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Abstract
We prove a Central Limit Theorem for the critical points of random spherical harmon-
ics, in the high-energy limit. The result is a consequence of a deeper characterization
of the total number of critical points, which are shown to be asymptotically fully cor-
related with the sample trispectrum, i.e. the integral of the fourth Hermite polynomial
evaluated on the eigenfunctions themselves. As a consequence, the total number of
critical points and the nodal length are fully correlated for random spherical harmonics,
in the high-energy limit.
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1 Introduction andMain Results

1.1 Random Spherical Harmonics and Sample Polyspectra

It is well-known that the eigenvalues {−λ�}�=0,1,2,... of the Helmholtz equation

�S2 f + λ� f = 0, �S2 = ∂2

∂θ2
+ cot θ

∂

∂ϕ
+ 1

sin2 θ

∂2

∂ϕ2 , ϕ

∈ [0, 2π), θ ∈ [0, π ],

on the two-dimensional sphere S
2, are of the form λ� = �(� + 1) for some integer

� ≥ 1. For any given eigenvalue −λ�, the corresponding eigenspace is the (2� + 1)-
dimensional space of spherical harmonics of degree �; we can choose an arbitrary
L2-orthonormal basis {Y�m(.)}m=−�,...,� and consider random eigenfunctions of the
form

f�(x) =
√
4π√

2� + 1

�∑

m=−�

a�mY�m(x), x ∈ S
2,

where the coefficients {a�m} are independent, standard Gaussian variables if the
basis is chosen to be real-valued; the standardization is such that Var( f�(x)) = 1,
and the representation is invariant with respect to the choice of any specific basis
{Y�m, m = −�, . . . , �}. The random fields { f�(x), x ∈ S

2} are isotropic, meaning
that the probability laws of f�(·) and f g� (·) := f�(g·) are the same for any rotation
g ∈ SO(3); they are also centred and Gaussian, and from the addition theorem for
spherical harmonics (see [18], Equation (3.42)) the covariance function is given by,

E[ f�(x) f�(y)] = P�(cos d(x, y)),

where P� are the usual Legendre polynomials, cos d(x, y) = cos θx cos θy +
sin θx sin θy cos(ϕx − ϕy) is the spherical geodesic distance between x and y and
(θx , ϕx ), (θy, ϕy) are the spherical coordinates of x and y, respectively.
In this paper, we shall be concerned with the number of critical points of f�(·), defined
as usual as

N c
� =

{
x ∈ S

2 : ∇ f�(x) = 0
}

;

it was shown in [24] (see also [8]) that we have

E[N c
� ] = 2√

3
�(� + 1) + O(1),

whereas (see [10]) the variance of N c
� is such that

Var(N c
� ) = �2 log �

33π2 + O(�2), as � → ∞. (1.1)
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We now study the limiting distribution of the fluctuations around the expected value.
First recall that the sequence of Hermite polynomials Hq(u) is defined by

Hq(u) := (−1)q
1

φ(u)

dqφ(u)

duq
, φ(u) := 1√

2π
exp

{
−u2

2

}
,

so that

H0(u) = 1, H1(u) = u, H2(u) = u2 − 1, H3(u) = u3 − 3u,

H4(u) = u4 − 6u2 + 3, . . .

We refer to [25] for a detailed discussion of Hermite polynomials, their properties
and their ubiquitous role in the analysis of Gaussian processes. Below we shall also
exploit the sequence of (random) sample polyspectra, which we define as (see, e.g.
[8,17,20,22,23,27])

h�;q :=
∫

S2
Hq( f�(x))dx .

It is readily checked that h�;0 = 4π and h�;1 = 0, for all �; we also haveE
[
h�;q

] = 0,
for all q = 1, 2, . . . As far as variances are concerned, we have that (see [22,23,27])

Var
(
h�;2

) = (4π)2
2

2� + 1
, Var

(
h�;4

) = 576 log �

�2
+ O(�−2),

Var
(
h�;q

) = cq
�2

+ o(�−2),

for q = 3, 5, 6 . . ., where

cq :=
∫ ∞

0
J0(ψ)qψdψ, J0(ψ) =

∞∑

k=0

(−1)k x2k

(k!)222k ,

and J0(.) is the usual Bessel function of the first kind.

1.2 Main Results

Our first main result in this paper is to show that the number of critical points and the
sample trispectrum

{
h�;4

}
are asymptotically fully correlated: as � → ∞

lim
�→∞ ρ2(N c

� , h�;4) := lim
�→∞

Cov2(N c
� , h�;4)

Var(N c
� )Var(h�;4)

= 1. (1.2)

In fact, our result is slightly sharper than that, as shown in the statement of Theorem1.1.
Recall first that the variance for the total number of critical points was computed in
[10] to be asymptotic to (1.1). Let us now introduce the random sequence
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A� = − λ�

2332
√
3π

∫

S2
H4( f�(x))dx = − λ�

2332
√
3π

h�;4,

for which it is readily seen that

E [A�] = 0, lim
�→∞

Var(N c
� )

Var(A�)
= 1,

because

Var(A�) = λ2�

2635π2
Var(h�;4) = λ2�

2635π2

{
576 log �

�2
+ O(�−2)

}

= �2 log �

33π2 + O(�2), as � → 0.

It is convenient to write

Ã� = A�√
Var(A�)

.

We can now formulate the following

Theorem 1.1 As � → ∞

ρ(N c
� ,A�) = Cov(N c

� ,A�)√
Var(N c

� )Var(A�)
→ 1,

and hence

N c
� − E

[N c
�

]
√
Var(N c

� )
= Ã� + op(1).

As a consequence of the previous theorem, for � → ∞, we have that (1.2) holds, so
that the total number of critical points is fully correlated in the limit with

{
h�;4

}
. The

limiting distribution of
{
h�;4

}
was already studied in [23], where it was shown that a

(quantitative version of the) Central Limit Theorem holds. Our next main result hence
follows immediately; recall first that the Wasserstein distance between the probability
distributions of two random variables (X ,Y ) is defined by

dW (X ,Y ) := sup
h∈Lip(1)

|Eh(X) − Eh(Y )|,

where

Lip(1) :=
{
h : R → R such that

∣∣∣∣
h(x) − h(y)

x − y

∣∣∣∣ ≤ 1 for all x 	= y

}
.
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Theorem 1.2 As � → ∞, for Z a standard Gaussian variable, we have that

lim
�→∞ dW

⎛

⎝N c
� − E

[N c
�

]
√
Var
(N c

�

) , Z

⎞

⎠ = 0,

and hence

N c
� − E

[N c
�

]
√
Var
(N c

�

)
law→ Z .

Remark 1.3 The previous theorems include actually two separate results, namely:

(i) The asymptotic behaviour of the total number of critical points is dominated by
its projection on the fourth-order chaos term (see Sect. 2);

(ii) The projection on the fourth-order chaos can be expressed simply in terms of the
fourth-orderHermite polynomial, evaluatedon the eigenfunctions { f�},without the
need to compute Hermite polynomials evaluated on the first and second derivatives
of { f�}, despite the fact that the latter do appear in the Kac–Rice formula and they
are not negligible in terms of asymptotic variance.

As we shall discuss in the following section, both these findings have analogous
counterparts in the behaviour of the boundary and nodal length, as investigated, i.e.
in [21]. Due to the nature of our proof, we do not see any easy path to extend our
results to non-smooth distances such as the Kolmogorov one, apart from the bound
one obtains by standard inequalities between probability metrics such as (C.2.6) in
the book [25]. We recall here also that the Wasserstein distance can be equivalently
expressed in terms of couplings as

dW (X ,Y ) = inf
γ∈
(X ,Y )

Eγ [|X − Y |] ,

where
(X ,Y ) is the set of all bivariate probabilitymeasures having the samemarginal
laws as X and Y .

1.3 Discussion: Correlation Between Critical Points and Nodal Length

The results in our paper should be compared with a recent stream of the literature
which has investigated the relationship between geometric features of random spher-
ical harmonics and sample polyspectra. The first results in this area are due to [22],
which studied the excursion area of { f�} above a threshold u ∈ R (which we label
L2(u; �)), and showed that it is asymptotically dominated (after centering) by a term
of the form −uφ(u)h�;2/2; in particular, they showed that

(i) There is full correlation, in the high-energy limit, between h�;2 and the excursion
area, for all u 	= 0;
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(ii) For u = 0 (the case of the so-called Defect) this leading term vanishes, and the
asymptotic behaviour is radically different: all the odd-order chaoses of order
greater or equal to 3 are correlated with the excursion area.

