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Abstract
We give two asymptotic results for the empirical distance covariance on separable
metric spaces without any iid assumption on the samples. In particular, we show the
almost sure convergence of the empirical distance covariance for any measure with
finite first moments, provided that the samples form a strictly stationary and ergodic
process.We further give a result concerning the asymptotic distribution of the empirical
distance covariance under the assumption of absolute regularity of the samples and
extend these results to certain types of pseudometric spaces. In the process, we derive
a general theorem concerning the asymptotic distribution of degenerate V-statistics of
order 2 under a strong mixing condition.

Keywords Distance covariance · Distance correlation · Negative type · Test of
independence · Mixing conditions
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1 Introduction

In [12], Lyons introduced the concept of distance covariance for separable metric
spaces, generalising the work done by Székely et al. [17]. In this very general case, the
distance covariance of a measure θ (on the product space X × Y of separable metric
spaces X and Y) with marginal distributions μ on X and ν on Y is defined as

dcov(θ) :=
∫

δθ (z, z
′) dθ2(z, z′)
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for z = (x, y), z′ = (x ′, y′), where

δθ (z, z
′) := dμ(x, x ′)dν(y, y

′),
dμ(x, x ′) := dX (x, x ′) − aμ(x) − aμ(x ′) + D(μ),

aμ(x) :=
∫

dX (x, x ′) dμ(x ′),

D(μ) :=
∫

dX (x, x ′) dμ2(x, x ′).

To examine the properties of this object, Lyons made use of the concept of (strong)
negative type. Ametric spaceX is said to be of negative type, if there exists a mapping
φ : X → H to a Hilbert space H , such that dX (x, x ′) = ‖φ(x) − φ(x ′)‖2H for all
x, x ′ ∈ X . It is of strong negative type if it is of negative type and D(μ1 − μ2) = 0
if and only if μ1 = μ2 for all probability measures μ1, μ2 with finite first moments.
Lyons showed that the distance covariance is nonnegative if X and Y are of negative
type, and that the property dcov(θ) = 0 ⇔ θ = μ ⊗ ν holds if X and Y are of strong
negative type.

This means that the distance covariance completely characterises independence of
random variables in metric spaces of strong negative type. Estimators for the distance
covariance and their asymptotic behaviour are therefore of great interest for tests of
independence.

A special case for real-valued random variables follows from choosing the embed-
ding

φ : Rd → L2(wd) :=
{
f : Rd → C

∣∣∣
∫

| f |2wd dλd < ∞
}

x 	→ 1√
2
(1 − exp(i〈., x〉))

with wd(s) = �((d + 1)/2)π−(d+1)/2‖s‖−(d+1)
2 , which Lyons in [12] refers to as the

Fourier embedding. This results in the square of the distance covariance as introduced
in [17], i.e.

dcov(θ) =
∫

|ϕX ,Y (s, t) − ϕX (s)ϕY (t)|2wp(s)wq(t) d(s, t),

where ϕZ denotes the characteristic function of a random variable Z , and the vector
(X ,Y ) ∈ R

p+q has distribution θ .
Two of themain results of [12] are Proposition 2.6 and Theorem 2.7, which describe

the asymptotic behaviour of dcov(θn), where θn is the empirical measure from n
iid-samples of θ . Theorem 2.7, under sufficient moment assumptions, describes the
asymptotic distribution of the sequence ndcov(θn), if θ = μ⊗ν. Proposition 2.6 gives
the almost sure convergence dcov(θn)

a.s.−−→ dcov(θ) for any measure θ with finite
first moments. However, as noted by Jakobsen in [8], Lyons’ proof of Proposition
2.6 was incorrect and actually required θ to have finite 5/3-moments. Lyons later
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acknowledged this in [13] (iii), showing that Proposition 2.6 as written in [12] is still
correct in the case of spaces of negative type, but leaving the question of whether finite
first moments are sufficient in the general case of separable metric spaces unanswered.
This problem was solved in [9], where the almost sure convergence is shown in the
case of iid samples.

In Sect. 2, we show that one can obtain the almost sure convergence of the estimator
dcov(θn) under finite first moment assumption while dropping the iid assumption
regarding the samples which constitute the empirical measure θn . In Theorem 1, we
show the almost sure convergence of dcov(θn) under assumption of ergodicity and
finite first moments. In Theorem 3, we give an asymptotic result similar to Theorem
2.7 in [12], assuming absolute regularity. For this we make use of Theorem 2, which is
a general result concerning the asymptotic distribution of degenerate V-statistics under
the assumption of α-mixing data. The definitions of α-mixing and absolute regularity
are recalled at the end of this section.

A further generalisation can be achieved by raising the metrics of the underlying
metric spaces to the β-th power.Wewill denote this with dcovβ . Typically, β is chosen
between 0 and 2, where the choice β = 1 results in the regular distance covariance.
An equivalent way of describing this is to use the regular definitions of distance
covariance, but to consider pseudometric spaces of a particular kind instead of metric
spaces, namely those which result from raising some metric to the β-th power. (Here,
by a pseudometric, we refer to a metric for which the triangle inequality need not
hold.) In Sect. 3, we generalise the results for metric spaces deduced in Sect. 2 to
pseudometric spaces of this kind.

We now summarise some of the notation used in [12], as well as some basic prop-
erties of the distance covariance that will prove useful for our purposes.

Let X and Y be random variables with values in separable metric spaces X and Y ,
respectively.We define Z := (X ,Y ) andwrite θ := L(Z),μ := L(X) and ν := L(Y ),
and denote by θn the empirical measure of Z1, . . . , Zn , where (Zk)k∈N is a strictly
stationary and ergodic sequence with L(Z1) = θ .

If we considerX to be of negative type via an embedding φ, we denote the Bochner
integral

∫
φ dμ with βφ(μ), and we write φ̂ for the centred embedding φ − βφ(μ). If

Y is of negative type via ψ , we define βψ(ν) and ψ̂ analogously. If both X and Y are
of negative type via embeddings φ : X → H1 and ψ : Y → H2, we can consider the
embedding

φ ⊗ ψ : X × Y → H1 ⊗ H2

(x, y) 	→ φ(x) ⊗ ψ(y),

where H1 ⊗ H2 is the tensor product of the Hilbert spaces H1 and H2, equipped with
the inner product 〈u1 ⊗ v1, u2 ⊗ v2〉H1⊗H2 := 〈u1, u2〉H1〈v1, v2〉H2 .

