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Abstract
We study amulti-group version of themean-field Isingmodel, also called Curie–Weiss
model. It is known that, in the high-temperature regime of this model, a central limit
theorem holds for the vector of suitably scaled group magnetisations, that is, for the
sum of spins belonging to each group. In this article, we prove a local central limit
theorem for the group magnetisations in the high-temperature regime.
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1 Introduction

The Curie–Weiss model is a model of ferromagnetism. In its classic form, there is a
random vector (X1, . . . , Xn) of binary random variables with values in the set of spin
configurations {−1, 1}n . The probability distribution of (X1, . . . , Xn) is given by

P (X1 = x1, . . . , Xn = xn) = Z−1 exp

⎛
⎝ β

2n

(
n∑

i=1

xi

)2
⎞
⎠
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for all (x1, . . . , xn) ∈ {−1, 1}n , where Z is a normalisation constant that depends
on n and β. The parameter β ∈ [0,∞) is called the inverse temperature. It induces
correlation between individual spins, causing spins to align in the same direction.
At low values of β (‘high temperature’), the spins are ‘nearly independent’. At high
values of β (‘low temperature’), the spins are strongly correlated. There is a critical
value of β = 1, where the collective behaviour of spins changes. This is called a phase
transition. The Curie–Weiss model has been well studied, and hence, the literature is
far too extensive to cite here in its entirety. The model was first defined by Husimi [19]
and Temperley [30]. Discussions of it can be found in Kac [20], Thompson [31], and
Ellis [9]. More recently, the Curie–Weiss model has been used in the context of social
and political interactions. The idea of usingmodels from statistical mechanics to study
social interactions goes back to Föllmer [14]. The Curie–Weiss model specifically was
first employed in [4]. See, for example, [7,17,27,28,32] for other applications. Another
area the Curie–Weiss model has found application is the study of random matrices
(see [1,12,13,15,16,18]). Local limit theorems for the single-groupCurie–Weissmodel
have been proved including rates of convergence, see [2,29].

In this article, we deal with a multi-group version of this model. This model was
first introduced in [6] and [3]. Multi-group versions of the Curie–Weiss model have
received much attention recently. Some references are [5,6,10,11,22–26]. This article
is organised as follows: In Sect. 2, we define the multi-group Curie–Weiss model
for general coupling matrices, see Definition 1. After this definition, we introduce
the specific coupling matrices considered in this paper. In particular, our study is
constrained to the so-called high-temperature regime as inDefinition 2. For this regime,
a non-local (or global) central limit theorem has been derived in [22], which we recite
in Theorem 3. Our main result of this paper is a local version of Theorem 3 stated in
Theorem 4 and proved in Sect. 3, the last section of this paper.

2 Setup and Results

Let there be d ∈ N groups with nλ ∈ N spins in group λ ∈ {1, . . . , d}, and set
n := ∑d

λ=1 nλ. We regard each nλ as a sequence that depends on n but suppress this
dependence. The spin variables are

(
X11, X12, . . . , X1n1 , . . . , Xd1, Xd2, . . . , Xdnd

) ∈ {−1, 1}n .
We assume that each of the d relative group sizes converges to a fixed proportion of
the overall population:

αλ := lim
n→∞

nλ

n
and nλ → ∞ as n → ∞, (1)

so that the αλ sum to 1.
Instead of a single inverse temperature parameter, there is a coupling matrix that

describes the spin interactions. We will denote this matrix as

J := (
Jλμ

)
λ,μ=1,...,d ∈ R

d×d .
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Every spin in group λ interacts with every spin in group μ with a strength given by
the coupling constant Jλμ.

Just as in the single-group model, there is a Hamiltonian function that assigns to
each spin configuration (x1, . . . , xn) a certain energy level:

H
(
x11, . . . , xdnd

) := − 1

2n

d∑
λ,μ=1

Jλμ

nλ∑
i=1

nμ∑
j=1

xλi xμ j . (2)

As we can see from the definition of H, it suffices to consider symmetric J , for

otherwise we can replace J by J+J T
2 , leaving the Hamiltonian unchanged.

