ i1, . . . , id ≤ N and any subset I ⊂ {1, . . . , d}, we write i I = (ik)k∈I ,
and for each � = 1, . . . , k we denote by x (�) a vector in R

N I� . Then, for a d-tensor
A = (ai1,...,id ) and a partition I ∈ Pd , we set

‖A‖I := sup
{ ∑
i1,...,id

ai1...id

k∏
�=1

x (�)
i I�

:
∑
i I�

(
x (�)
i I�

)2 ≤ 1 for all � = 1, . . . , k
}
.

The family ‖·‖I was first introduced in [22], where it was used to prove two-
sided estimates for L p norms of Gaussian chaos, and the definitions given above
agree with the ones from [22] as well as [3,5]. We can regard the ‖A‖I as a
family of operator-type norms. In particular, it is easy to see that ‖A‖{1,...,d} =
‖A‖HS := (

∑
i1,...,id a

2
i1...id

)1/2 (Hilbert–Schmidt norm) and ‖A‖{{1},...,{d}} =
‖A‖op := sup{∑i1,...,id ai1...id x

(1)
i1

· · · x (d)
id

: |xi (�) | ≤ 1 for all � = 1, . . . , d} (oper-
ator norm).

Theorem 1 Let f = f (ω) be a multilinear polynomial (5) of degree d. There exists a
constant c = c(d) such that

Pκ (| f − Eκ f | ≥ t) ≤ 2 exp

(
−c min

1≤k≤d
min
I∈Pk

(
t

|X |k‖Eκ ∇k f ‖I
)2/|I|)

.

Theorem 1 is an analogue of [5, Theorem 1.4] (independent sub-Gaussian random
variables), [3, Theorem 2.2] (the Ising model), [18, Theorem 5] (in the presence of
certain discrete log-Sobolev inequalities), and [4,Corollary 5.4] (modified log-Sobolev
inequalities for Glauber dynamics) for the multislice.

For the sake of illustration, consider the case of d = 2 and a quadratic form
f (ω) = ∑

i< j ai jωiω j = ωT Aω/2, where A is a symmetric matrix with vanishing
diagonal and entries Ai j = ai j = A ji for any i < j . Let us additionally assume that
Eκ ωi = 0 for any i . In this case, we obviously have Eκ ∇ f = 0 and Eκ ∇2 f = A.
Consequently, the conclusion of Theorem 1 reads

Pκ (| f − Eκ f | ≥ t) ≤ 2 exp

(
−cmin

(
t2

|X |4‖A‖2HS
,

t

|X |2‖A‖op

))
,

showing a version of the famous Hanson–Wright inequality for the multislice (cf.
[20]). As an alternate strategy of proving the Hanson–Wright inequality, in Sect. 1.3
we derive Talagrand’s convex distance inequality for themultislice, which in particular
yields Hanson–Wright inequalities by [1] (where results of this type have already been
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established for sampling without replacement along the lines, cf. Remark 2.3 therein).
Theorem 1 may be seen as a generalization of these bounds to any order d ∈ N.

Possible applications of Theorem 1 include the Erdős–Rényi model, which features
random graphs with a fixed number of vertices n. There are two variants of the Erdős–
Rényimodelwhich are often labeledG(n, p) andG(n, M). In theG(n, p)model, each
possible edge between the n vertices is included with probability p independently of
the other edges, while in the G(n, M)model, the graph is chosen uniformly at random
from the collection of all graphs with n vertices and M edges. In the following, we
study G(n, M).

Write E = {(i, j) : 1 ≤ i < j ≤ n} for the set of possible edges, so that
card(E) = n(n − 1)/2 =: N . Clearly, any edge e ∈ E is included with probability
M/N =: p. However, unlike in the G(n, p) model, the events of the edges being
included are not independent. Any configuration ω in G(n, M) can be written as a
vector ω = (ωe)e∈E ∈ {0, 1}E such that ωe = 1 for exactly M entries. In particular,
G(n, M) can be regarded as amultislicewith L = 2, κ = (N−M, M) andX = {0, 1}.

One problemwhich has attracted considerable attention over the last two decades is
the number of copies of certain subgraphs, e.g., triangles, in the Erdős–Rényi model.
There is extensive literature on concentration inequalities for the triangle count, such
as [12,14,21]. In particular, in [5, Proposition 5.5], bounds for the G(n, p) model
are derived using higher-order concentration results for multilinear polynomials in
independent random variables. As Theorem 1 provides analogous higher-order con-
centration results in a dependent situation, we are able to show corresponding bounds
for the G(n, M) model by our methods.

Corollary 1 Consider the G(n, M) Erdős–Rényi model, and consider the number of
triangles defined as f (ω) := ∑

i< j<k ωi jω jkωik . Then, for any t ≥ 0,

P (| f − E f | ≥ t) ≤ 2 exp

(
−cmin

(
t2

n3 + p2n3 + p4n4
,

t

n1/2 + pn
, t2/3

))
.

Comparing Corollary 1 to [5, Proposition 5.5], we see that we arrive at essentially
the same tail bounds despite the dependencies in the G(n, M) model, with the only
difference of an additional logarithmic factor L p := (log(2/p))−1/2 in [5]. This
logarithmic factor stems from the use of sub-Gaussian norms for independentBernoulli
random variables (which tend to 0 as p → 0), which is not mirrored in the log-Sobolev
tools we use.

Typically, the main interest is to study fluctuations which scale with the expected
value of f . In this case, setting t := εE f = ε

(n
3

)
M(M−1)(M−2)/(N (N −1)(N −

2)), Corollary 1 reads

P (| f − E f | ≥ εE f ) ≤ 2 exp
(
−cmin

(
ε2n3 p6,

(
ε2 ∧ ε2/3

)
n2 p2

))
.

In particular, this shows that the optimal exponent n2 p2 known from the G(n, p)
setting also shows up for a suitable range of p, cf. the discussion in [5].

In a similar way, we may also count cycles as in [5, Proposition 5.6], but we do not
pursue this in this note.
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1.2 SamplingWithout Replacement

In this section, we interpret themultislice in the samplingwithout replacement context,
where we sample N times from a population of N individuals ω1, . . . , ωN , so that the
uniform distribution Pκ describes the sampling of all its elements. In applications, one
does not sample the entire population, but chooses some sample size n ≤ N , i.e., for
each ω ∈ Ωκ , and considers the first n coordinates only. Formally, if prn denotes the
projection onto the first n coordinates, we may define Ωκ,n := prn(Ωκ). We, again,
equip Ωκ,n with the uniform distribution Pκ,n , which agrees with the push-forward of
Pκ under prn . As above, we denote the expectation with respect to Pκ,n by Eκ,n f ,
where f is any real-valued function.