By Proposition 3.5 in [12], we have that

δθ (z, z
′) = 4〈(φ̂ ⊗ ψ̂)(z), (φ̂ ⊗ ψ̂)(z′)〉H1⊗H2 (1)
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for all z, z′ ∈ X × Y , whenever X and Y are of negative type via embeddings φ and
ψ , respectively.

For the remainder of this paper, we will drop the indices of the metrics on X and
Y and of the inner products on H1, H2 or H1 ⊗ H2, as it is clear from their arguments
which metric or inner product we consider. More precisely, d will denote both a metric
onX and a (possibly different) metric onY , and 〈., .〉 can denote one of three (possibly
different) inner products on Hilbert spaces H1, H2 or H1 ⊗ H2.

Recall that for two σ -algebras A and B we define the α- and β-coefficients of A
and B as

α(A,B) := sup
A∈A,B∈B

|P(A ∩ B) − P(A)P(B)|

and

β(A,B) := sup
1

2

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj ) − P(Ai )P(Bj )|,

respectively, where the second supremum is taken over all finite partitions A1, . . . , AI

and B1, . . . , BJ such that Ai ∈ A and Bj ∈ B for all i and j . For a process (Zk)k∈N,
we define

α(n) := sup
l∈N

α(σ(Z1, . . . , Zl), σ (Zl+n, Zl+n+1, . . .))

and

β(n) := sup
l∈N

β(σ(Z1, . . . , Zl), σ (Zl+n, Zl+n+1, . . .)),

and we say that the process (Zk)k∈N is α-mixing or β-mixing if α(n) −−−→
n→∞ 0 or

β(n) −−−→
n→∞ 0, respectively. β-mixing is also known as absolute regularity. These

definitions are taken from [4], where many properties of α-mixing and absolutely
regular processes are established.

2 Results for Metric Spaces

We now present our results in the case of separable metric spaces. It should be kept in
mind that while we consider the usual distance correlation, Theorems 1 and 3 also hold
for dcovβ (under appropriate moment conditions). However, we postpone discussion
of this until Sect. 3, so as to avoid confusion by abstraction.

The following lemma is a variant of Theorem 3.5 in [3], where it is formulated for
random variables.

Lemma 1 Let X be a metrisable topological space, (μn)n∈N a sequence of measures
on X with weak limit μ and h : X → R a μ-a.s. continuous function which fulfills
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the following uniform integrability condition:

lim
M→∞ lim sup

n→∞

∫
{|h|>M}

|h| dμn = 0. (2)

Furthermore, we require h to be dominated by some μ-integrable function g, i.e.
|h| ≤ g μ-a.s. Then

∫
h dμn → ∫

h dμ.

Proof Without loss of generality, suppose thatX is a metric space. We can decompose
the integral with respect to μn into a truncated part and a tail part:

∫
h dμn =

∫
{|h|≤M}

h dμn +
∫

{|h|>M}
h dμn .

The truncated integral converges, because it is the integral of an almost surely contin-
uous and bounded function and μn ⇒ μ, while the uniform integrability condition
(2) implies that the tail integral vanishes in the limit M, n → ∞. More precisely, we
have the inequality

lim sup
n→∞

∫
h dμn ≤ lim

M→∞ lim sup
n→∞

∫
{|h|≤M}

h dμn

+ lim
M→∞ lim sup

n→∞

∫
{|h|>M}

h dμn .

(3)

The second summand vanishes by assumption due to (2). For the first summand,
note that for any fixed M , the limes superior in n of the integral converges to∫
{|h|≤M} h dμ, since h1{|h|≤M} is bounded and almost surely continuous. Furthermore,
since |h1{|h|≤M}| ≤ |h| ≤ g, we can employ the dominated convergence theorem to
obtain

lim
M→∞ lim sup

n→∞

∫
{|h|≤M}

h dμn =
∫

h dμ.

Therefore, the summands in (3) are indeed well-definded. This gives us

lim sup
n→∞

∫
h dμn ≤ lim

M→∞ lim sup
n→∞

∫
{|h|≤M}

h dμn + 0 =
∫

h dμ.

Since 0 ≤ lim infn→∞
∫
{|h|>M} |h| dμn ≤ lim supn→∞

∫
{|h|>M} |h| dμn for any M ,

we can use an almost identical argument to obtain

lim inf
n→∞

∫
h dμn ≥ lim

M→∞ lim inf
n→∞

∫
{|h|≤M}

h dμn + 0 =
∫

h dμ,

and thus limn→∞
∫
h dμn exists and is equal to

∫
h dμ. ��
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In proving Theorem 1, we will make use of the following general result, which is
a generalisation of Theorem U (ii) from [1].

Lemma 2 Let (Zk)k∈N be a strictly stationary and ergodic process with values in a
separable metrisable topological space Z and marginal distribution L(Z1) = θ . Let
h : Zd → R be a measurable function, and let f : Z → R be integrable with
respect to θ , so that |h| ≤ f ⊗ · · · ⊗ f , where the product denoted by ⊗ is taken d
times and ( f ⊗ · · · ⊗ f )(z1, . . . , zd) := ∏d

k=1 f (zk). If h is θd-a.e. continuous, then
Vh(Z1, . . . , Zn) → ∫

h dθd a.s., where Vh(Z1, . . . , Zn) denotes the V -statistics with
kernel h.

Proof Without loss of generality, suppose that Z is a metric space. Let θn :=
n−1∑n

k=1 δZk denote the empirical measure of Z1, . . . , Zn . We have the represen-
tation Vh(Z1, . . . , Zn) = ∫

h dθdn . Furthermore, θn ⇒ θ a.s., since Z is separable,
and therefore θdn ⇒ θd a.s. by Theorem 2.8 (ii) in [3].