The same pattern of behaviour was later established for the boundary length L1(u; �)

(for u 	= 0) (see also [33]) and the Euler characteristic L0(u; �) (for u 	= 0,±1, see,
i.e. [11] and the references therein), thus covering the behaviour of all three Lipschitz–
Killing Curvatures (see [1]). More explicitly, we have that, as � → ∞, (see, i.e. [11])

L0(u; �) − E[L0(u; �)] = 1

2

λ�

2
H2(u)H1(u)φ(u)

1

2π
h�;2 + op(�

3/2)

= 1

2

λ�

2
(u3 − u)φ(u)

1

2π
h�;2 + op(�

3/2),

L1(u; �) − E[L1(u; �)] = 1

2

√
λ�

2

√
π

8
H2
1 (u)φ(u)h�;2 + op(�

1/2)

= 1

2

√
λ�

2

√
π

8
u2φ(u)h�;2 + op(�

1/2),

L2(u; �) − E[L2(u; �)] = 1

2
H1(u)φ(u)h�;2 + op(�

−1/2)

= 1

2
uφ(u)h�;2 + op(�

−1/2),

whence

lim
�→∞ ρ2(h�;2;L2(u; �)) = lim

�→∞ ρ2(h�;2;L1(u; �)) = 1, for u 	= 0,

lim
�→∞ ρ2(h�;2;L0(u; �)) = 1, for u 	= 0,±1,

and

lim
�→∞ ρ2(L0(u; �),L1(u; �)) = lim

�→∞ ρ2(L0(u; �),L2(u; �))

= lim
�→∞ ρ2(L1(u; �),L2(u; �)) = 1, for u 	= 0,±1.

Loosely speaking, it can be concluded that these three Lipschitz–Killing curvatures
are asymptotically proportional to h�;2 in the high-energy limit for u 	= 0 (and also
for u 	= ±1 in the case of Euler characteristics), and thus, they are fully correlated at
different thresholds and among themselves.

These results were extended in [12] to critical values over the interval I . More
precisely, let I ⊆ R be any interval in the real line; we are interested in the number of
critical points of f� with value in I :

N c
� (I ) = #{x ∈ S

2 : f�(x) ∈ I ,∇ f�(x) = 0}.
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For the expectation, it was shown in [8] that for every interval I ⊆ R we have, as
� → ∞,

E[N c
� (I )] = 2√

3
λ�

∫

I
πc
1 (t)dt + O(1), πc

1 (t) =
√
3√
8π

(2e−t2 + t2 − 1)e− t2
2 ;

moreover, for I such that

νc(I ) :=
[∫

I
pc3(t)dt

]2
	= 0, pc3(t) = 1√

8π
e− 3

2 t
2
[
2 − 6t2 − et

2
(1 − 4t2 + t4)

]
,

we have that

lim
�→∞ ρ2(h�;2;N c

� (I )) = 1.

More precisely, it was shown in [12], that

N c
� (I ) − E[N c

� (I )] = ∗
[
�3/2

∫

I
pc3(t)dt

]

× h�;2√
Var(h�;2)

+ op
(√

Var(N c
� (I ))

)
, as � → ∞.

We call I nondegenerate if and only if

∫

I
pc3(t)dt 	= 0.

For instance, semi-intervals I = [u,∞) with u 	= 0 are nondegenerate. As a conse-
quence, for the same range of values of u, we have that

lim
�→∞ ρ2(La(u; �),N c

� ([u,∞))) = 1, for a = 0, 1, 2.

For I = [0,∞) orR (corresponding to the total number of critical points), the leading
constant νc(I ) vanishes, and, accordingly, the order of magnitude of the variance is
smaller than �3; indeed, as � → ∞ (see [10]),

Var(N c
� ) = 1

33π2 �2 log � + O(�2).

This behaviour is again similar to what was found for L1(0; �) (the nodal length of
random spherical harmonics), for which it was shown in [32] that

Var(L1(0; �)) = 1

128
log � + O(1);
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actually our expression here differs from the one in [32] by a factor 1/4, because
L1(0; �) is equivalent to half the nodal length of random spherical harmonics consid-
ered in that paper. It was later shown in [21] that the following asymptotic equivalence
holds:

L1(0; �) − E[L1(0; �)] = −1

4

√
λ�

2

1

4!h�;4 + op(
√
log �),

consistent with the computation of the variance in [32], because (see [23])

Var(h�;4) = 576 log �

�2
+ O(�−2), as � → ∞.

In particular, we have that

lim
�→∞ ρ2(L1(0; �); h�;4) = 1.

Our results in this paper show that the asymptotic behaviour of the total number of
critical points (i.e. I = R) is dominated by exactly the same component as the nodal
length, and indeed

lim
�→∞ ρ2(L1(0; �);N c

� ) = lim
�→∞ ρ2(N c

� ; h�;4) = 1.

Summing up, the literature so far has established the full correlation of Lipschitz–
Killing curvatures and critical values among themselves and with the sequence

{
h�;2

}

for nondegenerate values of the threshold parameter u. Here, we show that in the
degenerate cases (u = −∞, 0 for critical points) full-correlation still exists between
nodal length and critical points, as both are proportional to the sample trispectrum
h�;4 = ∫

S2
H4( f�(x))dx . The correlation is positive, which is to say that the realization

that corresponds to a higher number of critical points are thosewhere longer nodal lines
are going to be observed. Heuristically, it can be conjectured that a higher number of
critical points will typically correspond to a higher number of nodal components, and
hence, nodal length will be as well larger than average. One cautious note is needed
here: whereas the correlation converges to unity, it does so only at a logarithmic rate,
so it may not be simple to visualize this effect by simulations with values of � in the
order of a few hundreds. On the contrary, the correlation for values of the threshold u
different from zero occurs with rate �−1 and shows up very neatly in simulations.

A number of other papers have investigated the geometry of random eigenfunc-
tions on the sphere and on the torus in the last few years. Among these, we recall
[22] and [23] for the excursion area and the Defect; [7,15,19] and [5] for the nodal
length/volume of arithmetic random waves; [13] for the number of intersections of
random eigenfunctions; [21] for the nodal length of random spherical harmonics; [26]
for the nodal length of Berry’s random waves on the plane; [28] and [29] for nodal
intersections. Zeroes of random trigonometric polynomials have been considered, for
instance, by [2–4] and the references therein. Moreover, [6,31] and [30] study the fluc-
tuations of nodal length and excursion area over subsets of the torus and of the sphere
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(see also [14] for random eigenfunctions on more general manifolds); the asymptotic
behaviour of the number of critical points of spherical harmonics restricted to subsets
or shrinking domains is currently under investigation. Similarly to results which were
established in the above-mentioned papers, we expect asymptotic full correlation to
hold between the “local” number of critical points and the “local sample trispectrum”,
as introduced in [31]; the investigation of this conjecture is still ongoing.

1.4 Plan of the Paper

In Sect. 2, we present some background material on Kac–Rice techniques, Wiener
chaos expansions and the relevant covariant matrices for our (covariant) gradient and
Hessian. The proof of our main results is given in Sect. 3, where we show that the
total number of critical points is asymptotically fully correlated with the integral
of the fourth-Hermite polynomial evaluated on the eigenfunctions themselves. The
projection coefficients on Wiener chaoses that we shall need are only three, and their
computation is collected in Sect. 4. In Sect. 5, we consider the terms in the chaos
expansion with odd index Hermite polynomials. The technical computations are in
“Appendix A”.

2 Chaos Expansion

As discussed in [8,9,11] and [12], by means of Kac–Rice formula, the number of
critical points can be formally written as

N c
� =

∫

S2
|det∇2 f�(x)|δ(∇ f�(x))dx,

where the identity holds both almost surely (using, i.e. the Federer’s coarea formula,
see [1]), and in the L2 sense, i.e.

N c
� = lim

ε→0

∫

S2
|det∇2 f�(x)|δε(∇ f�(x))dx = lim

ε→0
N c

�,ε

for

N c
�,ε :=

∫

S2
|det∇2 f�(x)|δε(∇ f�(x))dx, δε(.) := 1

(2ε)2
I[−ε,ε]2(·, ·).