Our first result is a bounded differences inequality for samplingwithout replacement
involving the finite-sampling correction factor 1−n/N . In the sequel, (ωi c , ω

′
i ) denotes

a vector which agrees with ω in all coordinates but the i th one, while ωi is replaced
by some admissible ω′

i (in the sense that (ωi c , ω
′
i ) ∈ Ωκ,n). Moreover, for any σ ∈ Sn

we may define σω ∈ Ωκ,n by noting that σ acts on ω by permuting its indices.

Proposition 2 Let f : Ωκ,n → R be an arbitrary function and (ci )i=1,...,n such that
| f (ω) − f (ωi c , ω

′
i )| ≤ ci for all ω ∈ Ωκ,n, ω

′
i ∈ X . For any t ≥ 0, it holds

Pκ,n

⎛
⎝ 1

n!
∑
σ∈Sn

f (σω) − Eκ,n f ≥ t

⎞
⎠ ≤ exp

(
− t2

4(1 − n
N )

∑n
i=1 c

2
i

)
. (6)

In particular, if f is symmetric, i.e., f (ω) = f (σω) for any σ ∈ Sn and anyω ∈ Ωκ,n,
and satisfies | f (ω) − f (ω′

1, ω2, . . . , ωn)| ≤ c for some c > 0, this implies

Pκ,n
(
f − Eκ,n f ≥ t

) ≤ exp

(
− t2

4
(
1 − n

N

)
c2n

)
. (7)

Note that equation (6) is invariant under the change f �→ − f , which yields a two-
sided concentration inequality as in (4). To express it in terms of deviation probabilities,
for any δ ∈ (0, 1] we have with probability at least 1 − δ

∣∣∣ 1
n!

∑
σ∈Sn

f (σω) − Eκ,n f
∣∣∣ ≤

√√√√4(1 − n/N ) log

(
2

δ

) n∑
i=1

c2i .

Concentration inequalities of this type have also been proven in [31, Lemma 2] and
[13, Theorem 5] by different methods, and our results agree with these bounds up to
constants.

Let us apply Proposition 2 to some known statistics in sampling without replace-
ment. One of the most famous concentration results for sampling without replacement
is Serfling’s inequality [27], which can be regarded as a strengthening of Hoeffding’s
inequality for n out of N sampling due to the inclusion of the finite-sampling correc-
tion factor 1 − n/N . For a discussion and some newer results, we refer to [6,19,30].

123



2718 Journal of Theoretical Probability (2022) 35:2712–2737

We can deduce Serfling’s inequality with a slightly worse constant from Proposition 2.

Corollary 2 In the situation above, we have for any t ≥ 0

Pκ,n

(
1

n

n∑
i=1

ωi − Eκ,n ω1 ≥ t

)
≤ exp

(
− nt2

4
(
1 − n

N

) |X |2
)

.

The same estimate holds for Pκ,n(
1
n

∑n
i=1 ωi − Eκ,n ω1 ≤ −t).

In the original version of Serfling’s inequality, the right-hand side is replaced by
exp(−2nt2/((1 − (n − 1)/N )|X |2)).

As a second example, consider the approximation of the uniform distribution on
all the points from which the ωi are sampled using the empirical measure, measured
in terms of the Kolmogorov distance. Formally, we put

gn,t (ω1, . . . , ωn) = 1

n

n∑
i=1

1(−∞,t](ωi )

and

f (ω) := sup
t∈R

(
gn,t (ω) − Eκ,n gn,t

)
.

In [19], it was conjectured that
√
n f has sub-Gaussian tails with variance 1 − n/N .

The next result states that after centering around the expectation, this is indeed the
case.

Corollary 3 With the above notation, we have for any t ≥ 0

Pκ,n(
√
n| f − Eκ,n f | ≥ t) ≤ 2 exp

(
− t2

4
(
1 − n

N

)
)

.

1.3 Talagrand’s Convex Distance Inequality

LetΩ be anymeasurable space,ω = (ω1, . . . , ωN ) ∈ ΩN and A ⊂ ΩN ameasurable
set. In his landmark paper [29], Talagrand defined the convex distance between ω and
A

dT (ω, A) := sup
α∈RN :|α|=1

dα(ω, A),

where

dα(ω, A) := inf
ω′∈A

dα(ω, ω′) := inf
ω′∈A

N∑
i=1

|αi |1ωi �=ω′
i
.
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Talagrand proved concentration inequalities for the convex distance of random
permutations and product measures which have attracted continuous interest since
then. For product measures, an alternate proof based on the entropy method was
given in [10]. In [26], the entropy method was used to reprove the convex distance
inequality for random permutations as well, and this proof was extended to slices of
the hypercube. In the present article, we further generalize this proof to the multislice,
encompassing both situations discussed in [26].

Proposition 3 For any A ⊆ Ωκ , it holds

Pκ(A)Eκ exp

(
dT (·, A)2

144

)
≤ 1.

Note that in [24], convex distance inequalities for certain types of dependent random
variables are proven. This includes sampling without replacement. In this sense, the
result of Proposition 3 is not new, but we present a different strategy of proof solely
based on the entropy method.

A famous corollary of Talagrand’s convex distance inequality is sub-Gaussian con-
centration inequalities for convex Lipschitz functions, as first proven in [28]. Thus,
Proposition 3 implies the following corollary, which can be regarded as an extension
of Proposition 1 to upper and lower tails (ignoring the subtle issue of concentration
around the mean or the median of a function).

Corollary 4 Let f : RN → R be convex and L-Lipschitz. Then, for any t ≥ 0 it holds

Pκ (| f − med( f )| ≥ t) ≤ 4 exp

(
− t2

144L2|X |2
)

,

where med( f ) is a median for f .

As a simple application of Corollary 4, we show the following bound on the largest
eigenvalue of symmetric matrices whose entries have distribution Pκ :

Corollary 5 Let X = (Xi j )i, j be a symmetric n × n random matrix. Let N :=
n(n + 1)/2 and assume that the common distribution of the entries (Xi j )i≤ j on
R

N is given by Pκ for some κ , L ≥ 2 and X . Let λmax := λmax(X) :=
max{|λ(X)| : λ(X) eigenvalue of X}. We have for any t ≥ 0

P (|λmax(X) − med(λmax(X))| ≥ t) ≤ 4 exp

(
− t2

144|X |2
)

.

In particular, this result shows that λmax has sub-Gaussian tails independently of the
dimension n. A possible choice of X is the adjacencymatrix of aG(n, M)Erdős–Rényi
random graph. Corollary 5 is an adaptation of a classical example for independent
random variables, see, e.g., [11, Example 6.8].