We now wish to employ Lemma 1. Hence, we need to show that the sequence of
integrals fulfills the following uniform integrability condition:

lim
M→∞ lim sup

n→∞

∫
{|h|>M}

|h| dθdn = 0.

We have
∫

{|h|>M}
|h| dθdn ≤

∫
{ f ⊗···⊗ f >M}

f ⊗ · · · ⊗ f dθdn ,

and since { f ⊗ · · · ⊗ f > M} ⊆ ⋃d
i=1 Mi with Mi := {z ∈ Zd | f (zi ) > M1/d}, the

right-hand side is dominated by

d∑
i=1

∫
Mi

f ⊗ · · · ⊗ f dθdn = d

(∫
f dθn

)d−1 ∫
{ f>M1/d }

f dθn,

which, due to Birkhoff’s pointwise ergodic theorem, almost surely converges to
d (Eθ f )d−1

Eθ [1{ f >M1/d } f ], where 1A denotes the indicator function of a set A. Thus,
almost surely,

lim
M→∞ lim sup

n→∞

∫
{|h|>M}

|h| dθdn ≤ lim
M→∞ d (Eθ f )

d−1
Eθ [1{ f >M1/d } f ] = 0

since f is assumed to be integrable.
Lemma 1 therefore gives us

Vh(Z1, . . . , Zn) =
∫

h dθdn
a.s.−−−→

n→∞

∫
h dθd .

��
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Note that the following result does not require any assumptions beyond the separa-
bility of the metric spaces X and Y and the ergodicity of the samples generating the
empirical measure θn . Thus, Proposition 2.6 in [12] and Theorem 4.4 in [9], both of
which require iid samples, are consequences of our result.

Theorem 1 Let X andY be randomvariableswith values in separablemetric spacesX
and Y , respectively, and Z := (X ,Y ). Write θ := L(Z), μ := L(X) and ν := L(Y ),
and denote by θn the empirical measure of Z1, . . . , Zn, where (Zk)k∈N is a strictly
stationary and ergodic sequence with L(Z1) = θ .

If X and Y have finite first moments, i.e.Ed(X , x0),Ed(Y , y0) < ∞ for some fixed
(but arbitrary) z0 = (x0, y0) ∈ X × Y , then

dcov(θn)
a.s.−−−→

n→∞ dcov(θ).

Proof We follow the idea of the proof of Proposition 2.6 in [12]. Consider the sym-
metric kernel h̄, defined as the symmetrisation of h, where

h(z1, . . . , z6) := f (x1, . . . , x4) f (y1, y2, y5, y6)

and

f (x1, . . . , x4) := d(x1, x2) − d(x1, x3) − d(x2, x4) + d(x3, x4).

As shown in the proof of Proposition 2.6 in [12], we have

|h(z1, . . . , z6)| ≤ 4d(x2, x3)d(y1, y6). (4)

Let z0 = (x0, y0) be an arbitrary but fixed point in X × Y . Since a + b ≤ ab for all
real a, b ≥ 2, we have

d(x, x ′) ≤ d(x, x0) + d(x ′, x0) ≤ (2 ∨ d(x, x0))(2 ∨ d(x ′, x0))

for all x, x ′ ∈ X . Now, for z = (x, y) ∈ X × Y , let ϕi (z) be defined as 2 ∨ d(x, x0)
if i = 2, 3 and as 2∨ d(y, y0) if i = 1, 6, and write ϕ for the maximum over all these
ϕi . Using (4), this gives us

|h(z1, . . . , z6)| ≤ 4ϕ(z1)ϕ(z2)ϕ(z3)ϕ(z6).

The functions ϕi are continuous and measurable, since the underlying metric spaces
are separable. They are also integrable because X and Y are assumed to have finite
first moments. Using Lemma 2 therefore gives us Vh̄(Z1, . . . , Zn) → ∫

h̄ dθ6 almost
surely, where Vh̄(Z1, . . . , Zn) denotes the V -statistics with kernel h̄. Since the V -
statistics with kernel h̄ are equal to dcov(θn), and

∫
h̄ dθ6 = dcov(θ) (cf. [12]), this

is what we wanted to show. ��
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Theorem 2 LetZ be aσ -compactmetrisable topological space, (Zk)k∈N a strictly sta-
tionary sequence of Z-valued random variables with marginal distribution L(Z1) =
θ . Consider a continuous, symmetric, degenerate and positive semidefinite kernel
h : Z2 → Rwith finite (2+ε)-moments with respect to θ2 and finite (1+ ε

2 )-moments
on the diagonal, i.e. E|h(Z1, Z1)|1+ε/2 < ∞. Furthermore, let the sequence (Zk)k∈N
satisfy an α-mixing condition such that α(n) = O(n−r ) for some r > 1+2ε−1. Then,
with V = Vh(Z1, . . . , Zn) denoting the V -statistics with kernel h,

nV
D−−−→

n→∞

∞∑
k=1

λkζ
2
k ,

where (λk, ϕk) are pairs of the nonnegative eigenvalues and matching eigenfunctions
of the integral operator

f 	→
∫

h(., z) f (z) dθ(z)

and (ζk)k∈N is a sequence of centred Gaussian random variables whose covariance
structure is given by

Cov(ζi , ζ j ) = lim
n→∞

1

n

n∑
t,u=1

Cov(ϕi (Zt ), ϕ j (Zu)). (5)

Proof Wenote that the conditions of Theorem 2 in [16] are satisfied by Propositions 1–
3 and Assumption 1 ibid., the latter of which is a consequence ofE|h(Z1, Z1)|1+ε/2 <

∞. Hence, we get

h(z, z′) =
∞∑
k=1

λkϕk(z)ϕk(z
′)

for all z, z′ ∈ supp(θ). The ϕk are centred and form an orthonormal basis of
L2(θ). Adopting the notation V (K ) for the V -statistics for the truncated ker-
nel

∑K
k=1 λkϕk(z)ϕk(z′), we note that nV (K ) = ∑K

k=1 λkζ
2
n,k , where ζn,k :=

n−1/2∑n
t=1 ϕk(Zt ). Using the Cramér-Wold theorem, we will now show that, for

any K ∈ N, (ζn,k)1≤k≤K weakly converges to (ζk)1≤k≤K , where the ζk are centred
Gaussian variables with their covariances given in (5).