The validity of this limit, in the L2(�) sense, was shown in [11,12]. The approach for
the proof is to start from the Wiener chaos expansion

N c
� =

∞∑

q=0

Proj[N c
� |q] =:

∞∑

q=0

N c
� [q], (2.1)
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where
{N c

� [q]} denotes the chaos-component of order q, or equivalently the projection
of N c

� on the qth order chaos components, which we shall describe below. In order
to define and compute more explicitly these chaos components, let us introduce the
differential operators

∂1;x = ∂

∂θ

∣∣∣∣
θ=θx ,ϕ=ϕx

, ∂2;x = 1

sin θ

∂

∂ϕ

∣∣∣∣
θ=θx ,ϕ=ϕx

,

∂11;x = ∂2

∂θ2

∣∣∣∣
θ=θx ,ϕ=ϕx

, ∂12;x = 1

sin θ

∂2

∂θ∂ϕ

∣∣∣∣
θ=θx ,ϕ=ϕx

, ∂22;x

= 1

sin2 θ

∂2

∂ϕ2

∣∣∣∣
θ=θx ,ϕ=ϕx

.

Covariant gradient and Hessian follow the standard definitions, discussed for instance
in [11]; here, we simply recall that

∇ f�(x) = (∂1 f�(x), ∂2 f�(x)),

∇2 f�(x) =
(

∂11 f�(x) ∂12 f�(x) − cot θx∂2 f�(x)
∂12 f�(x) − cot θx∂2 f�(x) ∂22 f�(x) + cot θx∂1 f�(x)

)
,

vec∇2 f�(x) = (∂11 f�(x), ∂12 f�(x) − cot θx∂2 f�(x), ∂22 f�(x) + cot θx∂1 f�(x)) .

We can then introduce the 5 × 1 vector (∇ f�(x), vec∇2 f�(x)); its covariance matrix
σ� is constant with respect to x and it is computed in [12]. It can be written in the
partitioned form

σ� =
(
a� b�

bT� c�

)
,

where the superscript T denotes transposition, and

a� =
(

λ�

2 0
0 λ�

2

)
, b� =

(
0 0 0
0 0 0

)
, c� = λ2�

8

⎛

⎜⎝
3 − 2

λ�
0 1 + 2

λ�

0 1 − 2
λ�

0
1 + 2

λ�
0 3 − 2

λ�

⎞

⎟⎠ .

Let us recall that theCholesky decomposition of aHermitian positive-definitematrix A
takes the form A = ��T, where � is a lower triangular matrix with real and positive
diagonal entries, and �T denotes the conjugate transpose of �. It is well-known that
every Hermitian positive-definite matrix (and thus also every real-valued symmetric
positive-definite matrix) admits a unique Cholesky decomposition.
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By an explicit computation, it is possible to show that the Cholesky decomposition
of σ� takes the form σ� = ���

t
�, where

�� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
λ�√
2

0 0 0 0

0
√

λ�√
2

0 0 0

0 0
√

λ�

√
3λ�−2

2
√
2

0 0

0 0 0
√

λ�

√
λ�−2

2
√
2

0

0 0
√

λ�(λ�+2)
2
√
2
√
3λ�−2

0 λ�

√
λ�−2√

3λ�−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:

⎛

⎜⎜⎜⎜⎝

τ1 0 0 0 0
0 τ1 0 0 0
0 0 τ3 0 0
0 0 0 τ4 0
0 0 τ2 0 τ5

⎞

⎟⎟⎟⎟⎠
;

in the last expression, for notational simplicity we have omitted the dependence
of the τi s on �. matrix is block diagonal, because under isotropy the gradi-
ent components are independent from the Hessian when evaluated at the same
point. We can hence define a five-dimensional standard Gaussian vector Y (x) =
(Y1(x),Y2(x),Y3(x),Y4(x),Y5(x)) with independent components such that

(∂1 f�(x), ∂2 f�(x), ∂11 f�(x), ∂12 f�(x) − cot θx∂2 f�(x), ∂22 f�(x) + cot θx∂1 f�(x))

= ��Y (x)

= (τ1Y1(x), τ1Y2(x), τ3Y3(x), τ4Y4(x), τ5Y5(x) + τ2Y3(x)) .

Note that asymptotically

τ1 ∼ �√
2
, τ2 ∼ �2√

24
, τ3 ∼

√
3

8
�2, τ4 ∼ �2√

8
, τ5 ∼ �2√

3
,

where (as usual) a� ∼ b� means that the ratio between the left- and right-hand side
tends to unity as � → ∞. Hence,

Ya(x) =
√
2√
λ�

∂a;x f�(x), a = 1, 2,

Y3(x) = 2
√
2√

λ�

√
3λ� − 2

∂11;x f�(x),

Y4(x) = 2
√
2√

λ�

√
λ� − 2

∂21;x ,

Y5(x) =
√
3λ� − 2

λ�

√
λ� − 2

∂22;x f�(x) − λ� + 2

λ�

√
λ� − 2

√
3λ� − 2

∂11;x f�(x).

Thus, we obtain

N c
� = lim

ε→0

∫

S2
|det∇2 f�(x)|δε(∇ f�(x))dx

= lim
ε→0

∫

S2
|∂11;x f�(x)∂22;x f�(x) − (∂12;x f�(x))2|δε(∂1;x f�(x), ∂2;x f�(x))dx

123



2280 Journal of Theoretical Probability (2022) 35:2269–2303

= lim
ε→0

∫

S2
|τ3Y3(x)(τ5Y5(x) + τ2Y3(x)) − (τ4Y4(x))

2|δε(τ1Y1(x), τ1Y2(x))dx

= lim
ε→0

λ2�

∫

S2

∣∣∣∣∣
τ3τ5

λ2�
Y3(x)Y5(x)+ τ2τ3

λ2�
Y 2
3 (x)− τ 24

λ2�
Y 2
4 (x)

∣∣∣∣∣ δε(τ1Y1(x), τ1Y2(x))dx,

where

τ3τ5

λ2�
∼ 1√

8
,

τ2τ3

λ2�
∼ 1

8
,

τ 24

λ2�
∼ 1

8
.

Theqth order chaos is the space generated by the L2-completion of linear combinations
of the form Hq1(Y1) · · · Hq5(Y5), with q1 + q2 + · · ·+ q5 = q (see, i.e. [25]); in other
words, it is the linear span of cross-product of Hermite polynomials computed in the
independent random variables Yi , i = 1, 2, . . . 5, which generate the gradient and
Hessian of f�. In particular, the fourth-order chaos can be written in the following
form:

N c
� [4]

= λ�

⎡

⎣ 1

2!2!
5∑

i=2

i−1∑

j=1

hi j

∫

S2
H2(Yi (x))H2(Y j (x))dx + 1

4!
5∑

i=1

ki

∫

S2
H4(Yi (x))dx

+ 1

3!
5∑

i, j=1
i 	= j

gi j

∫

S2
H3(Yi (x))H1(Y j (x))dx

+ 1

2

5∑

i, j,k=1
i 	= j 	=k

pi jk

∫

S2
H2(Yi (x))H1(Y j (x))H1(Yk(x))dx

+
5∑

i, j,k,l=1
i 	= j 	=k 	=l

qi jkl

∫

S2
H1(Yi (x))H1(Y j (x))H1(Yk(x))H1(Yl(x))dx

⎤

⎥⎥⎦ , (2.2)

where

hi j = lim
ε→0

λ� E

[∣∣∣∣∣
τ3τ5

λ2�
Y3Y5 + τ2τ3

λ2�
Y 2
3 − τ 24

λ2�
Y 2
4

∣∣∣∣∣ δε(τ1Y1, τ1Y2)H2(Yi )H2(Y j )

]
,

ki = lim
ε→0

λ� E

[∣∣∣∣∣
τ3τ5

λ2�
Y3Y5 + τ2τ3

λ2�
Y 2
3 − τ 24

λ2�
Y 2
4

∣∣∣∣∣ δε(τ1Y1, τ1Y2)H4(Yi )

]
,

gi j = lim
ε→0

λ� E

[∣∣∣∣∣
τ3τ5

λ2�
Y3Y5 + τ2τ3

λ2�
Y 2
3 − τ 24

λ2�
Y 2
4

∣∣∣∣∣ δε(τ1Y1, τ1Y2)

H3(Yi (x))H1(Y j (x))
]
,
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pi jk = lim
ε→0

λ� E

[∣∣∣∣∣
τ3τ5

λ2�
Y3Y5 + τ2τ3

λ2�
Y 2
3 − τ 24

λ2�
Y 2
4

∣∣∣∣∣ δε(τ1Y1, τ1Y2)

H2(Yi (x))H1(Y j (x))H1(Yk(x))
]
,

qi jkl = lim
ε→0

λ� E

[∣∣∣∣∣
τ3τ5

λ2�
Y3Y5 + τ2τ3

λ2�
Y 2
3 − τ 24

λ2�
Y 2
4

∣∣∣∣∣ δε(τ1Y1, τ1Y2)

H1(Yi (x))H1(Y j (x))H1(Yk(x))H1(Yl(x))
]
.