Definition 1 The Curie–Weiss measure P, which gives the probability of each of the
2n spin configurations, is defined by

P
(
X11 = x11, . . . , Xdnd = xdnd

) := Z−1 exp
(−H

(
x11, . . . , xdnd

))
(3)

for all xλi ∈ {−1, 1} and Z is a normalisation constant which depends on n and J .

We distinguish two different classes of coupling matrices:

1. Homogeneous coupling matrices J = (β)λ,μ=1,...,d , where all entries are equal to
the same constant β ≥ 0.

2. Heterogeneous coupling matrices J = (Jλ,μ)λ,μ=1,...,d , which we assume to be
positive definite.

For each of the two classes of coupling matrices, the model has three ‘temperature
regimes’, which are characterised by the coupling constants and the group sizes. These
regimes are called the high-temperature, the critical, and the low-temperature regime.
In each regime, the spins behave differently, and the limiting distribution for large n is
different in each case. This paper is exclusively concerned with the high-temperature
regime which will be defined below (cf. Definition 2). For details on the other regimes,
see [22]. There, it is also pointed out that without the assumption of positive definite-
ness in the case of heterogeneous coupling matrices J , the high-temperature regime
may be empty.

If the coupling matrix is homogeneous, then the high-temperature regime is char-
acterised by β < 1.

For heterogeneous coupling matrices, the characterisation of the high-temperature
regime is somewhat more complicated. As an initial parameter space, we define

� :=
{

(α1, . . . , αd) | α1, . . . , αd ≥ 0,
d∑

λ=1

αλ = 1

}

× {J | J is a d × d positive definite matrix} ,

containing all possible combinations of asymptotic relative group sizes (α1, . . . , αd)

as in (1) and coupling matrices.
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We define

α := diag (α1, . . . , αd) ,

where ‘diag’ stands for a diagonal matrix with the entries given between parentheses,
and

H := J−1 − α. (4)

Note that this definition of a multi-group Curie–Weiss model reduces to the classical
single-group model if we set d = 1, since then n1 = n and J = β. See also Remark 9.

The parameter space � is partitioned into three regimes (for the details, see [22]).

Definition 2 The ‘high-temperature regime’ for heterogeneous coupling matrices is
the set of parameters

�h := {φ ∈ �|H is positive definite}.

In the high-temperature regime, a multivariate central limit theorem holds for the
normalised sums of spins in each group. For a proof, see, for example, [22].

For each group λ ∈ {1, . . . , d}, we define Sλ := ∑nλ

i=1 Xλi to be the sum of all
spins belonging to that group. In this article, we show a local limit theorem for the
normalised magnetisation vector

(
S1√
n1

, · · · ,
Sd√
nd

)

in the high-temperature regime.

Theorem 3 In the high-temperature regime, we have

(
S1√
n1

, . . . ,
Sd√
nd

)
−−−→
n→∞ N ((0, . . . , 0),C) weakly,

whereN [(0, . . . , 0),C] is a zero-mean multivariate normal distribution with positive
definite covariance matrix C := I + √

α�
√

α, where the matrix � depends on the
class of coupling matrices:

� =
⎧⎨
⎩

(
β

1−β

)
λ,μ=1,...,d

, if J is homogeneous,

H−1, if J is heterogeneous.

We shall write φC for the density function of N [(0, . . . , 0),C], and we set

Sn :=
(

S1√
n1

, . . . ,
Sd√
nd

)
.
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For a given n ∈ N and group λ, Sλ√
nλ

takes values on the grid nλ+2Z√
nλ

. Hence, the vector(
S1√
n1

, . . . ,
Sd√
nd

)
takes values on the grid

Ln :=
d∏

λ=1

nλ + 2Z√
nλ

.

We show that the central limit theorem—Theorem 3—can be strengthened to a mul-
tivariate local limit theorem:

Theorem 4 In the high-temperature regime, it holds:

sup
x∈Ln

∣∣∣∣∣
∏d

λ=1
√
nλ

2d
P
(
Sn = x

) − φC (x)

∣∣∣∣∣ −−−→
n→∞ 0.

