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Abstract
Associated with each complex-valued random variable satisfying appropriate integra-
bility conditions, we introduce a different generalization of the Stirling numbers of
the second kind. Various equivalent definitions are provided. Attention, however, is
focused on applications. Indeed, such numbers describe the moments of sums of i.i.d.
random variables, determining their precise asymptotic behavior without making use
of the central limit theorem. Such numbers also allow us to obtain explicit and simple
Edgeworth expansions. Applications to Lévy processes and cumulants are discussed,
as well.

Keywords Probabilistic Stirling number · Moment · Edgeworth expansion · Lévy
process · Cumulant · Generalized difference
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1 Introduction

The classical Stirling numbers play an important role inmany branches ofmathematics
and physics as ingredients in the computation of diverse quantities. In particular, the
Stirling numbers of the second kind S( j,m), counting the number of partitions of
{1, . . . , j} intom nonempty, pairwise disjoint subsets, are a fundamental tool in many
combinatorial problems. Such numbers can be defined in various equivalent ways
(cf. Abramowitz and Stegun [1, p. 824] and Comtet [7, Chap. 5]). Two of the most
useful are the following. Let j = 0, 1, . . . and m = 0, 1, . . . , j . Then S( j,m) can be
explicitly defined as
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S( j,m) = 1

m!
m∑

k=0

(
m

k

)
(−1)m−kk j , (1)

or via their generating function as

(ez − 1)m

m! =
∞∑

j=m

S( j,m)
z j

j ! , z ∈ C. (2)

Motivated by various specific problems, different generalizations of the Stirling
numbers S( j,m) have been considered in the literature (see, for instance, Hsu and
Shiue [11], Luo and Srivastava [13], Cakić et al. [6] and El-Desouky et al. [9]). In [3],
we considered the following probabilistic generalization. Let (Yk)k≥1 be a sequence
of independent copies of a real-valued random variable Y having a finite moment
generating function and denote by Sk = Y1 + · · · + Yk, k = 1, 2, . . . (S0 = 0). Then,
the Stirling numbers of the second kind associated with Y are defined by

SY ( j,m) = 1

m!
m∑

k=0

(
m

k

)
(−1)m−kES j

k , j = 0, 1, . . . , m = 0, 1, . . . , j . (3)

Observe that formula (3) recovers (1) when Y = 1. The motivations behind definition
(3) have to do with certain problems coming from analytic number theory, such as
extensions in various ways of the classical formula for sums of powers on arithmetic
progressions (cf. [3]) and explicit expressions for higher-order convolutions of Appell
polynomials (see [4]).

In this paper, we extend definition (3) to complex-valued random variables Y and
show its usefulness in various classical topics of probability theory. In this regard,
we show in Sect. 3 that the moments ES j

n can be written in closed form in terms
of the Stirling numbers SY ( j,m). When Y is real-valued and centered, two remark-
able consequences deserve to be mentioned. First, we can directly obtain the precise
asymptotic behavior ofES j

n as far as rates of convergence and leading coefficients are
concerned, without appealing to the central limit theorem. Monotonicity properties
of the sequence ES2 jn /(n) j , n ≥ j , where (n) j = n(n − 1) · · · (n − j + 1), are also
derived in a simple way. We point out that monotonicity results in the central limit
theorem seem to be rather scarce. (In this respect, Teicher [19] and Kane [12] showed
that P(Sn ≥ 0) convergesmonotonically for various choices of the law of Sn .) Second,
from a computational point of view, we can evaluate ES j

n for n ≥ j in terms of ES j
n

for n < j and SY ( j, � j/2�). In Sect. 4, we deal with analogous properties referring
to Lévy processes and centered subordinators.

Concerning rates of convergence in the central limit theorem,Edgeworth expansions
provide a great accuracy in the approximation at the price of using rather involved tech-
nicalities (cf. Petrov [15], Hall [10], Barbour [5], and Rinot and Rotar [16]). In Sect. 5,
we give explicit and relatively simple full Edgeworth expansions whose coefficients
depend on the Stirling numbers SY+i Z ( j,m), where the real-valued random variables

123



638 Journal of Theoretical Probability (2022) 35:636–652

Y and Z are independent and Z has the standard normal distribution. The order ofmag-
nitude of such expansions is that of n−(r−1)/2,wheneverEY k = EZk, k = 1, 2, . . . , r ,
for some r ≥ 2. In Sect. 6, we show that the cumulants of a random variable Y can
also be described by means of SY ( j,m). Finally, in Sect. 2 we gather some equiva-
lent definitions of SY ( j,m) when Y is complex-valued without proofs, since they are
similar to those previously given in [3] for real-valued random variables Y .