The projection coefficients ki , hi j , gi j , pi jk , and qi jkl are constant with respect to �.

3 Proof of Theorems 1.1 and 1.2

3.1 Proof of Theorem 1.1

In this section, we give the proof of our main result. Let us start with the L2(�),
ε-approximation to the number of critical points [12]

N c
� = lim

ε→0
N c

�,ε, N c
�,ε =

∫

S2
|det∇2 f�(x)|δε(∇ f�(x))dx,

for every x ∈ S
2 we define

|det∇2 f�(x)|δε(∇ f�(x)) =
∞∑

q=0

ψε
� (x; q) =: ψε

� (x).

By continuity of the inner product in L2(�), we write

Cov(N c
� , h�;4) = lim

ε→0
Cov(N c

�,ε, h�;4)

= lim
ε→0

E

[∫

S2
|det∇2 f�(x)|δε(∇ f�(x))dx

∫

S2
H4( f�(y))dy

]

= lim
ε→0

E

⎡

⎣
∫

S2

∞∑

q=0

ψε
� (x; q)dx

∫

S2
H4( f�(y))dy

⎤

⎦ .

Now, note that both ψε
� (x) and H4( f�(y)) are isotropic processes on S

2, and hence,
we have

E

⎡

⎣
∫

S2

∞∑

q=0

ψε
� (x; q)dx

∫

S2
H4( f�(y))dy

⎤

⎦

= E

⎡

⎣
∫

S2
lim

Q→∞

Q∑

q=0

ψε
� (x; q)dx

∫

S2
H4( f�(y))dy

⎤

⎦
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= lim
Q→∞E

⎡

⎣
∫

S2

Q∑

q=0

ψε
� (x; q)dx

∫

S2
H4( f�(y))dy

⎤

⎦

by continuity of covariances. Moreover, because all integrands are finite-order poly-
nomials we have

lim
Q→∞E

⎡

⎣
∫

S2

Q∑

q=0

ψε
� (x; q)dx

∫

S2
H4( f�(y))dy

⎤

⎦

= lim
Q→∞

Q∑

q=0

∫

S2

∫

S2
E
[
ψε

� (x; q)H4( f�(y))
]
dxdy

=
∫

S2

∫

S2
E
[
ψε

� (x; 4)H4( f�(y))
]
dxdy

= 16π2
∫ π/2

0
E
[
ψε

� (x; 4)H4( f�(y(φ)))
]
sin φdφ,

where in the last steps we used orthogonality of Wiener chaoses and isotropy; we take
x = (π

2 , 0) and y(φ) = (π
2 , φ). More explicitly, the previous argument allows us to

perform our argument on the equator, where θ is fixed to π/2. Note that

ψε
� (x; 4) = λ�

[ 1

2!2!
5∑

i=2

i−1∑

j=1

hε
i j H2(Yi (x̄))H2(Y j (x̄)) + 1

4!
5∑

i=1

kε
i H4(Yi (x̄))

+ 1

3!
5∑

i, j=1
i 	= j

gε
i j H3(Yi (x))H1(Y j (x))

+ 1

2

5∑

i, j,k=1
i 	= j 	=k

qε
i jk H2(Yi (x))H1(Y j (x))H1(Yk(x))

+
5∑

i, j,k,l=1
i 	= j 	=k 	=l

pε
i jkl H1(Yi (x))H1(Y j (x))H1(Yk(x))H1(Yl(x))

]
,

and hence

Cov(N c
� , h�;4)

= 16π2 lim
ε→0

∫ π/2

0
E
[
ψε

� (x; 4)H4( f�(y(φ)))
]
sin φdφ

= 16π2λ�

1

2!2!
5∑

i=2

i−1∑

j=1

{ lim
ε→0

hε
i j }

123



Journal of Theoretical Probability (2022) 35:2269–2303 2283

∫ π/2

0
E
[
H2(Yi (x̄))H2(Y j (x̄))H4( f�(y(φ)))

]
sin φdφ

+ 16π2λ�

1

4!
5∑

i=1

{ lim
ε→0

kε
i }
∫ π/2

0
E [H4(Yi (x̄))H4( f�(y(φ)))] sin φdφ

+ 16π2λ�

1

3!
∑

i 	= j

{ lim
ε→0

gε
i j }
∫ π/2

0
E
[
H3(Yi (x̄))H1(Y j (x̄))H4( f�(y(φ)))

]
sin φdφ

+ 16π2λ�

1

2

∑

i 	= j 	=k

{ lim
ε→0

pε
i jk}

∫ π/2

0
E
[
H2(Yi (x̄))H1(Y j (x̄))H1(Yk(x̄))H4( f�(y(φ)))

]
sin φdφ

+ 16π2λ�

∑

i 	= j 	=k 	=l

{ lim
ε→0

qε
i jkl}

∫ π/2

0
E
[
H1(Yi (x̄))H1(Y j (x̄))H1(Yk(x̄))H1(Yl(x̄))H4( f�(y(φ)))

]
sin φdφ.

We shall show below that the asymptotic behaviour of Cov(N c
� , h�;4) is dominated by

three terms corresponding to

∫ π/2

0
E [H4(Y2(x̄))H4( f�(y(φ)))] sin φdφ,

∫ π/2

0
E [H4(Y5(x̄))H4( f�(y(φ)))]

sin φdφ,

and

∫ π/2

0
E [H2(Y2(x̄))H2(Y5(x̄))H4( f�(y(φ)))] sin φdφ.

The computation of these leading covariances is given in the three Lemmas A.1–A.3
to follow, where it is shown that

∫ π/2

0
E [H4(Y2(x̄))H4( f�(y(φ)))] sin φdφ = 4!2 · 3

π2

log �

�2
+ O(�−2),

∫ π/2

0
E [H4(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 4! 33

2π2

log �

�2
+ O(�−2),

∫ π/2

0
E [H2(Y2(x̄))H2(Y5(x̄))H4( f�(y(φ)))] sin φdφ

= 4! 3

π2

log �

�2
+ O(�−2).
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All the remaining terms in Cov(N c
� , h�;4) are shown to be O(�−2) or smaller in Sect. 5

and Lemmas A.4–A.9 below. From Proposition 4.1, we know that

k2 = lim
ε→0

kε
2 = 1

π

√
3

2
, k5 = lim

ε→0
kε
5 = − 1

π

7

33
√
3
, h25

:= lim
ε→0

hε
25 = − 1

π

1

3
√
3
.

Substituting and after some straightforward algebra, one obtains

Cov(N c
� , h�;4)

= λ�

{
4π2h254! 3

π2

log �

�2
+ 2

3
π2k24!22 3

π2

log �

2�2
+ 2

3
π2k54!32 3

π2

log �

2�2
+ O(�−2)

}

= λ�

3
√
3
4! log �

�2

1

π
× {−12 + 18 − 7} + O(1)

= − λ�

3
√
3
4! log �

�2

1

π
+ O(1).

Because

A� = − λ�

2332
√
3π

∫

S2
H4( f�(x))dx = − λ�

2332
√
3π

h�;4,

we find

Cov(N c
� ,A�) = λ2�

2332
√
3π

1

3
√
3
4! log �

�2

1

π
+ O(1) = �2 log �

33π2 + O(1),

so that our proof of our main theorem is completed, recalling that, as � → ∞,

Var(N c
� ) ∼ Var(A�) = �2 log �

33π2 + O(1).