3 Proof

The proof of Theorem 4 is structured as follows: Since we prove the local central
limit theorem using characteristic functions, we state Lemmas 5, 6, and 7 to provide
the tools necessary. Then, we bound the local error in the local central limit theorems
by quantities which are actually independent of the specific location, see (5) and (6).
While the upper bound in (6) is trivial to handle, the upper bound in (5) requires
a deeper analysis, which is initiated by Proposition 8, allowing us to express the
Curie–Weiss distribution as a mixture of Rademacher distributions. The characteristic
functions of the latter are bounded via a Taylor expansion below inequality (7), which
in combination with a concentration inequality result in Proposition 8 establishes a
large part of our analysis. The remainder of the proof consists of constructing an
integrable majorant below inequality (8) and then using a bound on the characteristic
functions of discrete distributions established in Lemma 5.

Lemma 5 Let Y := (Y1, . . . ,Yd) be a random vector with values on the grid∏d
λ=1 (vλ + wλZ) and characteristic functionϕ, defined byϕ(t) := E (exp (i t · Y )) , t

∈ R
d . Then, the following two properties hold:

1. ϕ is periodic, i.e. for all t ∈ R
d , k1, . . . , kd ∈ Z,

ϕ

(
t + 2π

(
k1
w1

, · · · ,
kd
wd

))
= ϕ(t)

2. We have for all k1, . . . , kd ∈ Z,

∣∣∣∣ϕ
(
2π

(
k1
w1

, · · · ,
kd
wd

))∣∣∣∣ = 1
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and for all t ∈ R
d such that 0 < tλ < 2π

wλ
for some component λ,

|ϕ (t)| < 1.

Proof This follows from a straightforward modification of the proof of Theorem 3.5.2
on page 140 in [8]. ��
The second statement in Lemma 5 gives an upper bound for the characteristic function
of a randomvariable on the grid,whichwe shall use in our calculations later on.Wewill
use the following inversion formulas to recover distributions from their characteristic
functions:

Lemma 6 Let (Y1, . . . ,Yd) be a random vector as in Lemma 5. Then, for all x ∈∏d
λ=1 (vλ + wλZ),

P ((Y1, . . . ,Yd) = x) =
∏d

λ=1 wλ

(2π)d

∫
∏

λ

[
− π

wλ
, π
wλ

] e−i t ·xϕ(t)dt .

Proof See, for example, Section 3.10 in [8]. ��
Lemma 7 Let ϕ be the characteristic function of some d-dimensional random vector
such that ϕ is Lebesgue integrable. Then,

f (x) = 1

(2π)d

∫
Rd

e−i t ·xϕ(t)dt

defines a continuous Lebesgue density function f for the random vector.

Proof This is Theorem 5.5 in [33]. ��
Let ϕSn be the characteristic function of Sn and ϕN (C) that of N ((0, . . . , 0),C). We
use the symbol E as the expectation with respect to the probability measure P of the
underlying probability space.

Let x ∈ Ln . By Lemma 6, we have

∏d
λ=1

√
nλ

2d
P
(
Sn = x

) = 1

(2π)d

∫
∏

λ

[
− π

√
nλ
2 ,

π
√
nλ
2

] e−i t ·xϕSn (t)dt,

and therefore,

∣∣∣∣∣
∏d

λ=1
√
nλ

2d
P
(
Sn = x

) − φC (x)

∣∣∣∣∣

= 1

(2π)d

∣∣∣∣∣
∫
∏

λ

[
− π

√
nλ
2 ,

π
√
nλ
2

] e−i t ·xϕSn (t)dt −
∫
Rd

e−i t ·xϕN (C)(t)dt

∣∣∣∣∣
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≤ 1

(2π)d

∫
Rd

I∏
λ

[
− π

√
nλ
2 ,

π
√
nλ
2

](t)
∣∣ϕSn (t) − ϕN (C)(t)