Furthermore,we are able to prove a somewhatweaker version of the convex distance
inequality for n out of N sampling. Here, we consider symmetric sets, i.e., sets A ⊂
Ωκ,n , such that ω ∈ A implies σω ∈ A for any permutation σ ∈ Sn . Obviously,
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assuming A to be symmetric is increasingly restrictive if n tends to N . This is mirrored
in the additional finite-sampling correction factor 1 − n/N in the following theorem
(which sharpens the convex distance inequality in [24]).

Theorem 2 For any symmetric set A ∈ Ωκ,n with Pκ,n(A) ≥ 1
2 and any t ≥ 0, we

have

Pκ,n (dT (·, A) ≥ t) ≤ e exp

(
− t2

16(1 − n
N )

)
.

As above, Theorem 2 implies the following result.

Corollary 6 Let f be a convex and symmetric L-Lipschitz function. Then, for any t ≥ 0
we have

Pκ,n (| f − med( f )| ≥ t) ≤ 2e exp

(
− t2

16(1 − n/N )L2|X |2
)

.

Examples of functions to which Corollary 6 may be applied are the estimators for
the mean and the standard deviation given by f (ω) = ω̄ = n−1 ∑n

i=1 ωi (sample
mean) and f (ω) = s(ω) = ( 1

n−1

∑n
i=1(ωi − ω̄)2)1/2 = ( 1

n(n−1)

∑
i< j (ωi −ω j )

2)1/2

(sample standard deviation), havingLipschitz constants L = n−1/2 and L = (2n)−1/2,
respectively. In particular, for any δ ∈ (0, 1] we have with probability at least 1 − δ

for any of the two estimators

| f − med( f )| ≤
√
16(1 − n/N )L2|X |2 log(2e/δ).

It is well known that concentration results centered around the expectation and
the median differ only by a constant. Indeed, in our case, for any convex, symmetric
L-Lipschitz function

|Eκ,n f − med( f )| ≤ Eκ,n| f − med( f )| =
∫ ∞

0
Pκ,n (| f − med( f )| ≥ t) dt

≤ 2e
∫ ∞

0
exp

(
− t2

16(1 − n/N )X 2L2

)
dt

= 2e
√
4π(1 − n/N )|X |2L2

≈ 19.27|X |L√
1 − n/N .

2 Logarithmic Sobolev Inequalities for theMultislice

The main tool for establishing concentration inequalities in this note is the entropy
method, which is based on the use of logarithmic Sobolev-type inequalities. Let us
recall some basic facts and definitions especially adapted to discrete spaces. A key
object is a suitable difference operator, i.e., a kind of “discrete derivative.” Given a

123



Journal of Theoretical Probability (2022) 35:2712–2737 2721

probability space (Y,F , μ), we call any operator Γ : L∞(μ) → L∞(μ) satisfying
|Γ (a f + b)| = a |Γ f | for all a > 0, b ∈ R a difference operator. Moreover, by Eμ

we denote integration with respect to μ.

Definition 1 1. We say that μ satisfies a logarithmic Sobolev inequality Γ −LSI(σ 2)

if for all bounded measurable functions f , we have

Entμ( f 2) ≤ 2σ 2
Eμ Γ ( f )2,

where Entμ( f ) := Eμ f log( f ) − Eμ f logEμ f (for any positive function f )
denotes the entropy functional.

2. We say that μ satisfies a modified logarithmic Sobolev inequality Γ −mLSI(σ 2) if
for all bounded measurable functions f , we have

Entμ(e f ) ≤ σ 2

2
Eμ Γ ( f )2e f .

3. We say that μ satisfies a Poincaré inequality Γ −PI(σ 2) if for all bounded measur-
able functions f , we have

Varμ( f ) ≤ σ 2
Eμ Γ ( f )2,

where Var( f ) := Eμ f 2 − (Eμ f )2 is the variance.
4. If any of these functional inequalities does not hold for all bounded measurable

functions but for some subclassA ⊂ L∞(μ), we say thatμ satisfies a Γ −LSI(σ 2)

(PI, mLSI) on A.

If Γ satisfies the chain rule (as the ordinary gradient∇ does), Γ −LSIs and Γ −mLSIs
are equivalent concepts, but in the examples we consider in this note, this is usually not
true. Moreover, it is well known that a Γ −LSI(σ 2) and a Γ −mLSI(σ 2) both imply a
Γ −PI(σ 2), cf. e.g., [8, Proposition 3.6].

For the multislice, we mostly consider the following canonical difference operator.
Recalling the “switch” operator from (1), for any function f : Ωκ → R we set

Γi j ( f )(ω) := Γi j f (ω) := f (ω) − f (τi jω) =: f (ω) − τi j f (ω)

and define the difference operator Γ by

Γ ( f ) :=
( 1

2N

∑
1≤i< j≤N

Γi j ( f )
2
)1/2

.

Note that Γi j ( f )2 might be interpreted as a sort of “local variance.” Indeed, it is
easy to verify that

Γi j ( f )
2(ω) = 2

∫
( f (ω) − f (ω{i, j}c , ηi j ))2d Pκ(ηi j | ω{i, j}c ), (8)
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where ω{i, j}c = (ωk)k /∈{i, j} and ηi j = (ηi , η j ). Therefore, we have Γ ( f )2 =
2N−1|d f |2 for the difference operator |d f | introduced in [17].

Sometimes (and typically for auxiliary purposes), we shall also need a second,
closely related difference operator which we denote by Γ +. Here, we simply set

Γ +
i j ( f )(ω) := ( f (ω) − f (τi jω))+,

where x+ := max(x, 0) denotes the positive part of a real number, and define Γ +
accordingly.

Recently, in [25] sharp (modified) logarithmic Sobolev inequalities for the multi-
slice were established. Rewriting these results in accordance with our notation and
slightly extending them immediately leads to the following proposition, serving as the
basis for our arguments:

Proposition 4 With the above definitions of Γ and Γ +, Pκ satisfies the following
functional inequalities:

– Γ −LSI(2 log(N/κmin)/ log(2)),
– Γ −mLSI(4),
– Γ +−mLSI(8).

Proof of Proposition 4 The Γ −LSI directly follows from [25, Theorem 5]. Moreover,
by [25, Lemma 1] (substituting f ≥ 0 by e f ), we have

EntPκ
(e f ) ≤ 1

N

∑
i< j

Eκ(e f (τi jω) − e f (ω))( f (τi jω) − f (ω)) (9)

for any f : Ωκ → R. Using the fact that ω �→ τi jω is an automorphism of Ωκ and
applying the inequality (a−b)(ea−eb) ≤ 1

2 (e
a+eb)(a−b)2 leads to theΓ −mLSI(4).

By similar arguments, we may also deduce the Γ +−mLSI(8). In particular, we note
that the expected values on the right-hand side of (9) are symmetric in ω and τi jω and
use the inequality (a − b)+(ea − eb) ≤ (a − b)2+ea . ��

From Proposition 4, we may derive a convex ∇ − (m)LSI on the multislice, where
∇ denotes the usual Euclidean gradient.