Remark 3.1 A consequence of Theorem 1.1 is that, as � → ∞,

Var
(
Proj[N c

� |4]) = �2 log �

33π2 + O(�2),

so that

lim
�→∞

Var
(
Proj[N c

� |4])

Var
(N c

�

) = 1.
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Note that by orthogonality, we have

Var
(N c

�

) =
∞∑

q=0

Var
(
Proj[N c

� |q]) = Var
(
Proj[N c

� |4])+
∞∑

k=1

Var
(
Proj[N c

� |4 + 2k]) ,

where the odd terms in the expansionvanish by symmetry arguments,Var
(
Proj[N c

� |0])
= 0 is obvious and Var

(
Proj[N c

� |2]) = 0 was shown in [12]. Hence, we have the
bound

∞∑

k=1

Proj[N c
� |4 + 2k] = o(�2 log �).

In fact, by a careful investigation of the asymptotic behaviour of higher-order chaotic
projections it seems possible to establish the slightly stronger result

∞∑

k=1

Proj[N c
� |4 + 2k] = O(�2);

we omit this investigation for brevity’s sake.

3.2 Proof of Theorem 1.2

It was shown in [23] that

lim
�→∞ dW

⎛

⎝ h�;4√
Var
(
h�;4

) , Z

⎞

⎠ = 0;

the result then follows from Theorem 1.1 and the triangle inequality

lim
�→∞ dW

⎛

⎝N c
� − E

[N c
�

]
√
Var
(N c

�

) , Z

⎞

⎠

≤ lim
�→∞ dW

⎛

⎝N c
� − E

[N c
�

]
√
Var
(N c

�

) ,
A�√

Var (A�)

⎞

⎠

+ lim
�→∞ dW

( A�√
Var (A�)

, Z

)

= lim
�→∞ dW

⎛

⎝N c
� − E

[N c
�

]
√
Var
(N c

�

) ,
A�√

Var (A�)

⎞

⎠
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+ lim
�→∞ dW

⎛

⎝ h�;4√
Var
(
h�;4

) , Z

⎞

⎠

= 0.

4 Evaluation of the Projection Coefficients h52, k2, k5

In this section, we evaluate the three projection coefficients in theWiener chaos expan-
sion which are required for the completion of our arguments.

Proposition 4.1 We have that

k2 = 1

π

√
3

2
, k5 = − 1

π

7

33
√
3
, h25 = − 1

π

1

3
√
3
.

Proof Let us recall first the following simple result

ϕa := lim
ε→0

E[Ha(Y )δε(τ1Y )] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
2πτ1

a = 0,

0 a = 1,

− 1√
2πτ1

a = 2,
3√
2πτ1

a = 4.

Indeed, for example

lim
ε→0

E[H4(Y )δε(τ1Y )] = lim
ε→0

E[(Y 4 − 6Y 2 + 3)δε(τ1Y )] = 3√
2πτ1

,

since

lim
ε→0

E[Ynδε(τ1Y )] = lim
ε→0

∫ ∞

−∞
ynδε(τ1y)

1√
2π

e− y2

2 dy =
{

1√
2πτ1

n = 0,

0 n = 1, 2, 3 . . .

Now, note that

k2 = lim
ε→0

kε
2

= λ� E

[∣∣∣∣
1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣

]
ϕ0 ϕ4

= 3

π
E

[∣∣∣∣
1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣

]
,

k5 = lim
ε→0

kε
5

= λ� E

[∣∣∣∣
1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣ H4(Y5)

]
ϕ2
0
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= 1

π
E

[∣∣∣∣
1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣ H4(Y5)

]
,

and

h52 = lim
ε→0

hε
25

= λ� E

[∣∣∣∣
1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣ H2(Y5)

]
ϕ0 ϕ2

= − 1

π
E

[∣∣∣∣
1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣ H2(Y5)

]
.

Let us introduce the change of variables

Z1 = √
3Y3, Z2 = Y4, Z3 =

√
8√
3
Y5 + 1√

3
Y3,

so that (Z1, Z2, Z2) is a centred Gaussian vector with covariance matrix

⎛

⎝
3 0 1
0 1 0
1 0 3

⎞

⎠ ,

and we can write

1

2
√
2
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4 = 1

8
(Z1Z3 − Z2

2).

The coefficient k2 can be computed as follows: write

E

[∣∣∣∣
1√
8
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣

]
= 1

8
E

[∣∣∣Z1Z3 − Z2
2

∣∣∣
]

= 1

8
E

[∣∣∣(Z1, Z2, Z3)
TA(Z1, Z2, Z3)

∣∣∣
]
,

where the symmetric matrix A given by

A =
⎛

⎝
0 0 1/2
0 −1 0
1/2 0 0

⎞

⎠ ;

we apply [16], Theorem 2.1, to obtain

E

[∣∣∣Z1Z3 − Z2
2

∣∣∣
]

= 2

π

∫ ∞

0

1

t2

{
1 − 1

2
√
det(I − 2i t�A)

− 1

2
√
det(I + 2i t�A)

}
dt
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where we have that

det(I − 2i t�A) = 1 + 12t2 + 16i t3, det(I + 2i t�A) = 1 + 12t2 − 16i t3,

and computing the integral with Cauchy methods for residuals, we get

E

[∣∣∣Z1Z3 − Z2
2

∣∣∣
]

= 4√
3
,

and

k2 = 3

π
E

[∣∣∣∣
1√
8
Y3Y5 + 1

8
Y 2
3 − 1

8
Y 2
4

∣∣∣∣

]
=

√
3

2π
,

as claimed. We introduce now the following notation

Ir = E[|Z1Z3 − Z2
2 |(Z1 − 3Z3)

r ]
for r = 0, 2, 4, so that,

h52 = − 1

π

1

8
E

[∣∣∣Z1Z3 − Z2
2

∣∣∣ H2

(
1√
8
√
3
(3Z3 − Z1)

)]

= − 1

π

1

8
E

[∣∣∣Z1Z3 − Z2
2

∣∣∣
(

1√
8
√
3
(3Z3 − Z1)

)2
]

+ 1

π

1

8
E

[∣∣∣Z1Z3 − Z2
2

∣∣∣
]

= − 1

π

1

3 · 26 I2 +
π

1

23
I0,

and

k5 = 1

π

1

8
E

[∣∣∣Z1Z3 − Z2
2

∣∣∣ H4

(
1√
8
√
3
(3Z3 − Z1)

)]

= 1

π

1

29 · 32 I4 − 1

π

1

25
I2 + 1

π

3

23
I0.

The statement follows applying the results in [10] where it is proved that

I2 = 25 · 5√
3

, I4 = 28 · 52 · 7
3
√
3

.


�

5 Terms with Odd Index Hermite Polynomials

In this section, we prove that the terms in the 4-th chaos formula (2.2) with odd index
Hermite polynomials produce inCov(N c

� , h�;4) terms of orderO(�−2) and terms equal
to zero. We first focus, in the following proposition, on the projection coefficients.
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Proposition 5.1 The projection coefficients gi j , pi jk and qi jkl are such that

• For i, j 	= 3, 5, we have gi j = 0,
• For j, k 	= 1, 2, 4, we have pi jk = 0,
• We have qi jkl = 0.

Proof Recalling that for a odd we have

lim
ε→0

E[Ha(Y )δε(τ1Y )] = 0,

from this we immediately see that the coefficients gi j with i, j = 1, 2 are all equal to
zero. We consider now the coefficients gi j with i = 4 or j = 4, for these coefficients
we observe that the expectation with respect to the random variable Y4 vanishes since
it is expressed as the integral of an odd function. The proof of the last two points of
the statement is similar. 
�

In Lemmas A.7–A.9, we prove that the terms in Cov(N c
� , h�;4) that are multiplied

by the projection coefficients not discussed in Proposition 5.1 are either zero or of
order O(�−2). In particular, we prove that, for a, b = 3, 5, a 	= b,

∫ π/2

0
E[H3(Ya(x̄))H1(Yb(x̄))H4( f�(y(φ)))] sin φdφ = O(�−2),

for a = 1, 2,

∫ π/2

0
E[H2(Ya(x̄))H1(Y3(x̄))H1(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 0,

and that

∫ π/2

0
E[H2(Y4(x̄))H1(Y3(x̄))H1(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 0.
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Appendix A Auxiliary Lemmas

In this appendix, we collect a number of technical results that were exploited for
the correlation results above. We divide the results into two subsections, collecting,
respectively, dominant and subdominant terms.

A.1 Dominant Terms

In this subsection, we collect the results concerning the three dominant terms.

Lemma A.1 As � → ∞,

∫ π/2

0
E [H4(Y2(x̄))H4( f�(y(φ)))] sin φdφ = 4!22 3

π2

log �

2�2
+ O(�−2).