Let c1, . . . , cK be real constants and set ξt := ∑K
k=1 ckϕk(Zt ). Then the ξt are

centred random variables with Eξ2t = ∑K
k=1 c

2
k .

Note that, by definition, ϕk(z) = λ−1
k E[h(z, Z1)ϕk(Z1)] and thus

|ϕk(z)| ≤ |λk |−1‖h(z, .)‖2. (6)
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Here,we have used theCauchy–Schwarz inequality and the fact that the eigenfunctions
ϕk form an orthonormal basis of L2(θ). This gives us

∫
|ϕk(z)|2+ε dθ(z) ≤ λ

−(2+ε)
k

∫
‖h(z, .)‖2+ε dθ(z)

= λ
−(2+ε)
k

∫ (∫
|h(z, z′)|2 dθ(z′)

) 2+ε
2

dθ(z)

≤ λ
−(2+ε)
k

∫
|h(z, z′)|2+ε dθ2(z, z′)

by Jensen’s inequality, which implies ‖ϕk‖2+ε ≤ λ−1
k ‖h‖2+ε. Since our kernel h has

finite (2 + ε)-moments by assumption, this property translates to the eigenfunctions
ϕk . Using Theorem 3.7 and Remark 1.8 in [4] therefore gives us

|Cov(ϕk(Zt ), ϕl(Zu))| ≤ Cα(σ(Zt ), σ (Zu))
ε/(2+ε) ≤ Cα(|t − u|)ε/(2+ε)

for all 1 ≤ k, l ≤ K , where C is a positive constant depending on the corresponding
eigenfunctions and -values. From this and the fact that α(n) = O(n−r ) with r > 1 +
2ε−1 it follows that, for any k, l, the infinite series

∑∞
d=1 Cov(ϕk(Z1), ϕl(Z1+d)) and

limn n−1∑n−1
d=1 dCov(ϕk(Z1), ϕl(Z1+d)) converge, since d/n < 1 for all 1 ≤ d < n.

Thus, with Sn denoting the sum over ξ1, . . . , ξn , we have that

n−1σ 2
n := n−1

ES2n = n−1
n∑

t,u=1

K∑
k,l=1

ckclCov(ϕk(Zt ), ϕl(Zu))

=
K∑

k=1

c2k + n−1
n∑

t �=u

K∑
k,l=1

ckclCov(ϕk(Zt ), ϕl(Zu))

=
K∑

k=1

c2k + n−12
n−1∑
d=1

(n − d)

K∑
k,l=1

ckclCov(ϕk(Z1), ϕl(Z1+d))

−−−→
n→∞ σ 2 < ∞,

where we have made use of the stationarity of the process (Zk)k∈N and the fact that the
eigenfunctions ϕk form an orthonormal basis of L2. If ζ1, . . . , ζK areGaussian random
variables with their covariance function given by (5), the limit σ 2 is the variance of
the linear combination

∑K
k=1 ckζk .

We now show the uniform integrability of the sequence (S2nσ
−2
n )n∈N. It suffices to

show that E|Snσ−1
n |2+δ is uniformly bounded in n for some δ > 0. Since h has finite

(2 + ε)-moments, we get

sup
n∈N

E

∣∣∣∣∣
K∑

k=1

ckϕk(Zn)

∣∣∣∣∣
2+ε

≤ sup
n∈N

{
K 1+ε

K∑
k=1

E

[
|ckϕk(Zn)|2+ε

]}
< M(ε) < ∞.
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Here, we have made use of (6) and the stationarity of the sequence (Zn), which
ensures that the upper bound M(ε) is indeed uniform in n. Since α(n) = O(n−r )

with r > 1 + 2ε−1 and σn has rate of growth θ(
√
n), Theorem 2.1 in [15] gives

us E|Snσ−1
n |2+δ = O(1) for some δ > 0. This implies uniform integrability of

(S2nσ
−2
n )n∈N.

Using Theorem 10.2 from [4] therefore gives us

K∑
k=1

ckζn,k = Sn√
n

= Sn
σn

· σn√
n

D−−−→
n→∞ N (0, σ 2) = L

(
K∑

k=1

ckζk

)
,

and so, by the Cramér-Wold theorem, the vectors (ζn,k)1≤k≤K converge to Gaussian
vectors (ζk)1≤k≤K with the covariance stucture described in (5) for any K ∈ N.

Now, applying the continuous mapping theorem gives us

nV (K ) =
K∑

k=1

λkζ
2
n,k

D−−−→
n→∞

K∑
k=1

λkζ
2
k =: ζ (K ) (7)

and the summability of the eigenvalues λk , which is due to the identity
∑∞

k=1 λk =
Eh(Z1, Z1) < ∞, implies that

E

∣∣∣ζ − ζ (K )
∣∣∣ =

∑
k>K

λk −−−−→
K→∞ 0. (8)

We will now show that

lim
K→∞ lim sup

n→∞
E|nV − nV (K )| = 0. (9)

We consider the Hilbert space H of all real-valued sequences (ak)k∈N for which the
series

∑
k λka2k converges, equipped with the inner product given by 〈(ak), (bk)〉H :=∑

k λkakbk . Then,writingTK (Zt ) for theH -valued randomvariable (0K , (ϕk(Zt ))k>K ),
where 0K denotes the K -dimensional zero vector, we get

E|nV − nV (K )| = E

⎡
⎣∑
k>K

λk

(
1√
n

n∑
t=1

ϕk(Zt )

)2
⎤
⎦

= E

∥∥∥∥∥
1√
n

n∑
t=1

TK (Zt )

∥∥∥∥∥
2

H

= Var

(
1√
n

n∑
t=1

TK (Zt )

)

= 1

n

n∑
s,t=1

Cov(TK (Zs), TK (Zt )).
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Here, we define the covariance of two H -valued random variables X and Y as the
real number Cov(X ,Y ) := E〈X ,Y 〉H −〈EX ,EY 〉H . We aim to employ a covariance
inequality for Hilbert-space valued random variables.