Proposition 5 For any f ∈ Ac := { f : [x1, xL ]N → R | f convex}, we have

EntPκ
(e f ) ≤ 4|X |2 Eκ e

f |∇ f |2.

In other words, Pκ satisfies a ∇ − mLSI(8|X |2) on Ac.

Proof Using convexity in the first step and the inequality (a−b)2 ≤ 2a2 +2b2 yields

Γ +( f )2(ω) = 1

4N

∑
i �= j

( f (ω) − f (τi jω))2+ ≤ 1

4N

∑
i �= j

〈∇ f (ω), ω − τi jω〉2
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= 1

4N

∑
i �= j

(ωi − ω j )
2(∂i f (ω) − ∂ j f (ω)

)2

≤ |X |2
2N

∑
i �= j

(
∂i f (ω)2 + ∂ j f (ω)2

)

= |X |2
N

(N − 1)
N∑
i=1

∂i f (ω)2 ≤ |X |2|∇ f |2(ω).

As Pκ satisfies a Γ + − mLSI(8) by Proposition 4, the claim follows. ��
Another class of functional inequalities we address in this note is Beckner inequali-

ties. Restricting ourselves to the multislice (rather than providing a general definition),
Pκ satisfies aBeckner inequalitywith parameter p ∈ (1, 2] (Bec-p) if there exists some
constant βp > 0 such that

Eκ f p − (Eκ f )p ≤ βp p

2
Eκ( f , f p−1) (10)

for any non-negative function f . Here,

Eκ( f , g) := 1

2N

∑
1≤i< j≤N

Eκ(Γi j f )(Γi j g)

for any functions f , g on Ωκ (which is the Dirichlet form of the underlying Markov
chain).

Recently, in [4] it was shown that in the context of general Markov semigroups,
Beckner inequalities with constants bounded away from zero as p ↓ 1 and modified
log-Sobolev inequalities are equivalent. In their article, the authors provide numerous
examples and applications, also briefly discussing themultislice. Sincewe need results
of this type for our purposes, we include a somewhat more detailed discussion in the
present note.

Proposition 6 For any p ∈ (1, 2], Pκ satisfies a Beckner inequality Bec-p with con-
stant βp = 4N

p(N+2) .

Proof First note that the result holds true for κ = (1, . . . , 1) and L = N as proven
in [8, Proposition 4.8], with the difference in the constant being due to different
normalizations. To extend this result to general κ , we apply a “projection” or “coars-
ening” argument, cf. [25, Section 3.4]. Indeed, consider the map Ψ : {1, . . . , N } →
{1, . . . , L} given by Ψ (i) = � iff i ∈ {κ1 + · · · + κ�−1 + 1, . . . , κ1 + · · · + κ�} and
extend it to the multislice (with X = {1, . . . L}) by coordinate-wise application, i.e.,
Ψ (ω1, . . . , ωN ) := (Ψ (ω1), . . . , Ψ (ωN )). Moreover, to address a general choice of
X , let Φ : {1, . . . , L} → X be the “canonical identification” Φ(i) := xi . Then, by
[25, Lemma 4] applied to f̃ := f ◦ Φ and g̃ := g ◦ Φ,

Eκ f = E(1,...,1)( f̃ ◦ Ψ ), Eκ( f , g) = E(1,...,1)( f̃ ◦ Ψ , g̃ ◦ Ψ )
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for any functions f , g. From these identities, we immediately obtain the result. ��
Finally, we may also derive logarithmic Sobolev inequalities for symmetric func-

tions of sampling without replacement. Here, we use other types of difference
operators. Let f : Ωκ,n → R be any (not necessarily symmetric) function. Then,
writing (ω1, . . . , ω

′
i , . . . , ωn) = (ω1, . . . , ωi−1, ω

′
i , ωi+1, . . . , ωn), we set

h( f )2(ω1, . . . , ωn) = 1

2

n∑
i=1

(sup
ωi

f (ω1, . . . , ωn) − inf
ω′
i

f (ω1, . . . , ω
′
i , . . . , ωn))

2,

h+( f )2(ω1, . . . , ωn) = 1

2

n∑
i=1

( f (ω1, . . . , ωn) − inf
ω′
i

f (ω1, . . . , ω
′
i , . . . , ωn))

2.

Here, the supremum and the infimum have to be interpreted as extending over all
admissible configurations, i.e., such that (ωi c , ωi ), (ωi c , ω

′
i ) ∈ Ωκ,n .

Proposition 7 LetAn,s := { f : Ωκ,n → R | f symmetric}. With the above definitions
of h and h+, Pκ,n satisfies the following functional inequalities on An,s :

– h−LSI(2 log(N/κmin)(1 − n
N )/ log(2)),

– h−mLSI(4(1 − n
N )),

– h+−mLSI(8(1 − n
N )).

Proof We only prove the h+−mLSI. The proofs of the other two inequalities follow
by a modification of the arguments below.

First note that any function f onΩκ,n can be extended to a function F onΩκ which
only depends on the first n coordinates by setting F(ω1, . . . , ωN ) := f (ω1, . . . , ωn),
which may be rewritten as F = f ◦ prn . We now apply Proposition 4 to F . Obviously,
EntPκ

(eF ) = EntPκ,n (e
f ). It therefore remains to consider the right-hand side of the

mLSI. Here, we obtain

1

2N

∑
i< j

Eκ(F(ω) − F(τi jω))2+eF(ω)

= 1

2N

n∑
i=1

N∑
j=n+1

Eκ(F(ω) − F(τi jω))2+eF(ω)

≤ 1

2N

n∑
i=1

N∑
j=n+1

Eκ(F(ω) − inf
ω′
i

F(ωi c , ω
′
i ))

2+eF(ω)

= N − n

2N

n∑
i=1

Eκ,n( f (ω1, . . . , ωn) − inf
x ′
i

f (ω1, . . . , x
′
i , . . . , ωn))

2+e f (ω1,...,ωn).