∣∣ dt (5)

+ 1

(2π)d

∫
Rd\∏λ

[
− π

√
nλ
2 ,

π
√
nλ
2

]
∣∣ϕN (C)(t)

∣∣ dt . (6)

The term (6) converges to 0 as n → ∞, since
∣∣ϕN (C)(t)

∣∣ is integrable. Note also
that expression (5) is independent of the point x ∈ Ln . Thus, if we can show that (5)
converges to 0, then we are done. To this end, we see by Theorem 3 that ϕSn (t) →
ϕN (C)(t) pointwise. Therefore, to show that (5) converges to 0 is for the most part a
matter of finding an appropriate integrable majorant, so that the theorem of dominated
convergence can be applied. To construct a suitable majorant, we need to apply some
properties of the multivariate Curie–Weiss distribution.

Let the Rademacher distributionRm with parameter m ∈ R be defined on {±1} by
the probability of the event {1} equal to 1+m̄

2 , setting m̄ := tanhm.
We use the de Finetti representation of the Curie–Weiss measure (see [22]):

Proposition 8 Thedistributionof themulti-groupCurie–Weissmodel has the following
representation: For any spin configuration

(
x11, . . . , xdnd

)
, we have

P
(
X11=x11, . . . , Xdnd=xdnd

)=
∫
Rd

Pm
(
X11 = x11, . . . , Xdnd = xdnd

)
μJ ,n(dm),

where Pm is the product measure of Rademacher distributions with parameters mλ for
all spins belonging to group λ. μJ ,n is a probability measure defined by the Lebesgue
density function

f J ,n(m) ∝ exp

(
−n

(
1

2
mT J−1m −

∑
λ

nλ

n
ln coshmλ

))
, m ∈ R

d .

In the high-temperature regime, μJ ,n has an asymptotic concentration property, such
that for all δ > 0 there is a D > 0 with the property

μJ ,n

(
R
d\ [−δ, δ]d

)
< exp (−Dn)

for large enough n.

Remark 9 If we set d = 1, then the probability density f J ,n above is proportional to

exp

(
−n

(
1

2β
m2 − ln coshm

))
, m ∈ R.

From this expression, we obtain an alternative probability density defined on [−1, 1]
proportional to

exp
(
− n

2

(
1
β

(
1
2 ln

1+t
1−t

)
+ ln

(
1 − t2

)))

1 − t2
, t ∈ [−1, 1]

by the substitution t := tanhm. See Section 5.2 in [21].
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LetϕR(m) be the characteristic function of theRademacher distributionwith param-
eter m, and let Em be the expectation under the distributionRm .

Now we deal with expression (5). We pick some 0 < δ < π/2 and partition the set∏
λ

[
−π

√
nλ

2 ,
π

√
nλ

2

]
= ∏

λ

[−δ
√
nλ, δ

√
nλ

] ∪̇Bn =: An∪̇Bn for each n ∈ N.

Our goal is to show that (5) converges to 0.Wedo so by showing the result separately
over An and Bn . The following upper bound holds over An :

IAn (t) |ϕSn (t)| ≤ IAn (t)
∫
Rd

∏
λ

∣∣∣∣ϕR(mλ)

(
tλ√
nλ

)∣∣∣∣
nλ

μJ ,n(dm). (7)

We calculate an upper bound for the Rademacher characteristic function:

∣∣ϕR(m)(u)
∣∣ = |Em exp (iu (Xλ1 − m̄))| |exp (ium̄)|

≤
∣∣∣∣1 −

(
1 − m̄2

) u2

2

∣∣∣∣ + u2
(
1 − m̄2

)
min

{
|u|

(
1 + m̄2

)
, 1

}

≤ 1 −
(
1 − m̄2

) u2

2
+

(
1 − m̄2

) u2

4

≤ exp

(
−
(
1 − m̄2

) u2

4

)
.