2 Probabilistic Stirling Numbers

The following notations will be used throughout the paper. LetN be the set of positive
integers and N0 = N ∪ {0}. Unless otherwise specified, we assume that j,m ∈ N0,
x ∈ C, and z ∈ C satisfies |z| < R, where R > 0 may change from line to line.
We always consider measurable exponentially bounded functions f : C → C, i.e.,
| f (x)| ≤ eR|x |. We denote by I j (x) = x j the jth monomial function and by (x) j the
descending factorial, that is, (x) j = x(x − 1) · · · (x − j + 1), j ∈ N, (x)0 = 1.
Finally, we set j ∧ m = min( j,m) and denote by �y� the integer part of y ∈ R.

Let G0 be the set of complex-valued random variables Y having a finite moment
generating function in a neighborhood of the origin, i.e.,

Ee|zY | < ∞, |z| < R,

for some R > 0.
For any r ∈ N, we consider a random variable β(r) having the beta density

ρr (θ) = r(1 − θ)r−1, 0 ≤ θ ≤ 1, (4)

whereas we set β(0) = 1. Note that β(1) is uniformly distributed on [0, 1]. For any
r ∈ N0, let (Yk)k≥1 and (βk(r))k≥1 be two sequences of independent copies of Y ∈ G0
and β(r), respectively, and assume that both sequences are mutually independent. We
denote

Wm(r ,Y ) = β1(r)Y1 + · · · + βm(r)Ym, m ∈ N (W0(r ,Y ) = 0). (5)

The following two important special cases will also be denoted

Wm(0,Y ) = Y1 + · · · + Ym = Sm, Wm(2,Y ) = Wm(Y ), m ∈ N0. (6)

On the other hand, consider the difference operator

�1
y f (x) = f (x + y) − f (x), y ∈ C,

together with the iterates

�m
y1,...,ym f (x) = (�1

y1 ◦ · · · ◦ �1
ym ) f (x), (y1, . . . , ym) ∈ Cm, m ∈ N. (7)
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Such generalized difference operators were used by Mrowiec et al. [14] and Dilcher
and Vignat [8] in different analytic contexts. Observe that

�m f (x) := �m
1,...,1 f (x) =

m∑

k=0

(
m

k

)
(−1)m−k f (x + k), m ∈ N0,

is the usual mth forward difference of f . In general, the iterates in (7) have a cumber-
some expression. However, we have the following formulas stated in [3], where it is
understood that

�m
∅ f (x) = f (x),

0∏

k=1

= 1.

Lemma 1 Let Y ∈ G0. For any m ∈ N0, we have

E�m
Y1,...,Ym f (x) =

m∑

k=0

(
m

k

)
(−1)m−kE f (x + Sk).

If, in addition, f is m times differentiable, then

E�m
Y1,...,Ym f (x) = EY1 · · · Ym f (m)(x + Wm(1,Y )).

The Stirling numbers of the second kind SY ( j,m),m ≤ j , associated with the
random variable Y ∈ G0 are defined as in (3). Observe that this definition is justified
in the sense that

SY ( j,m) = 0, m > j, (8)

as follows by choosing f = I j and x = 0 in Lemma 1. Such numbers are characterized
in the following result (cf. [3]).

Theorem 1 Let Y ∈ G0. For any m ≤ j , we have

SY ( j,m) = 1

m!E�m
Y1,...,Ym I j (0) =

(
j

m

)
EY1 · · · YmWm(1,Y ) j−m

= 1

m!
j∑

l=0

S( j, l)
m∑

k=0

(
m

k

)
(−1)m−kE(Sk)l .

(9)

Equivalently, the numbers SY ( j,m) are defined via their generating function as

1

m!
(
EezY − 1

)m =
∞∑

j=m

SY ( j,m)
z j

j ! . (10)
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For the classical Stirling numbers S( j,m), expression (9) gives us

S( j,m) =
(
j

m

)
E(β1(1) + · · · + βm(1)) j−m, m ≤ j .