Here, the first equality follows by symmetry of f with respect to the symmetric group
Sn , and the fact that f does not depend on (ωn+1, . . . , ωN ). The first inequality is due to
the monotonicity of x �→ x+, and the last equality follows as Pκ,n is the push-forward
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of Pκ under prn . Thus, for any f ∈ An,s it holds

EntPκ,n (e
f ) ≤ 4

2N

∑
i< j

Eκ(F(ω) − F(τi jω))2+eF(ω)

≤ 4
N − n

N
Eκ,n h

+( f )2(ω1, . . . , ωn)e
f (ω1,...,ωn),

which finishes the proof. ��

3 Proofs of the Concentration Inequalities

3.1 Proofs of Section 1.1

Proof of Proposition 1 Recall that if a probability measureμ satisfies a Γ −mLSI(σ 2)

on A (where Γ denotes some difference operator), we have for any f ∈ A such that
Γ ( f ) ≤ L ,

μ( f − E f ≥ t) ≤ exp

(
− t2

2σ 2L2

)
(11)

for any t ≥ 0. For a reference, see, e.g., [7] or [26, (1.2)]. Combining this fact with
Proposition 4 and noting that by definition,

Γ ( f ) ≤
⎛
⎝ 1

2N

∑
1≤i< j≤N

c2i j

⎞
⎠

1/2

,

we arrive at (2). In the same way, we may derive (3) using Proposition 5. ��
The proof of Theorem 1 is more advanced. The basic idea is to follow the steps

of the proof of [3, Theorem 2.2] and its refinements as presented in [4, Section 5.3].
First, we derive moment estimates for functions on the multislice.

Lemma 1 For any f : Ωκ → R and any p ≥ 2,

‖ f − Eκ f ‖L p(Pκ ) ≤ √
4θ p‖Γ ( f )‖L p(Pκ ),

where θ := √
e/(

√
e − 1) < 2.5415.

Proof This follows immediately from Proposition 6 and [4, Proposition 3.3]. (Note
that the notation used therein differs from ours; in particular, no square root is taken
in the definition of Γ .) To apply the latter result, we have to check that the constants
of the Beckner inequalities Bec-p satisfy

β−1
p = p(N + 2)

4N
≥ a(p − 1)s
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for some a > 0, s ≥ 0 and any p ∈ (1, 2]. Clearly, we may take a = 1/4 and s = 0,
which finishes the proof. ��

Note that alternatively, we could apply [17, Proposition 2.4], using (8) and Propo-
sition 4, which yields

‖ f − Eκ f ‖L p(Pκ ) ≤
√
8 log(N/κmin)

log(2)

√
p − 1‖Γ ( f )‖L p(Pκ ).

As a result of using theΓ −LSI, we arrive at a substantially weaker constant, however.
Next, we have to relate differences of multilinear polynomials to (formal) deriva-

tives, which is typically achieved by an inequality of the formΓ ( f ) ≤ c|∇ f | for some
absolute constant c > 0. However, it comes out that such an inequality cannot be true
in our setting. For instance, taking N = 3, X = {0, 1} and f (ω) = ω1ω2 − ω1ω3, it
is easy to check that for ω = (0, 1, 1), we have 0 = |∇ f (ω)| < Γ ( f )(ω). The same
problem arises if we take Γ + instead of Γ . It is possible to prove an inequality of
this type with c := |X | for multilinear polynomials with non-negative coefficients and
X ⊂ [0,∞). (This can be seen by slightlymodifying the proof of Proposition 8.) How-
ever, the proof of Theorem 1 also includes an iteration and linearization procedure,
and if we only allow for non-negative coefficients, we get stuck at d = 2.

The following proposition provides uswith the estimatewe need to get the recursion
going, at the cost of also involving second-order derivatives.

Proposition 8 Let f = f (ω) be a multilinear polynomial as in Theorem 1. Then, we
have

Γ ( f )2 ≤ 3|X |2
2

|∇ f |2 + 3|X |4
4N

‖∇2 f ‖2HS. (12)

In particular, for any p ≥ 2 we have

‖ f − Eκ f ‖L p(Pκ ) ≤
√
6θ |X |2 p‖|∇ f |‖L p(Pκ ) +

√
3θ |X |4 p/N‖‖∇2 f ‖HS‖L p(Pκ )(13)

with θ as in Lemma 1.

Proof In the proof, we additionally assume f to be d-homogeneous, i.e.,

f (ω) =
∑

i1<...<id

ai1...idωi1 · · · ωid .

This is done in order to ease notation, and it is no problem to extend our proof to the
non-homogeneous case. For notational convenience, for any i1 < . . . < id and any
permutation σ ∈ Sd , we define aiσ(1)...iσ(d)

:= ai1...id , and we set ai1...id = 0 if i j = ik
for some j �= k. Finally, note that some of the notation below has to be interpreted
accordingly for small values of d, e.g., summation over i1 < . . . < id−1 reduces to
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summation over i1 for d = 2. Observe that for any k, � ∈ {1, . . . , N }, k �= �, we have

Γk�( f )(ω)2 =

⎛
⎜⎜⎝ ∑

i1<...<id−1
�/∈{i1,...,id−1}

ai1...id−1kωi1 · · · ωid−1(ωk − ω�)

+
∑

i1<...<id−1
k /∈{i1,...,id−1}

ai1...id−1�ωi1 · · · ωid−1(ω� − ωk)

⎞
⎟⎟⎠

2

=
⎛
⎝ ∑

i1<...<id−1

ai1...id−1kωi1 · · · ωid−1(ωk − ω�)

+
∑

i1<...<id−1

ai1...id−1�ωi1 · · · ωid−1(ω� − ωk)

+
∑

i1<...<id−2

ai1...id−2k�ωi1 · · ·ωid−2(ωk − ω�)
2

⎞
⎠

2

≤ 3|X |2
⎛
⎜⎝

⎛
⎝ ∑

i1<...<id−1

ai1...id−1kωi1 · · · ωid−1

⎞
⎠

2

+
⎛
⎝ ∑

i1<...<id−1

ai1...id−1�ωi1 · · · ωid−1

⎞
⎠

2
⎞
⎟⎠

+ 3|X |4
⎛
⎝ ∑

i1<...<id−2

ai1...id−2k�ωi1 · · ·ωid−2

⎞
⎠

2

= 3|X |2(∂k f (ω)2 + ∂� f (ω)2) + 3|X |4∂k� f (ω)2.

Consequently, it holds

Γ ( f )2 = 1

4N

∑
k �=�

Γk�( f )
2 ≤ 3|X |2

4N

∑
k �=�

((∂k f )
2 + (∂� f )

2) + 3|X |4
4N

∑
k �=�

(∂kl f )
2

≤ 3|X |2
2

|∇ f |2 + 3|X |4
4N

‖∇2 f ‖2HS,

proving equation (12). Finally, combining (12) with Lemma 1, we immediately arrive
at (13). ��

With the help of Proposition 8, we may now prove Theorem 1. To this end, let us
introduce some additional notation. If A = (ai1...ik )i1,...,ik≤N , B = (bi1...ik )i1,...,ik≤N
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are two k-tensors, we define an inner product 〈·, ·〉 by

〈A, B〉 :=
∑

i1,...,ik≤N

ai1...ik bi1...ik .