The first inequality follows from a Taylor expansion of the exponential function with
the remainder term of order three u2Em min

{|u| |Xλ1 − m̄|3 , |Xλ1 − m̄|2}, which
is smaller or equal u2

(
1 − m̄2

)
min

{|u| (1 + m̄2
)
, 1

}
as can be verified by direct

calculation. The second inequality holds for small enough |u|. The third inequality for
any u ∈ R is well known. Therefore,

∣∣∣∣ϕR(mλ)

(
tλ√
nλ

)∣∣∣∣ ≤ exp

(
−
(
1 − m̄2

λ

) t2λ
4nλ

)
,

and we pick some τ ∈ (0, 1) to continue with our calculation:

(7) ≤ IAn (t)
∫
Rd

exp

(
−1

4

∑
λ

(
1 − m̄2

λ

)
t2λ

)
μJ ,n(dm)

≤
∫
[−τ,τ ]d

exp

(
−1

4

∑
λ

(
1 − m̄2

λ

)
t2λ

)
μJ ,n(dm)

+ IAn (t)μJ ,n

(
R
d\ [−τ, τ ]d

)

≤ exp

(
−1

4

(
1 − tanh2 τ

)∑
λ

t2λ

)
+ IAn (t) exp (−ηn) , (8)

where the second term in the last line follows from Lemma 8. Note that η > 0.
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It is clear that the first summand in (8) is integrable. For the second summand, we
have

IAn (t) exp (−ηn) ≤ IA1 (t) exp (−η) +
∞∑
k=1

IAk+1\Ak (t) exp (−η (k + 1)) =: f (t).

Let λd be the Lebesgue measure onRd . We show that the function f on the right-hand
side is an integrable majorant for all IAn (t) exp (−ηn) , n ∈ N:

∫
Rd

f (t)dt = λd (A1) exp (−η) +
∞∑
k=1

λd (Ak+1\Ak) exp (−η (k + 1)) .

Each summand in the series above can be bounded above by

λd (Ak+1\Ak) exp (−η (k + 1)) ≤ λd (Ak+1) exp (−η (k + 1))

= λd

(∏
λ

[
−δ

√
(k + 1)λ, δ

√
(k + 1)λ

])

≤ (2δ)d (k + 1)
d
2 exp (−η (k + 1)) ,

which is summable in k.
As

∣∣ϕN (C)(t)
∣∣ is integrable aswell,wehave thus found that IAn (t)

∣∣ϕSn (t)−ϕN (C)(t)
∣∣

has an integrable majorant. By Theorem 3,
∣∣ϕSn (t) − ϕN (C)(t)

∣∣ → 0 pointwise as
n → ∞, so we conclude that the integral of IAn (t)

∣∣ϕSn (t) − ϕN (C)(t)
∣∣ over Rd

converges to 0 as n → ∞.
We proceed with the integrand over the set Bn :

IBn (t) |ϕSn (t)| ≤ IBn (t)
∫
Rd

∏
λ

∣∣∣∣ϕR(mλ)

(
t√
nλ

)∣∣∣∣
nλ

μJ ,n(dm)

≤ IBn (t)
∫
Rd

(θ(m))n μJ ,n(dm), (9)

where the existence of

θ(m) = max
t∈Bn ,λ=1,...,d

∣∣ϕR(mλ) (tλ)
∣∣ < 1

is a consequence of Lemma 5. We continue with the calculation of an upper bound:

(9) ≤ IBn (t)
∫
[−τ,τ ]d

(θ(m))n μJ ,n(dm) + IBn (t)μJ ,n

(
R
d\ [−τ, τ ]d

)
.

On the interval [−τ, τ ], θ is bounded away from 1:

s := sup
m∈[−τ,τ ]d

θ(m) < 1.
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With this final upper bound for IBn (t) |ϕSn (t)|, we see that

IBn (t) |ϕSn (t)| dt ≤ IBn (t)
(
sn + exp (−ηn)

)
dt .

For the last expression, we can construct an integrable majorant in the same manner
as for the second summand in (8) because sn + exp (−ηn) converges exponentially to
0.
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