For this, let us first consider the (2 + ε)-moments of TK (Z1). For any p > 0, we
get

‖TK (Z1)‖p
p =

∫
‖TK (z)‖p

H dθ(z) =
∫ (∑

k>K

λkϕk(z)
2

)p/2

dθ(z)

≤
∫ ( ∞∑

k=1

λkϕk(z)
2

)p/2

dθ(z) =
∫

h(z, z)p/2 dθ(z)

= ‖h(Z1, Z1)‖p/2
p/2.

Since h has finite (1 + ε
2 )-moments on the diagonal by assumption, this implies the

(2 + ε)-integrability of TK (Z1).
Lemma 2.2 in [7] and the stationarity of the process (Zt )t∈N therefore give us

|Cov(TK (Zs), TK (Zt )| ≤ 15‖TK (Z1)‖22+εα(|s − t |)ε/(2+ε)

and we have shown before that n−1∑n
s,t=1 α(|s − t |)ε/(2+ε) converges to a finite

limit c. Furthermore, from ‖TK (Z1)‖22 = ∑
k>K λk −−−−→

K→∞ 0 and ‖TK (Z1)‖2+ε ≤
‖T1(Z1)‖2+ε (i.e. the sequence (TK (Z1))K∈N is uniformly (2 + ε)-integrable) it fol-

lows by Vitali’s Theorem that TK (Z1)
(2+ε)−−−−→
K→∞ 0. Putting all of the above together, we

get

lim
K→∞ lim sup

n→∞
E|nV − nV (K )| ≤ 15c lim

K→∞ ‖TK (Z1)‖22+ε = 0.

By Theorem 3.2 in [3], (7), (8) and (9), the latter of which we have just shown, imply

nV
D−−−→

n→∞ ζ . ��
Lemma 3 If (Xk)k∈N is a strictly stationary sequence of random variables whose
marginal distributionμ has finite q-moments, then there exists an upper bound M ∈ R

such that, for any collection of indices i1, . . . , i4,

E

[
f (Xi1 , . . . , Xi4)

2p
]

≤ M(p) < ∞

for any p < q, where f is the function from the proof of Theorem 1.

Proof First, consider any two indices i1, i2. Then, due to (17), we have

E[d(Xi1 , Xi2)
q ] ≤ 2q−1

E[d(Xi1 , x0)
q + d(x0, Xi2)

q ]
= 2q

∫
d(x, x0)

q dμ(x) =: M0 < ∞,
(10)
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where x0 is some arbitrary point in X .
Now, let i1, . . . , i4 be fixed but arbitrary indices. Then, with a similar bound to the

one used in Lemma 5,

E[ f (Xi1 , . . . , Xi4)
2p] ≤ 4pE[d(Xi2 , Xi3)

pd(Xi1 , Xi4)
p]

≤ 4p
∣∣E[d(Xi2 , Xi3)

pd(Xi1 , Xi4)
p] − E[d(Xi2 , Xi3)

p]E[d(Xi1, Xi4)
p]∣∣

+ 4pE[d(Xi2 , Xi3)
p]E[d(Xi1 , Xi4)

p].
(11)

We use Lemma 1 from [18] for the function h(x1, . . . , x4) := d(x1, x2)pd(x3, x4)p

and the reordered collection (i2, i3, i1, i4). Their assumptions are satisfied with δ :=
q
p − 1, because

∫
h1+δ d

(L(Xi2 , Xi3) ⊗ L(Xi1 , Xi4)
) = E[d(Xi2 , Xi3)

q ]E[d(Xi1 , Xi4)
q ] ≤ M2

0

due to (10). Thus, Lemma 1 in [18] gives us

|E[d(Xi2 , Xi3)
pd(Xi1 , Xi4)

p] − E[d(Xi2 , Xi3)
p]E[d(Xi1, Xi4)

p]|
≤ 4M

2
1+δ

0 β(|i1 − i3|) δ
1+δ ,

(12)

where β(n) is the β-mixing coefficient of the sequence (Zk)k∈N. Because β(n) ≤ 1
for all n ∈ N, (10), (11) and (12) give us

E[ f (Xi1 , . . . , Xi4)
2p] ≤ 4p+1M

2
1+δ

0 + 4pM2
0 =: M(p) < ∞.

��
The following lemma is an adaptation of Lemma 2 in [18] in the sense that our result
is implicitly contained in their proof. Another variant of this lemma (for U-statistics)
can be found in [2]. Since both of these lemmas are slightly different from our version,
we include a proof for the sake of completeness. However, it should be noted that all
three proofs apply the same technique.

Lemma 4 Let h be a symmetric and degenerate kernel of order c ≥ 2. Here, we
understand degeneracy asEh(z1, . . . , zc−1, Zc) = 0 almost surely. If, for some p > 2,
the p-th moments of h(Zi1 , . . . , Zic ) are uniformly bounded and (Zn)n∈N is strictly
stationary and absolutely regular with mixing coefficients β(n) = O(n−r ), where
r > cp/(p−2), then E[V 2] = O(n−c), where V = Vh(Z1, . . . , Zn) is the V-statistic
with kernel h.

Proof We will follow the basic idea of the proof of Lemma 2 in [18]. First, consider
the special case of c = 2. We have

E

⎡
⎢⎣
⎛
⎝ ∑

1≤i1,i2≤n

h(Zi1 , Zi2)

⎞
⎠

2
⎤
⎥⎦ =

∑
1≤i1,...,i4≤n

E[h(Zi1, Zi2)h(Zi3, Zi4)].
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Now due to the degeneracy of our kernel h, we can employ Lemma 1 in [18] to obtain

E[h(Zi1, Zi2)h(Zi3 , Zi4)] ≤ M · β (max{|i2 − i1|, |i4 − i3|})(p−2)/p

whenever (i1, i2) �= (i3, i4). Here, M is some constant uniform in i1, . . . , i4 and n.
Let us first assume that k := |i2 − i1| ≥ |i4 − i3| =: l. For any fixed value of k, we

have at most 2(n − k) possible values for i1. Furthermore, since k ≥ l ≥ 0, we have
k + 1 possible values for l and, for any fixed l, at most 2(n − l) possible values for i3.
Writing

I := {(i1, . . . , i4) | 1 ≤ i1, . . . , i4 ≤ n, |i2 − i1| ≥ |i4 − i3|, (i1, i2) �= (i3, i4)}

this gives us

∑
i1,...,i4∈I

E[h(Zi1, Zi2)h(Zi3 , Zi4)] ≤
n−1∑
k=0

n−k∑
i1=1

k∑
l=0

n−l∑
i3=1

Mβ(k)(p−2)/p

≤ 4Mn2
n−1∑
k=0

(k + 1)β(k)(p−2)/p

= O(n2).