Moreover, if x j = (x j
1 , . . . , x j

N ), j = 1, . . . , k, are any vectors, we set x1⊗· · ·⊗xk :=
(x1i1 · · · xkik )i1,...,ik≤N . We also extend this notation to the situation in which some

of these vectors may be N 2-dimensional. Indeed, let x1, . . . , xk be N -dimensional
vectors as above, and let y1, . . . , y� be N 2-dimensional, y j = (y j

ν1,ν2)ν1,ν2≤N . In this
case, we set

x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ y� := (x1i1 · · · xkik y1ik+1,ik+2
· · · y�

ik+2�−1,ik+2�
)i1,...,ik+2�≤N ,

which we regard as a rectangular (k + �)-tensor whose first k components are N -
dimensional and whose last � components are N 2-dimensional.

Proof of Theorem 1 To ease notation, we assume |X | = 1 in the sequel. The general
case follows in the same way with only minor changes. Recall the fact that for a
standard Gaussian g in R

k for some k ∈ N and x ∈ R
k we have

√
pM−1|x | ≤

‖〈x, g〉‖L p ≤ M
√
p|x | for all p ≥ 1 and some universal constant M > 1. Combining

this and equation (13), we arrive at

‖ f − Eκ f ‖L p(Pκ ) ≤ K
(
‖〈∇ f ,G〉‖L p + (2N )−1/2‖〈∇2 f , H〉‖L p

)
, (14)

for K := √
6θM . Here, G is an N -dimensional standard Gaussian and H is an N 2-

dimensional standard Gaussian such that G and H are independent of each other and
of theωi , and the L p norms on the right-hand side are taken with respect to the product
measure of Pκ and the Gaussians.

Note that 〈∇ f ,G〉 and 〈∇2 f , H〉 are again multilinear polynomials in the ωi .
Moreover, 〈∇〈∇ f ,G1〉,G2〉 = 〈∇2 f ,G1⊗G2〉 and 〈∇2〈∇ f ,G〉, H〉 = 〈∇3 f ,G⊗
H〉. In the last expression, we regard ∇3 f as a 2-tensor whose second component is
N 2-dimensional. Similar relations also hold for the other terms in (14).

The proof now follows by iterating (14). For simplicity of presentation, let
us consider the case of d = 2 first. Here, we apply the triangle inequality (in
the form ‖〈∇ f ,G〉‖L p ≤ ‖〈Eκ ∇ f ,G〉‖L p + ‖〈∇ f − Eκ ∇ f ,G〉‖L p and simi-
larly for 〈∇2 f , H〉) to (14). We may then apply (14) to 〈∇ f − Eκ ∇ f ,G〉 and
〈∇2 f − Eκ ∇2 f , H〉 again. This leads to

‖ f − Eκ f ‖L p(Pκ )

≤ K‖〈Eκ ∇ f ,G〉‖L p + K (2N )−1/2‖〈Eκ ∇2 f , H〉‖L p

+ K 2‖〈∇2 f ,G1 ⊗ G2〉‖L p + 2K 2(2N )−1/2‖〈Eκ ∇3 f ,G ⊗ H〉‖L p

+ K 2(2N )−1‖〈Eκ ∇4 f , H1 ⊗ H2〉‖L p

= K‖〈Eκ ∇ f ,G〉‖L p + K (2N )−1/2‖〈Eκ ∇2 f , H〉‖L p

+ K 2‖〈Eκ ∇2 f ,G1 ⊗ G2〉‖L p .

(15)
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In the last step, we have used that since f is a multilinear polynomial of degree 2, its
second-order derivatives are constant and all derivatives of order larger than 2 vanish.

Next, we use that by [22], there are constants Ck depending on k only such that for
any (possibly rectangular) k-tensor A and any p ≥ 2,

‖〈A, g1 ⊗ · · · ⊗ gk〉‖L p ≤ Ck

∑
I∈Pk

p|I|/2‖A‖I , (16)

where g1, . . . , gk are standard Gaussians. Applying (16) to (15), we obtain for some
absolute constant C

‖ f − Eκ f ‖L p(Pκ )

≤ K‖〈Eκ ∇ f ,G〉‖L p + K (2N )−1/2‖〈Eκ ∇2 f , H〉‖L p + K 2‖〈Eκ ∇2 f ,G1 ⊗ G2〉‖L p

≤ C1Kp1/2|Eκ ∇ f | + C1K (2N )−1/2 p1/2‖Eκ ∇2 f ‖HS + C2K
2 p1/2‖Eκ ∇2 f ‖HS

+ C2K
2 p‖Eκ ∇2 f ‖op

≤ C(p1/2|Eκ ∇ f | + p1/2‖Eκ ∇2 f ‖HS + p‖Eκ ∇2 f ‖op).

From here, the assertion follows by standard arguments, cf., e.g., [18, Proposition 4].
Finally, we consider an arbitrary d ≥ 2 and explain how the proof given above

generalizes. First, we apply the triangle inequality to (14) and iterate d−1 times. This
yields

‖ f − Eκ f ‖L p(Pκ ) ≤ ψd +
d−1∑
i=1

ψi , (17)

where we have

ψd :=
d∑

�=0

(
d

�

)
Kd(2N )−�/2‖〈∇d+� f ,G1 ⊗ · · · ⊗ Gd−� ⊗ H1 ⊗ · · · ⊗ H�〉‖L p ,

ψi :=
i∑

�=0

(
i

�

)
Ki (2N )−�/2‖〈Eκ ∇ i+� f ,G1 ⊗ · · · ⊗ Gi−� ⊗ H1 ⊗ · · · ⊗ H�〉‖L p

(18)

for any i = 1, . . . , d − 1. As f is a multilinear polynomial of degree d, these expres-
sions simplify since the derivatives of order d are constant and all derivatives of higher
order vanish. In particular,

ψd = Kd‖〈Eκ ∇d f ,G1 ⊗ · · · ⊗ Gd〉‖L p .
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Now, as above we apply (16) to (17) (or rather the L p norms appearing in (18)) to
arrive at

‖ f − Eκ f ‖L p(Pκ ) ≤ C
d∑

k=1

∑
I∈Pk

p|I|/2‖Eκ ∇k f ‖I

for some absolute constant C > 0 depending on d only. In particular, we use that if
we apply (16) to some � ≥ 1 term in ψi in (18), the norms which arise reappear in the
norms corresponding to � = 0 in the ψi+� terms. The proof is concluded by recalling
[18, Proposition 4] again. ��

Proof of Corollary 1 The proof works by calculating ‖Eκ ∇k f ‖I for k = 1, 2, 3 and
applying Theorem 1. In the sequel, we use the convention ω j i := ωi j whenever j > i .
It is easy to see that for any edge e = {i, j}, we have

∂

∂ωe
f (ω) =

∑
k∈{1,...,n}\{i, j}

ωikω jk .