Proof Note first that, by Diagram Formula (see [18] Section 4.3.1),

E [H4(Y2(x̄))H4( f�(y(φ)))] = 4! {E [Y2(x̄)) f�(y(φ))]}4

= 4!
{
E

[√
2

�(� + 1)
∂2;x f�(x) f�(y(φ))

]}4

= 4! 22

�2(� + 1)2
{
E
[
∂2;x f�(x) f�(y(φ))

]}4
.

Now, we have easily

〈x, y〉 = cos θx cos θy + sin θx sin θy cos(ϕx − ϕy),

and

E
[
∂2;x f�(x) f�(y(φ))

] = 1

sin θ

∂

∂ϕx
P�(〈x, y〉)

∣∣∣∣
x=x,y=y(φ)

= − 1

sin θ
P ′

�(〈x, y〉) sin θx sin θy sin(ϕx − ϕy)

∣∣∣∣
x=x,y=y(φ)

= P ′
�(cosφ) sin(φ).

Thus, we obtain

∫ π/2

0
E [H4(Y2(x̄))H4( f�(y(φ)))] sin φdφ

= 4! 22

�2(� + 1)2

∫ π/2

0

{
P ′

�(cosφ) sin(φ)
}4 sin φdφ

= 4! 22

�2(� + 1)2
3�4

π2

log �

�2
+ O(�−2)
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= 4! 12
π2

log �

�2
+ O(�−2),

using, see Lemma A.10 below,

∫ π/2

0
[P(r)

� (cosφ) sinr φ]4 sin φdφ = 3�4r

π2

log �

2�2
+ O(�4r−2).


�
Lemma A.2 As � → ∞

∫ π/2

0
E [H4(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 4!32 3

π2

log �

2�2
+ O(�−2).

Proof As before, note first that

E [H4(Y5(x̄))H4( f�(y(φ)))]

= 4! {E [Y5(x̄) f�(y(φ))]}4

= 4!
{
E

[( √
3λ� − 2

λ�

√
λ� − 2

∂22;x f�(x)

− (λ� + 2)

λ�

√
λ� − 2

√
3λ� − 2

∂11;x f�(x)
)

f�(y(φ))

]}4

= 4! {E [(α1�∂22;x f�(x) − α2�∂11;x f�(x)
)
f�(y(φ))

]}4
,

where we wrote

α1� :=
√
3λ� − 2

λ�

√
λ� − 2

, α2� := (λ� + 2)

λ�

√
λ� − 2

√
3λ� − 2

;

note that

α1� =
√
3

�2
+ O(

1

�3
), α2� = 1√

3�2
+ O(

1

�3
).

Now,

E
[
∂22;x f�(x) f�(y(φ))

] = 1

sin2 θx

∂2

∂ϕ2
x
P�(〈x, y〉)

∣∣∣∣
x=x,y=y(φ)

= P ′′
� (cosφ) sin2 φ − P ′

�(cosφ) cosφ.

Likewise

E
[
∂11;x f�(x) f�(y(φ)

] = ∂2

∂θ2x
P�(〈x, y〉)

∣∣∣∣
x=x,y=y(φ)

= −P ′
�(cosφ) cosφ.
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Thus, we obtain

{
E
[(

α1�∂22;x f�(x) − α2�∂11;x f�(x)
)
f�(y(φ)

]}4

= α4
1�

{
P ′′

� (cosφ) sin2 φ + P ′
�(cosφ) cosφ

}4

+ 4α3
1�α2�

{
P ′′

� (cosφ) sin2 φ + P ′
�(cosφ) cosφ

}3
P ′

�(cosφ) cosφ

+ 6α2
1�α

2
2�

{
P ′′

� (cosφ) sin2 φ + P ′
�(cosφ) cosφ

}2 {
P ′

�(cosφ) cosφ
}2

+ 4α1�α
3
2�

{
P ′′

� (cosφ) sin2 φ + P ′
�(cosφ) cosφ

} {
P ′

�(cosφ) cosφ
}3

+ α4
2�

{
P ′

�(cosφ) cosφ
}4

.

Now, again using Lemma A.10 below,

∫ π/2

0

{
P ′′

� (cosφ) sin2 φ
}4

sin φdφ = 3�8

2π2

log �

�2
+ O(�6)

and exploiting instead Lemma A.12

∫ π/2

0

{
P ′′

� (cosφ) sin2 φ
}k {

P ′
�(cosφ) cosφ

}4−k sin φdφ

= O(�6), for all k = 1, . . . 4.

Noting that, for k = 1, . . . 4,

α4
1� = 32

�8
+ O(�−7) and αk

1�α
4−k
2� = O(�−8),

the proof is completed. 
�
Lemma A.3 As � → ∞,

∫ π/2

0
E [H2(Y2(x̄))H2(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 4!(2 · 3) 1

π2

log �

2�2
+ O(�−2).

Proof Again by Diagram Formula, we have that

E [H2(Y2(x̄))H2(Y5(x̄))H4( f�(y(φ)))]

= 24 {E [Y2(x̄) f�(y(φ))]}2 {E [Y5(x̄) f�(y(φ))]}2

= 24

{
E

[√
2

λ�

∂2;x f�(x) f�(y(φ)

]}2
{
E
[
α1�∂22;x f�(x)

−α2l∂11;x f�(x) f�(y(φ)
]}2
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= 24
2

λ�

{
P ′

�(cosφ) sin(φ)
}2 {

α1�(P
′′
� (cosφ) sin2 φ − P ′

�(cosφ) cosφ)

+α2l P
′
�(cosφ) cosφ

}2
.

Now, using repeatedly Lemmas A.10 and A.12 we obtain

∫ π/2

0

{
P ′

�(cosφ) sin φ
}2 {

α1�(P
′′
� (cosφ) sin2 φ − P ′

�(cosφ) cosφ)

+α2l P
′
�(cosφ) cosφ

}2 sin φdφ

= 3

π2

log �

2
+ O(1) ,

and thus, the conclusion follows. 
�

A.2 Subdominant Terms

The behaviour of subdominant terms can be characterized rather easily, as follows.

Lemma A.4 As � → ∞, for a = 1, 3, 4,

∫ π/2

0
E [H4(Ya(x̄))H4( f�(y(φ)))] sin φdφ = O(�−2).

Proof For a = 1, we have that

E [H4(Y1(x̄))H4( f�(y(φ)))] = 4! {E [Y1(x̄) f�(y(φ))]}4

= 4!
{
E

[√
2

�(� + 1)
∂1;x f�(x) f�(y(φ)

]}4

= 4! 22

�2(� + 1)2
{
E
[
∂1;x f�(x) f�(y(φ)

]}4
.

Now, we have easily

E
[
∂1;x f�(x) f�(y(φ))

]

= ∂

∂θ
P�(〈x, y〉)

∣∣∣∣
x=x,y=y(φ)

= P ′
�(〈x, y〉)

{− sin θx cos θy + cos θx sin θy sin(ϕx − ϕy)
}∣∣

x=x,y=y(φ)

= 0.

Similarly

E [H4(Y3(x̄))H4( f�(y(φ)))] = 4! 82

λ2�(3λ� − 2)2
{
E
[
∂11;x f�(x) f�(y(φ)

]}4
,
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and

E
[
∂11;x f�(x) f�(y(φ))

]

= P ′′
� (〈x, y〉) {− sin θx cos θy + cos θx sin θy sin(ϕx − ϕy)

}2∣∣∣
x=x,y=y(φ)

= + P ′
�(〈x, y〉)

{− cos θx cos θy − sin θx sin θy sin(ϕx − ϕy)
}2∣∣∣

x=x,y=y(φ)

= −P ′
�(cosφ) sin2 φ,

whence

∫ π/2

0
E [H4(Ya(x̄))H4( f�(y(φ)))] sin φdφ

= 4! 82

λ2�(3λ� − 2)2

∫ π/2

0

{
P ′

�(cosφ) sin2 φ
}4

sin φdφ = O(�−6).

Finally,

E [H4(Y4(x̄))H4( f�(y(φ)))] = 4! 82

λ2�(λ� − 2)2
{
E
[
∂21;x f�(x) f�(y(φ))

]}4
,

where

E
[
∂21;x f�(x) f�(y(φ))

]

= 1

sin θx
P ′′

� (〈x, y〉) {− sin θx cos θy + cos θx sin θy sin(ϕx − ϕy)
}2
∣∣∣∣
x=x,y=y(φ)

+ 1

sin θx
P ′

�(〈x, y〉)
{
cos θx sin θy cos(ϕx − ϕy)

}2
∣∣∣∣
x=x,y=y(φ)

= 0.