The sumconverges due to our assumptions onβ(n). The samebound can be established
for the cases where |i4 − i3| ≥ |i2 − i1|. The only combinations missing are those
where (i1, i2) = (i3, i4), of which there are n2. We can combine these results to get

∑
1≤i1,...,i4≤n

E[h(Zi1, Zi2)h(Zi3, Zi4)] = O(n2),

which proves the lemma in the case c = 2.
The proof for arbitrary c follows the same idea. We then obtain an upper bound of

2cMnc
n−1∑
k=0

(k + 1)c−1β(k)(p−2)/p ≤ 22c−1Mnc
n−1∑
k=0

(kc−1 + 1)β(k)(p−2)/p

which again is O(nc) due to our bounds on β(n). ��
Theorem 3 Let X andY be randomvariableswith values in separablemetric spacesX
and Y , respectively, and Z := (X ,Y ). Write θ := L(Z), μ := L(X) and ν := L(Y ),
and denote by θn the empirical measure of Z1, . . . , Zn, where (Zk)k∈N is a strictly
stationary and ergodic sequence with L(Z1) = θ .

Suppose thatX andY are of negative type via mappings φ andψ , respectively, and
thatX ×Y is σ -compact. If X and Y are independent, have finite (1+ε)-moments for
some ε > 0, and the sequence (Zk)k∈N is absolutely regular with mixing coefficients
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β(n) = O(n−r ) for some r > 6(1 + 2ε−1), then

n · dcov(θn) D−−−→
n→∞ ζ :=

∞∑
k=1

λkζ
2
k ,

where the ζk are centred Gaussian random variables whose covariance function given
in (5) is determined by the dependence structure of the sequence (Zk)k∈N, and the
parameters λk > 0 are determined by the underlying distribution θ .

Proof Consider the identity dcov(θn) = Vh̄(Z1, . . . , Zn) =: V as given in Theorem 1.
We will employ Hoeffding decomposition, i.e.

V =
6∑

c=0

(
6

c

)
Vh̄c (Z1, . . . , Zn),

where

h̄c(z1, . . . , zc) =
∑

A⊂{1,...,6}
(−1)6−#A

∫
h̄(z1, . . . , z6) dθ

6−c(zc+1, . . . , z6)

for 0 ≤ c ≤ 6. It can be readily seen that under the assumption of independence of X
and Y , h̄1 = 0 almost surely, and so the Hoeffding decomposition reduces to

V =
6∑

c=2

(
6

c

)
Vh̄c (Z1, . . . , Zn). (13)

We will show that the kernel h̄2 satisfies the conditions of Theorem 2 and that, under
our assumptions,

nV − nVh̄2(Z1, . . . , Zn))
P−−−→

n→∞ 0. (14)

Application of some algebra shows that h̄2 = δθ/15, proceeding in the following way:
It can be easily checked that under independence of X and Y , h̄ is a degenerate

kernel, since integrating over all but one argument of f (with respect to either of the
marginal distributions of θ ) yields a function which is 0 almost surely. Therefore,

h̄2(z1, z2) = 1

6!
∑

σ∈S6

∫
h(zσ(1), . . . , zσ(6)) dθ

4(z3, . . . , z6),

whereS6 is the symmetric group of all permutations operating on {1, . . . , 6}. Notice
that the summands are equal to δθ (zσ(1), zσ(2)) if σ(1), σ (2) ∈ {1, 2}. This follows
directly from the definitions of dμ and dν . Moreover, 1 and 2 are the only indices
appearing in both f (X1, . . . , X4) and f (Y1,Y2,Y5,Y6), so any permutation σ with
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σ(1), σ (2) /∈ {1, 2} results in taking the integral of f over all or all but one argument,
eitherwith respect toμ orwith respect to ν. Butwe have seen before that these integrals
are 0 almost surely, and so, due to the independence of X and Y , the same is true for
the integral of h with respect to θ .

There are 2 · 4! permutations of this kind, and so

h̄2(z1, z2) = 2 · 4!
6!

∑
σ∈S6

δθ (zσ(1), zσ(2)) = 1

15
δθ (z1, z2).

We can therefore consider the object δθ instead of h̄2.
By identity (1) we have, for any real constants c1, . . . , cm and z1, . . . , zm ∈ X ×Y ,

m∑
i, j=1

ci c jδθ (zi , z j ) = 4
m∑

i, j=1

ci c j 〈(φ̂ ⊗ ψ̂)(zi ), φ̂ ⊗ ψ̂)(z j )〉

= 4

〈
m∑
i=1

ci (φ̂ ⊗ ψ̂)(zi ),
m∑
i=1

ci (φ̂ ⊗ ψ̂)(zi )

〉

=
∥∥∥∥∥2

m∑
i=1

ci (φ̂ ⊗ ψ̂)(zi )

∥∥∥∥∥
2

≥ 0,

so our kernel is positive semidefinite. It is furthermore continuous. By Lemma 5, δθ

has finite (2 + ε)-moments with respect to θ2 and finite (1 + ε
2 )-moments on the

diagonal. Since 2α(n) ≤ β(n) (cf. [4]), we have

nVh̄2(Z1, . . . , Zn)
D−−−→

n→∞

∞∑
k=1

λkζ
2
k (15)

by Theorem 2.
We will now prove (14). For this, we will first note that under our assumptions,

the kernel h̄ has finite (2 + ε)-moments with respect to θ6. This can be seen with a
similar approach as in the proof of Lemma 5. Furthermore, Lemma 3 together with
the independence of X and Y gives us the existence of an upper bound M ∈ R such
that