Moreover, the second-order derivatives ∂2 f /(∂ωe1∂ωe2) are zero unless e1 and e2
share exactly one vertex, in which case it is ωi j if i and j are the two vertices distinct
from the common one. Finally, the third-order derivatives ∂3 f /(∂ωe1∂ωe2∂ωe3) are 1
if e1, e2, e3 form a triangle and zero if not.

Using that

Eωe1 · · · ωek = M(M − 1) · · · (M − k + 1)

N (N − 1) · · · (N − k + 1)
,

for any k = 1, . . . , N and any pairwise distinct set of edges e1, . . . , ek , we therefore
obtain

‖E∇ f ‖{1} = √
N (n − 2)

M(M − 1)

N (N − 1)
≤ n2 p2.

Moreover, we have E∇2 f = p(1|e1∩e2|=1)e1,e2 , where |e1 ∩ e2| denotes the number
of common vertices of e1 and e2. Therefore, we may use the calculations from the
proof of [5, Proposition 5.5], which yield

‖E∇2 f ‖{1,2} ≤ pn3/2, ‖E∇2 f ‖{1},{2} ≤ 2pn,

‖E∇3 f ‖{1,2,3} ≤ n3/2, ‖E∇3 f ‖{1},{2},{3} ≤ 23/2,

‖E∇3 f ‖{1,2},{3} = ‖E∇3 f ‖{1,3},{2} = ‖E∇3 f ‖{2,3},{1} ≤ √
2n.

The proof now follows by plugging in. ��
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3.2 Proofs of Section 1.2

The results of Sect. 1.2 follow from the logarithmic Sobolev inequalities established
in Sect. 2 by standard means.

Proof of Proposition 2 Noting that

h( f ) =
⎛
⎝1

2

n∑
i=1

(
sup
ω1

f (ω) − inf
ω′
1

f (ω′
1, ω2, . . . , ωn)

)2
⎞
⎠

1/2

≤
(
c2n

2

)1/2

,

(7) follows from Proposition 7 using the arguments from the proof of Proposition 1.
To prove (6) define the symmetric function g(ω) := 1

n!
∑

σ∈Sn f (σω), and observe
that by exchangeability of the ωi we have Eκ,n f = Eκ,n g. Moreover,

|g(ω) − g(ω′
1, ω2, . . . , ωn)| ≤ 1

n!
∑
σ∈Sn

| f (σω) − f (σ (ω′
1, ω2, . . . , ωn))|

≤ 1

n!
∑
σ∈Sn

n∑
i=1

1σ(1)=i ci ≤ 1

n

n∑
i=1

ci .

Applying equation (7) to g and using Jensen’s inequality yield

Pκ,n(g − Eκ,n g ≥ t) ≤ exp

(
− t2

4(1 − n/N )n(n−1
∑

i ci )
2

)

≤ exp

(
− t2

4(1 − n/N )
∑

i c
2
i

)

as claimed. ��
Proof of Corollary 2 This follows immediately from Proposition 2, as f (ω) =
1
n

∑n
i=1 ωi is a symmetric function satisfying | f (ω) − f (ω′

1, ω2, . . . , ωn)| ≤ |X |/n.
��

Proof of Corollary 3 This is a consequence of Proposition 2, as for any ω ∈ Ωκ,n and
ω′
1 we have by the reverse triangle inequality

| f (ω) − f (ω′
1, ω2, . . . , ωn)| ≤ n−1 sup

t∈R
|1(−∞,t](ω1) − 1(−∞,t](ω′

1)| ≤ n−1.

��

3.3 Proofs of Section 1.3

To prove Talagrand’s convex distance inequality on the multislice, we follow the
approach by Boucheron, Lugosi and Massart [9], see also [26, Proposition 1.9]. A key
step in the proof is the following lemma.
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Lemma 2 Let f : Ωκ → R be a non-negative function such that

1. Γ +( f )2 ≤ f ,
2. | f (ω) − f (τi jω)| ≤ 1 for all ω, i, j .

Then, for all t ∈ [0,Eκ f ] we have

Pκ (Eκ f − f ≥ t) ≤ exp

(
− t2

32Eκ f

)
.

Particularly, we have

Pκ( f = 0) exp

(
Eκ f

32

)
≤ 1.

In particular, this holds for f (ω) = 1
4dT (ω, A)2, where A ⊂ Sn is any set.

We defer the proof of Lemma 2 until the end of the section and first show how to
apply it to prove Talagrand’s convex distance inequality.

Proof of Proposition 3 The difference operator Γ + clearly satisfies Γ +(g2) ≤
2gΓ +(g) for all positive functions g, as well as a Γ + − mLSI(8). Moreover, as
we will see in the proof of Lemma 2, we have Γ +(dT (·, A)) ≤ 1. Thus, by [26, (3.6)]
it holds for λ ∈ [0, 1/16)

Pκ(A)Eκ exp
(
λdT (·, A)2

)
≤ Pκ(A) exp

(
λ

1 − 16λ
Eκ dT (·, A)2

)
.

Furthermore, Lemma 2 shows that

Pκ(A) exp

(
Eκ dT (·, A)2

128

)
≤ 1.

So, for λ = 1/144 we have

Pκ(A)Eκ exp

(
dT (·, A)2

144

)
≤ Pκ(A) exp

(
1

128
Eκ dT (·, A)2

)
≤ 1.

��
Proofs of Corollaries 4 and 6 These corollaries follow in exactly the same way as the
proof of [28, Theorem 3]. The only difference is to note that for any x, y ∈ { f ≤
med( f )} such that f (x) ≥ med( f ) + t we have

t ≤ med( f ) + t − f (y) ≤ f (x) − f (y) ≤ L|x − y| ≤ L|X | sup
α∈Rn :|α|=1

n∑
i=1

αi1xi �=yi ,
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so that

f (x) ≥ med( f ) + t ⇒ dT (x, A) ≥ t/(|X |L).

��
Proof of Corollary 5 Since λmax = ‖X‖op, it is clear by triangular inequality that λmax
is a convex function of the Xi j , i ≤ j . Moreover, due to Lidskii’s inequality (cf. [11,
Exercise 3.16]), λmax is 1-Lipschitz. It therefore remains to apply Corollary 4. ��
Proof of Lemma 2 Rewriting [25, Lemma 1], for any positive function g it holds

Entκ(g) ≤ 1

2N

∑
i, j

Eκ(g(τi jω) − g(ω))(log g(τi jω) − log g(ω))

= 1

N

∑
i, j

Eκ(g(τi jω) − g(ω))(log g(τi jω) − log g(ω))+.