�
Lemma A.5 For a = 1, 4, we have that

∫ π/2

0
E [H2(Ya(x̄))H2(Yc(x̄))H4( f�(y(φ)))] sin φdφ = 0, where c

= 1, . . . 5, c 	= a.

Proof It was shown in the proof of Lemma A.4 that E [Y1(x̄)) f�(y(φ)] =
E [Y4(x̄)) f�(y(φ)] = 0. The result is then an immediate consequence of the Dia-
gram Formula (see (A.2.13) on page 202 of [25]). 
�
We are then left with only two terms to consider.
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Lemma A.6 For a = 2, 5, we have that

∫ π/2

0
E [H2(Ya(x̄))H2(Y3(x̄))H4( f�(y(φ)))] sin φdφ = O(�−2).

Proof We have that

E [H2(Y2(x̄))H2(Y3(x̄))H4( f�(y(φ)))]

= 4! {E [Y2(x̄) f�(y(φ))]}2 {E [Y3(x̄) f�(y(φ))]}2

= 4! × 2

�(� + 1)

{
E
[
∂2;x f�(x) f�(y(φ))

]}2

× 8

λ�(3λ� − 2)

{
E
[
∂11;x f�(x) f�(y(φ))

]}2

= 4! × 2

�(� + 1)

{
P ′

�(cosφ) sin(φ)
}2 × 8

λ�(3λ� − 2)

{
P ′

�(cosφ) sin2 φ
}2

,

and therefore

∫ π/2

0
E [H2(Y2(x̄))H2(Y3(x̄))H4( f�(y(φ)))] sin φdφ

≤ const × 1

�6

∫ π/2

0

{
P ′

�(cosφ) sin(φ)
}4 sin3 φdφ

= O(�−4).

Finally,

E [H2(Y5(x̄))H2(Y3(x̄))H4( f�(y(φ)))]

= 4! {E [Y5(x̄) f�(y(φ))]}2 {E [Y3(x̄) f�(y(φ))]}2
= 4! {E [(α1�∂22;x f�(x) − α2�∂11;x f�(x)) f�(y(φ))

]}2

× 8

λ�(3λ� − 2)

{
E
[
∂11;x f�(x) f�(y(φ))

]}2

= 4!
{
α1�(P

′′
� (cosφ) sin2(φ) − P ′

�(cosφ) cosφ) + α2�P
′
�(cosφ) cosφ

}2

× 8

λ�(3λ� − 2)

{
P ′

�(cosφ) cosφ
}2 ;

exploiting again Lemma A.12, the result follows. 
�
Lemma A.7 As � → ∞, for a, b = 3, 5, a 	= b

∫ π/2

0
E[H3(Ya(x̄))H1(Yb(x̄))H4( f�(y(φ)))] sin φdφ = O(�−2).
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Proof By applying again the Diagram Formula (see [18] Section 4.3.1), we have

∫ π/2

0
E[H3(Ya(x̄))H1(Yb(x̄))H4( f�(y(φ)))] sin φdφ

=
∫ π/2

0
{324E[Ya(x̄)Yb(x̄)]E2[Ya(x̄) f�(y(φ))]

+ 4!E3[Ya(x̄) f�(y(φ))]E[Yb(x̄) f�(y(φ))]} sin φdφ.

We observe that

E[Y3(x̄)Y5(x̄)] =
√
8√

λ�

√
3λ� − 2

√
3λ� − 2

λ�

√
λ� − 2

E[∂22;x f�(x̄)∂11;x f�(x̄)]

−
√
8√

λ�

√
3λ� − 2

λ� + 2

λ�

√
3λ� − 2

√
λ� − 2

E[∂11;x f�(x̄)∂11;x f�(x̄)]

=
√
8√

λ�

√
3λ� − 2

√
3λ� − 2

λ�

√
λ� − 2

λ�

8
[λ� + 2]

−
√
8√

λ�

√
3λ� − 2

λ� + 2

λ�

√
3λ� − 2

√
λ� − 2

λ�

8
[3λ� − 2]

= 0,

moreover

E[Y3(x̄) f�(y(φ))] = −
√
8√

λ�

√
3λ� − 2

P ′
�(cosφ) cosφ,

and

E[Y5(x̄) f�(y(φ))] =
√
3λ� − 2

λ�

√
λ� − 2

E[∂22;x f�(x̄) f�(y(φ))]

− λ� + 2

λ�

√
λ� − 2

√
3λ� − 2

E[∂11;x f�(x̄) f�(y(φ))]

=
√
3λ� − 2

λ�

√
λ� − 2

[P ′′(cosφ) sin2 φ − P ′
�(cosφ) cosφ]

− λ� + 2

λ�

√
λ� − 2

√
3λ� − 2

[−P ′
�(cosφ) cosφ].

The statement follows by applying Lemma A.12. 
�
Lemma A.8 For a = 1, 2,

∫ π/2

0
E[H2(Ya(x̄))H1(Y3(x̄))H1(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 0.
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Proof From Diagram Formula, we have

∫ π/2

0
E[H2(Ya(x̄))H1(Y3(x̄))H1(Y5(x̄))H4( f�(y(φ)))] sin φdφ

=
∫ π/2

0
{2E[Ya(x̄)Y3(x̄)]E[Ya(x̄)Y5(x̄)]

+ 4!E[Ya(x̄)Y3(x̄)]E[Y3(x̄) f�(y(φ))]E[Ya(x̄) f�(y(φ))]
+ 3 · 4E[Y3(x̄)Y5(x̄)]E2[Ya(x̄) f�(y(φ))]
+ 4!E[Ya(x̄)Y5(x̄)]E[Y3(x̄) f�(y(φ))]E[Ya(x̄) f�(y(φ))]
+ 4!E[Y3(x̄) f�(y(φ))]E[Y5(x̄) f�(y(φ))]E2[Ya(x̄) f�(y(φ))]} sin φdφ.

The statement follows by observing that (for a = 1, 2) E[Ya(x̄)Y3(x̄)] = 0,
E[Ya(x̄)Y5(x̄)] = 0, E[Y3(x̄)Y5(x̄)] = 0, and E[Ya(x̄) f�(y(φ))] = 0. 
�
Lemma A.9 We have

∫ π/2

0
E[H2(Y4(x̄))H1(Y3(x̄))H1(Y5(x̄))H4( f�(y(φ)))] sin φdφ = 0.

Proof Once again, the statement follows from Diagram Formula, which gives

∫ π/2

0
E[H2(Y4(x̄))H1(Y3(x̄))H1(Y5(x̄))H4( f�(y(φ)))] sin φdφ

=
∫ π/2

0
{2E[Y4(x̄)Y3(x̄)]E[Y4(x̄)Y5(x̄)]

+ 4!E[Y4(x̄)Y3(x̄)]E[Y3(x̄) f�(y(φ))]E[Y4(x̄) f�(y(φ))]
+ 3 · 4E[Y3(x̄)Y5(x̄)]E2[Y4(x̄) f�(y(φ))]
+ 4!E[Y4(x̄)Y5(x̄)]E[Y3(x̄) f�(y(φ))]E[Y4(x̄) f�(y(φ))]
+ 4!E[Y3(x̄) f�(y(φ))]E[Y5(x̄) f�(y(φ))]E2[Y4(x̄) f�(y(φ))]} sin φdφ

and E[Y4(x̄)Y3(x̄)] = 0, E[Y4(x̄)Y5(x̄)] = 0, E[Y3(x̄)Y5(x̄)] = 0, E[Y4(x̄) f�(y(φ))]
= 0. 
�

A.3 Some Useful Integrals

We write as usual

P(r)
� (u) = dr

dur
P�(u).

For our main arguments to follow, a key step is to recall the following results, which
are proved in [8], Lemma C3. For all constants C > 0, we have, uniformly over
C/� ≤ φ ≤ π/�
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P(r)
� (u) =

√
2

π

�2r− 1
2

sinr+ 1
2 φ

(−1)r/2 cosψ±
� + R(r)

� (φ), r = 0, 1, 2, (5.1)

where ψ±
� = (� + 1/2)φ − π/4 for r = 0, 2, and ψ±

� = (� + 1/2)φ + π/4 for r = 1,
and

R(0)
� (φ) = O

(
1√
�φ

)
, R(1)

� (φ) = O

(
1√

�φ5/2

)
, R(2)

� (φ) = O

( √
�

φ7/2

)
.