E

[
h̄(Zi1 , . . . , Zi6)

2+ε
]

≤ M < ∞

for any collection of indices 1 ≤ i1, . . . , i6 ≤ n.
Employing Lemma 4 therefore gives us

E

[
Vh̄c (Z1, . . . , Zn)

2
]

= O(n−c)
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for all c ≥ 2. Now, together with (13), we have

E

[
(nV − nVh̄2(Z1, . . . , Zn))

2
]

= E

⎡
⎣
(
n

6∑
c=3

(
6

c

)
Vh̄c (Z1, . . . , Zn)

)2⎤
⎦

≤ 4n2
6∑

c=3

E

[
Vh̄c(Z1, . . . , Zn)

2
]

=
6∑

c=3

O(n2−c) = O(n−1).

(16)

This implies (14), which together with (15) proves the Theorem. ��
Using these two results, we can generalise Corallary 2.8 from [12].

Corollary 1 Under the assumptions of Theorem 3, we have

n
dcov(θn)

D(μn)D(νn)

D−−−→
n→∞

∑∞
k=1 λkζ

2
k

D(μ)D(ν)
=: Q

with EQ = 1. If dcov(θ) > 0, i.e. θ is not the product measure of its marginal
distributions μ and ν, the left-hand side converges to ∞ almost surely.

Proof We have the identity D(μn) = n−2∑n
k,l=1 d(Xk, Xl), and thus by Lemma 2

D(μn)
a.s.−−→ D(μ). The same holds for D(νn), and thus the convergence in distribution

follows with the Slutsky theorem. Since D(μ)D(ν) = Eδθ (Z1, Z1) = ∑∞
k=1 λk , the

expected value of the limiting distribution is equal to 1.
If dcov(θ) > 0, the almost sure convergence follows by Theorem 1. ��

Remark 1 It would be desirable to achieve a result similar to Theorem 3 under the
assumption of just α-mixing. For example, Theorem 3.2 in [5] gives such a result
under the supposition that X and Y are real-valued random vectors.

For our more general setting of (pseudo-)metric spaces, one only needs to show
that (14) still holds in the case of α-mixing, since Theorem 2 does not require absolute
regularity. We consider it likely that this can indeed be derived from the amicable
properties of the distance covariance.

3 Generalisation to Pseudometric Spaces

Let (X , d) be ametric space and consider dβ forβ ∈ (0, 2]. Then dβ is a pseudometric,
i.e. the triangle inequality does not necessarily hold for dβ .Wewill develop parts of the
theory of [12] for pseudometric spaces of this particular kind, which we will refer to
as β-pseudometric spaces. This is of interest if one considers dcovβ , a generalisation
of the usual distance covariance, which results from using the β-th power of the
metrics on X and Y for the definition of dμ and dν . That is, dcovβ with respect to
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(X , d) and (Y, d) is equivalent to the regular distance covariance with respect to the
β-pseudometric spaces (X , dβ) and (Y, dβ). Obviously, for any constant β > 0, dβ

induces the same topology (and thus, the same Borel σ -algebra) as the original metric
d. This means that any β-pseudometric space is a metrisable topological space.

This approachof viewingdcovβ not as a different object on the same space, but as the
same object on a different space might not be very intuitive at first. However, since the
concept of (strong) negative type does not require a metric space, this characterisation
allows us to still use the relation between (strong) negative type of the underlying
space and the distance covariance. This leads to the question of whether (X , dβ) is of
(strong) negative type, given the original metric space (X , d), for which some criteria
are known—see for example Corollary 3 or, more generally, [11] and [14].

Note that if β ∈ (0, 1], dβ is indeed still a metric, and we can rely on the already
developed theory for separable metric spaces. Thus, we get the following result.

Corollary 2 Let β ∈ (0, 1]. Theorems 1 and 3 still hold for dcovβ if we replace the
finite first moment condition of Theorem 1 and the finite (1+ ε)-moment condition of
Theorem 3 by finite β- and (1 + ε)β-moment assumptions, respectively.

Proof Theorem 1 follows immediately. For Theorem 2, we note that dβ induces the
same Borel σ -algebra as d. Furthermore, by Remark 3.19 in [12], the resulting metric
spaces are still of negative type. ��

For β ∈ (1, 2), while we cannot rely on the triangle inequality, the Jensen inequality
gives us a result which we will call the weak triangle inequality. Specifically, for any
β ∈ [1, 2]:

dβ(x, x ′) ≤ 2β−1{dβ(x, x0) + dβ(x0, x
′)} (17)

for all x, x ′, x0 ∈ X . This can be further bounded by replacing the factor 2β−1 by 2.
Like in the metric case, we say that a probability measure μ has finite first moment

if there exists an element x0 ∈ X such that
∫
d(x, x0) dμ(x) < ∞. Again, the choice

of x0 is arbitrary due to the weak triangle inequality. Thus, we can define the objects
aμ, D(μ) and dμ as in the metric case.

Lemma 5 If μ has finite β p-moment, then d(β)
μ has finite 2p-moment with respect to

μ2 and finite p-moment on the diagonal for any p ≥ 1.

Proof We take inspiration from the proof of Proposition 2.6 in [12]. Define the func-
tions

f (x1, . . . , x4) := dβ(x1, x2) − dβ(x1, x3) − dβ(x2, x4) + dβ(x3, x4)

and

h(x1, . . . , x6) := f (x1, . . . , x4) f (x1, x2, x5, x6)
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We have

f (x1, . . . x4) ≤ 2dβ(x1, x2) − dβ(x1, x3) − dβ(x2, x4) + 2dβ(x3, x4) =: f+

and, using the weak triangle inequality, | f+| ≤ 4dβ(x2, x3). Similarly, we have

f (x1, . . . , x4) ≥ dβ(x1, x2) − 2dβ(x1, x3) − 2dβ(x2, x4) + dβ(x3, x4) =: f−.