Using this, we obtain for any λ ∈ [0, 1]

Entκ(e−λ f ) ≤ λ

N
Eκ

∑
i, j

( f (ω) − f (τi jω))+
(
exp(−λ f (τi jω)) − exp(−λ f (ω))

)

= λ

N
Eκ

∑
i, j

( f (ω) − f (τi jω))+(exp(λ( f (ω) − f (τi jω))) − 1)e−λ f (ω)

= λ

N
Eκ

∑
i, j

( f (ω) − f (τi jω))+Ψ (λ( f (ω) − f (τi jω)))e−λ f (ω),

whereΨ (x) := ex −1. By a Taylor expansion, it can easily be seen thatΨ (x) ≤ 2x for
all x ∈ [0, 1]. Therefore, recalling that by assumption 2 we have f (ω)− f (τi jω) ≤ 1,
and f (ω) − f (τi jω) ≥ 0 due to the positive part, and using assumption 1 in the last
step, we obtain

Entκ
(
e−λ f

)
≤ 2λ2

N
Eκ

∑
i, j

(
f (ω) − f (τi jω)

)2
+ e−λ f (ω)

= 8λ2 Eκ Γ +( f )2e−λ f ≤ 8λ2 Eκ f e−λ f .

The covariance of f e−λ f is non-positive (i.e., E f e−λ f ≤ E f E e−λ f ), which yields

Entκ(e−λ f ) ≤ 8λ2 Eκ f Eκ e
−λ f .

In other terms, if we set h(λ) := Eκ e−λ f , we have

(
log h(λ)

λ

)′
≤ 8Eκ f ,
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which by the fundamental theorem of calculus implies for all λ ∈ [0, 1]

Eκ exp (λ(Eκ f − f )) ≤ exp
(
8λ2 Eκ f

)
.

So, for any t ∈ [0,Eκ f ], by Markov’s inequality and setting λ = t
16Eκ f

Pκ(Eκ f − f ≥ t) ≤ exp
(
−λt + 8λ2 Eκ f

)
= exp

(
− t2

32Eκ f

)
.

The second part follows by non-negativity and t = Eκ f .
It remains to check that f (ω) = 1

4dT (ω, A)2 satisfies the two conditions of this
lemma. To this end,we first show thatΓ +(dT (·, A))2 ≤ 1.Writing g(ω) := dT (ω, A),
it is well known (see [9]) that by Sion’s minimax theorem, we have

g(ω) = inf
ν∈M(A)

sup
α∈RN :|α|=1

N∑
k=1

αkν
(
ω′ : ω′

k �= ωk
)
, (19)

where M(A) is the set of all probability measures on A. To estimate Γ +(g)2(ω),
one has to compare g(ω) and g(τi jω). To this end, for any ω ∈ Ωκ fixed, let α̃, ν̃ be
parameters for which the value g(ω) is attained, and let ν̂ = ν̂i j be a minimizer of
infν∈M(A)

∑N
k=1 α̃kν(ω′ : ω′

k �= (τi jω)k). This leads to

Γ +(g)(ω)2 ≤ 1

4N

N∑
i, j=1

(
N∑

k=1

α̃k
(
ν̂

(
ω′
k �= ωk

) − ν̂
(
ω′
k �= (

τi jω
)
k

)))2

+

≤ 1

2N

N∑
i, j=1

(
α̃2
i + α̃2

j

)
≤ 1.

Using this as well as Γ +(g2) ≤ 2gΓ +(g) for all positive functions g, we have

Γ +( f )2 = 1

16
Γ + (

dT (·, A)2
)2 ≤ 1

4
dT (·, A)2Γ + (dT (·, A))2 ≤ f .

To show the second property, we proceed similarly to [10, Proof of Lemma 1]. By
(19) and the Cauchy–Schwarz inequality, we have

f (ω) = 1

4
inf

ν∈M(A)

N∑
k=1

ν
(
ω′ : ω′

k �= ωk
)2

.
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Assuming without loss of generality that f (ω) ≥ f (τi jω), choose ν̂ = ν̂i j ∈ M(A)

such that the value of f (τi jω) is attained. It follows that

f (ω) − f
(
τi jω

) ≤ 1

4

N∑
k=1

ν̂
(
ω′
k �= ωk

)2 − ν̂
(
ω′
k �= (

τi jω
)
k

)2 ≤ 2

4
,

which finishes the proof. ��
Proof of Theorem 2 Since A is a symmetric set, ω �→ dT (ω, A) is a symmetric func-
tion, which follows by the definition

dT (ω, A) = sup
α∈Rn :|α|=1

inf
ω′∈A

n∑
i=1

|αi |1ωi �=ω′
i
.

As in (19), we may use Sion’s minimax theorem to rewrite dT as

dT (ω, A) = inf
ν∈M(A)

sup
α∈Rn :|α|=1

n∑
k=1

αkν(ω′ : ω′
k �= ωk).

As in the proof of Proposition 3, let ν̃, α̃ be the parameters for which the value
dT (ω, A) is attained, and let ν̂, ω̂′

i be minimizers of infω′
i
infν∈M(A)

∑n
j=1 α̃kν(η :

ηk �= (ωi c , ω
′
i )k). We then have

h+(dT (ω, A))2 = 1

2

n∑
i=1

(
dT (ω, A) − inf

ω′
i

dT
((

ωi c , ω
′
i

)
, A

)2
+

≤ 1

2

n∑
i=1

(
n∑

k=1

α̃k ν̂ (η : ηk �= ωk) −
n∑

k=1

α̃k ν̂
(
η : ηk �= (

ωi c , ω̂
′
i

)
k

))2

+

≤ 1

2

n∑
i=1

α̃2
i = 1

2
.

Recall that by Proposition 7, Pκ,n satisfies an h+ − LSI(8(1 − n
N )) on the set of all

symmetric functions. As a consequence, using (11) again, we obtain the sub-Gaussian
estimate

Pκ,n
(
dT (·, A) − Eκ,n dT (·, A) ≥ t

) ≤ exp

(
− t2

8(1 − n/N )

)
.

In the next step, we observe that by the Poincaré inequality we have

Var(dT (·, A)) ≤ 8(1 − n/N )Eκ,n h
+(dT (·, A))2 ≤ 4(1 − n/N ).
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Hence, Chebyshev’s inequality leads to

(
Eκ,n dT (·, A)

)2
Pκ,n

(
dT (·, A) − Eκ,n dT (·, A) ≤ −Eκ,n dT (·, A)

) ≤ 4(1 − n/N ).

Using that Pκ,n(A) ≥ 1/2, we therefore have Eκ,n dT (·, A) ≤ √
8(1 − n/N ). Finally,

since (t − a)2 ≥ t2/2 − a2 for any a ∈ R we obtain for t ≥ √
8(1 − n/N )

Pκ,n(dT (·, A) ≥ t) ≤ exp

(
− (t − √

8(1 − n/N ))2

8(1 − n/N )

)
≤ exp

(
− t2

16(1 − n/N )
+ 1

)
.

For t ≤ √
8(1 − n/N ), the inequality holds trivially, which finishes the proof. ��
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