(5.2)

Our results will then follow from the following two lemmas:

Lemma A.10 For r = 0, 1, 2, we have

∫ π/2

0
[P(r)

� (cosφ) sinr φ]4 sin φdφ = 3�4r

π2

log �

2�2
+ O(�4r−2).

Likewise

∫ π/2

0
[P�(cosφ)]2[P ′′

� (cosφ) sin2 φ]2 sin φdφ = 3�2 log �

2π2 + O(�2),

∫ π/2

0
[P�(cosφ)]2[P ′

�(cosφ) sin φ]2 sin φdφ = log �

2π2 + O(1),

∫ π/2

0
[P ′

�(cosφ)]2[P ′′
� (cosφ) sin φ]2 sin φdφ = �4 log �

2π2 + O(�4).

Remark A.11 More compactly, for r1, r2 = 0, 1, 2, we could have written the single
expression

∫ π/2

0
[P(r1)

� (cosφ) sinr1 φ]2[P(r2)
� (cosφ) sinr2 φ]2 sin φdφ

= (2 + (−1)r1+r2)�2(r1+r2)

π2

log �

2�2

+ O(�2(r1+r2)−2).

Proof We recall first that P(r)
� (cosφ) ≤ �2r for all φ ∈ [0, 2π). Hence,

∫ C/�

0
[P(r)

� (cosφ) sinr φ]4 sin φdφ ≤ const × �8r
∫ C/�

0
sin4r+1 φdφ = O(�4r−2),

and it suffices to consider φ > C/�. Hence, we have

∫ π/2

0
[P(r)

� (cosφ) sinr φ]4 sin φdφ
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= 22

π2

∫ π/2

C/�

[
�r√

� sin φ
cos
(
(� + 1/2)φ ± π

4

)]4
sin φdφ

+ 4
23/2

π3/2

∫ π/2

C/�

[
�r√

� sin φ
cos
(
(� + 1/2)φ ± π

4

)]3 [
R(r)

� (φ) sinr φ
]
sin φdφ

+ 6
2

π

∫ π/2

C/�

[
�r√

� sin φ
cos
(
(� + 1/2)φ ± π

4

)]2 [
R(r)

� (φ) sinr φ
]2

sin φdφ

+ 4
21/2

π1/2

∫ π/2

C/�

[
�r√

� sin φ
cos
(
(� + 1/2)φ ± π

4

)] [
R(r)

� (φ) sinr φ
]3

sin φdφ

+
∫ π/2

C/�

[
R(r)

� (φ) sinr φ
]4

sin φdφ.

It is not difficult to see that, for k = 1, . . . , 4,

∫ π/2

C/�

[
�r√

� sin φ
cos
(
(� + 1/2)φ ± π

4

)]k [
R(r)

� (φ) sinr φ
]4−k

sin φdφ = O(�4r−2);

indeed the previous integrals are bounded by, for r = 2,

�kr−k/2
∫ π/2

C/�

1

sink/2 φ

[
R(2)

� (φ) sinr φ
]4−k

sin φdφ

≤ const × �3k/2
∫ π/2

C/�

1

sink/2 φ

[
�1/2

φ3/2

]4−k

sin φdφ

≤ const × �k+2
∫ π/2

C/�

1

sink/2 φ

1

φ6−3k/2 sin φdφ

≤ const × �k+2
∫ π/2

C/�

φk−5dφ = O(�6).

Likewise, for r = 1,

�k−k/2
∫ π/2

C/�

1

sink/2 φ

[
R(r)

� (φ) sinr φ
]4−k

sin φdφ

≤ const × �k/2
∫ π/2

C/�

1

sink/2 φ

[
1

�1/2φ3/2

]4−k

sin φdφ

≤ const × �k−2
∫ π/2

C/�

1

sink/2 φ

1

φ6−3k/2 sin φdφ

≤ const × �k−2
∫ π/2

C/�

φk−5dφ = O(�2).

Thus,
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∫ π/2

0
[P(r)

� (cosφ) sinr φ]4 sin φdφ

= 22

π2

∫ π/2

C/�

[
�r√

� sin φ
cos

((
� + 1

2

)
φ ± π

4

)]4
sin φdφ + O(�4r−2).

The following equalities can be established by simple trigonometric identities:

cos4
((

� + 1

2

)
φ − π

4

)
= 3

8
+ 1

8
(− cos(2φ(2� + 1)) + 4 sin(φ(2� + 1))),

cos4
((

� + 1

2

)
φ + π

4

)
= 3

8
+ 1

8
(− cos(2φ(2� + 1)) − 4 sin(φ(2� + 1))).

Thus, we have

∫ π/2

0
[P(r)

� (cosφ) sinr φ]4 sin φdφ = �4r−2 2
2

π2

3

8

∫ π/2

C/�

1

sin φ
dφ + O(�4r−2)

= 3

2π2 �4r−2 log � + O(�4r−2),

since

∫ π/2

C/�

1

sin φ
dφ = 1

2
log

(
1 − cosφ

1 + cosφ

)∣∣∣∣
π/2

C/�

= log � + O(1).

The proof of the first part of the lemma is then concluded. The proof of the second
result is very similar, and we can omit some details; in particular, we simply recall the
identity

cos2
(
2� + 1

2
φ + π

4

)
cos2

(
2� + 1

2
φ − π

4

)

=
[√

2

2
cos

(
2� + 1

2
φ

)
−

√
2

2
sin

(
2� + 1

2
φ

)]2 [√
2

2
cos

(
2� + 1

2
φ

)

+
√
2

2
sin

(
2� + 1

2
φ

)]2

= 1

4

[
cos2

(
2� + 1

2
φ

)
− sin2

(
2� + 1

2
φ

)]2

= 1

4
cos2((2� + 1)φ).

Because cos 2x + 1 = 2 cos2 x , it is not difficult to see that

∫ π/2

C/�

cos2((2� + 1)φ)

sin φ
dφ = 1

2

∫ π/2

C/�

1

sin φ
dφ
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+
∫ π/2

C/�

cos(2(2� + 1)φ)

2 sin φ
dφ = 1

2
log � + O(1).

Dealing with the lower order terms as in the first part of the lemma, we can now
conclude with our second statement, i.e.

∫ π/2

0
[P�(cosφ) sinr1 φ]2[P(4)

� (cosφ) sinr2 φ]2 sin φdφ = 3�8

2π2

log �

�2
+ O(�6),

∫ π/2

0
[P�(cosφ) sinr1 φ]2[P(2)

� (cosφ) sinr2 φ]2 sin φdφ = �8

π2

log �

2�2
+ O(�6),

∫ π/2

0
[P(2)

� (cosφ) sinr1 φ]2[P(4)
� (cosφ) sinr2 φ]2 sin φdφ = �8

π2

log �

2�2
+ O(�6).


�

In our second auxiliary result, an upper bound is given.

Lemma A.12 As � → ∞, we have that

∫ π/2

0

∣∣P ′
�(cosφ)

∣∣k
∣∣∣P ′′

� (cosφ) sin2 φ

∣∣∣
4−k

sin φdφ = O(�6), for all k = 1, . . . 4.

Proof As before, for the “local” component where φ < C/� (some fixed constant C)

we have

∫ C/�

0

{
P ′′

� (cosφ) sin2 φ
}k {

P ′
�(cosφ) cosφ

}4−k sin φ

≤ const × �4k × �8−2k
∫ C/�

0
sin2k φ sin φdφ

= O(�8+2k−(2k+2)) = O(�6) .

On the other hand, using again formulas (5.1) and (5.2), and computations analogous
to Lemma A.10, we find easily that

∫ π/2

C/�

{
P ′

�(cosφ) cosφ
}k {

P ′′
� (cosφ) sin2 φ

}4−k
sin φdφ

≤ const × �k/2 × �6−3k/2
∫ π/2

C/�

1

sin3k/2 φ

1

sin2−k/2 φ
sin φdφ + O(�6)

≤ const × �6−k
∫ π/2

C/�

1

sin2+k φ
sin φdφ + O(�6) = O(�6).


�
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Note in particular that for k = 4, we obtain the bound

∫ π/2

0
[P ′

�(cosφ)]4 sin φdφ = O(�6).
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