Again, | f−| ≤ 4dβ(x2, x3), and thus | f (x1, . . . , x4)| ≤ 4dβ(x2, x3). In the same way,
one shows that the absolute value of f (x1, . . . , x4) can also be boundedby4dβ(x1, x4).
Therefore |h(x1, . . . , x6)| ≤ 16dβ(x2, x3)dβ(x1, x4), and so

∫
|d(β)

μ (x1, x2)|2p dμ2(x1, x2) =
∫ ∣∣∣∣

∫
h(x1, . . . , x6) dμ

4(x3, . . . , x6)

∣∣∣∣
p

dμ2(x1, x2)

≤ 16p
∫

dβ p(x2, x3)d
β p(x1, x4) dμ

4(x1, . . . , x4)

=
(
4p/2

∫
dβ p(x, x ′) d2(x, x ′)

)2

< ∞.

Furthermore, we have

∫
|d(β)

μ (x, x)|p dμ(x) =
∫ ∣∣∣∣

∫
f (x, x, x3, . . . , x6) dμ

2(x3, x4)

∣∣∣∣
p

dμ(x)

≤ 4p
∫

dβ p(x, x3) dμ
2(x, x3) < ∞,

i.e. d(β)
μ has finite p-moment on the diagonal. ��

We can now define δθ and dcov(θ) analogously to the metric case. Since the relevant
proofs do not make use of the triangle inequality, it follows from [12] that for pseu-
dometric spaces of strong negative type θ = μ ⊗ ν if and only if dcov(θ) = 0. This,
together with the next Lemma, gives a very easy proof of Theorem 4.2 in [6].

Lemma 6 If (H , ‖.‖) is a separable Hilbert space, then (H , ‖.‖β) is of negative type
for all β ∈ (0, 2], and of strong negative type for all β ∈ (0, 2).

Proof Without loss of generality, assume H to be equal to L2[0, 1]. By Theorem
5 in [14], for any β ∈ (0, 2], there exists an embedding � : H → L2[0, 1] with
‖x − x ′‖β/2

2 = ‖�(x) − �(x ′)‖2 for all x, x ′ ∈ H , which implies that (H , ‖.‖β) is
of negative type. By Remark 3.19 in [12] (which, along with all its auxiliary results,
also holds for pseudometric spaces), the space (H , ‖.‖β) therefore has strong negative
type for all β ∈ (0, 2). ��

We can use this Lemma to adapt Corollary 5.9 from [11].
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Corollary 3 Let (X , d) be a metric space. If there exists an isometric embedding from
X into a separable Hilbert space H, then (X , dβ) is of negative type for all β ∈ (0, 2]
and of strong negative type for all β ∈ (0, 2).

Proof Fix β ∈ (0, 2], and let ϕ : X → L2[0, 1] be an isometric embedding. By
Lemma 6, (H , ‖.‖β

H ) is of negative type via some embedding �, which implies that

(X , dβ) is of negative type via (� ◦ϕ). If β < 2, then (H , ‖.‖β
H ) is of strong negative

type, and so, for any two probability measures μ1, μ2 on X , we have that

D(μ1 − μ2) =
∫

‖ϕ(x) − ϕ(x ′)‖β
H d(μ2

1 − μ2
2)(x, x

′)

=
∫

ϕ(X )2
‖x − x ′‖β

H d
(
(μ

ϕ
1 )2 − (μ

ϕ
2 )2

)
(x, x ′) = D(μ

ϕ
1 − μ

ϕ
2 ),

where μ
ϕ
i denotes the pushforward of μi via ϕ. We can extend the last integral to the

entire space H , because the pushforward measures vanish on ϕ(X )C . Using the strong
negative type of (H , ‖.‖β

H ), this gives us μ
ϕ
1 = μ

ϕ
2 , which implies μ1 = μ2, since ϕ

is injective. ��
Corollary 4 Let β ∈ (1, 2). Then, if we replace the finite first moment condition of
Theorem 1 by a finite β-moment assumption, Theorem 1 still holds for dcovβ . If we
furthermore assume X and Y to be isometrically embeddable into separable Hilbert
spaces, and replace the finite (1+ε)-condition with a finite (1+ε)β-moment assump-
tion, then Theorem 3 still holds for dcovβ .

Proof We first consider Theorem 1. We can replace (4) by

|h(z1, . . . , z6)| ≤ 16dβ(x2, x3)d
β(y1, y4)

as we have done in the proof of Lemma 5. This changes the original bound only by
constant, which does not affect the remainder of the proof.

If X and Y are isometrically embeddable into separable Hilbert spaces, then by
Corollary 3 the spaces resulting from raising their metrics to the power β are of
negative type. By Lemma 5, the proof of Theorem 3 still holds for β-pseudometric
spaces. We can therefore apply Theorem 3 to the spaces (X , dβ) and (Y, dβ). ��

4 Further Work

The limiting distribution established in Theorem 3 is dependent both on the marginal
distribution θ (through the eigenvaleus λk) and the dependence structure of the process
(Zk)k∈N (through the Gaussian process (ζk)k∈N). Thus, one cannot directly use this
result to construct a test of independence, since the critical values of this test would
in general be unknown.

Such a dependence of the limiting distribution on unknown parameters is not
unusual—indeed, in the iid case, there are many well-established ways to approx-
imate the asymptotic distribution of a random variable, even if it may depend on
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unknown parameters. The authors of [17], for instance, propose a permutation test to
approximate the asymptotic distribution of the distance covariance for real-valued iid
data.

In the case of dependent data, such as we have examined in this paper, one cannot
employ methods that would alter the dependence structure of the original sequence
(Zk)k∈N, since this in turn would result in a different Gaussian process (ζk)k∈N and
thus a different limiting distribution. A feasible approach might be a type of block
bootstrap (cf. [10], sections 2.5–2.7), where the resampling occurs from a collection
of blocks, each consisting of a certain number of consecutive observations, thus leaving
the dependence structure of the original process unchanged. We are currently working
on proving the consistency of such a block bootstrap for the distance covariance.
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