This formula was already obtained by Sun [18].
Theorem 1 allows us to obtain explicit expressions of SY ( j,m) for different choices

of the random variable Y (see [3]). In many cases, such numbers are actually real
numbers. For instance, if Y = U + iV , where U and V are independent real-valued
random variables and V has a real characteristic function (in particular, if V = 0 or
if V has the standard normal distribution). In fact, let t ∈ R with |t | < R. Since
EetY = EetUEeitV is real, we see that both sides in (10) are real when choosing
z = t . This shows the claim. Finally, if Y is nonnegative, then SY ( j,m) is nonnegative
as well, as follows from (5) and (9).

3 Moments

In this section, we give closed-form expressions for the moments of Sn , as defined in
(6) in terms of the probabilistic Stirling numbers SY ( j,m) and discuss some of their
consequences. In this respect, for any r ∈ N, denote by Gr the subset of G0 consisting
of those random variables Y = U + iV such that

EY k = 0, k = 1, . . . , r . (11)

In the case in whichU and V are independent, observe that Y ∈ G1, ifEU = EV = 0;
Y ∈ G2 if, in addition, EU 2 = EV 2; Y ∈ G3 if, moreover, EU 3 = EV 3 = 0; Y ∈ G4
if, additionally,

EU 4 −
(
4

2

)
(EU 2)2 + EV 4 = 0, (12)

and so on. Also observe that if U and V are independent copies of a random variable
having the standard normal distribution, then Y ∈ Gr , for any r ∈ N, since

EeitY = 1, t ∈ R. (13)

The following auxiliary result will be used in Sect. 5.

Lemma 2 Let r ∈ N and let U and V be two independent real-valued random
variables such that U ∈ G0 and V has the standard normal distribution. Then,
Y = U + iV ∈ Gr if and only if EUk = EV k, k = 1, . . . , r .

Proof Let Z be an independent copy of V . By (13), we see that

E(Z + iV )l = 0, l ∈ N. (14)
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Assume that EUk = EV k, k = 1, . . . , r , and let s = 1, . . . , r . By (14), we have

E(U + iV )s =
s∑

k=0

(
s

k

)
EUkE(iV )s−k

=
s∑

k=0

(
s

k

)
EZkE(iV )s−k = E(Z + iV )s = 0.

To show the reverse implication, we use induction on r . For r = 1, the result is
obviously true. Assume that the result is true for some r ∈ N. Let Y ∈ Gr+1 ⊆ Gr .
By the induction assumption,EUk = EV k = EZk , k = 1, . . . , r . We thus have from
(14)

0 = E(U + iV )r+1 = EUr+1 +
r∑

k=0

(
r + 1

k

)
EZkE(iV )r+1−k

= EUr+1 + E(Z + iV )r+1 − EZr+1 = EUr+1 − EZr+1 = EUr+1 − EVr+1.

This shows the reverse implication and completes the proof. ��

The interesting feature of the random variables Y in the subset Gr , r ∈ N, is that
its corresponding Stirling numbers satisfy SY ( j,m) = 0, for j < m(r + 1), as shown
in the following result. This property has remarkable consequences to evaluate the
moments ES j

n , as seen in the remaining results of this section, as well as to obtain the
Edgeworth expansions considered in Sect. 5.

Theorem 2 Let Y ∈ Gr , for some r ∈ N0. Then,

SY ( j,m) = (m(r + 1))!
m!((r + 1)!)m

(
j

m(r + 1)

)
E(Y1 · · · Ym)r+1Wm(r + 1,Y ) j−m(r+1),

whenever j ≥ m(r + 1), whereas SY ( j,m) = 0, if j < m(r + 1).

Proof We start with the following identity, which follows from the formula for the
remainder term in Taylor’s theorem:

ez =
r∑

k=0

zk

k! + zr+1

(r + 1)!Ee
zβ(r+1),
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where β(r+1) is the random variable defined in (4). Replacing z by zY in this formula
and then taking expectations, we have from (5) and (11)

1

m!
(
EezY − 1

)m = zm(r+1)

m!((r + 1)!)m
(
EYr+1ezβ(r+1)Y

)m

= zm(r+1)

m!((r + 1)!)mE(Y1 · · · Ym)r+1ezWm (r+1,Y )

= zm(r+1)

m!((r + 1)!)m
∞∑

k=0

E(Y1 · · · Ym)r+1Wm(r + 1,Y )k
zk

k! .

Thus, the result follows from (10) with the change j = m(r + 1) + k. ��
Theorem 3 Let Y ∈ Gr , for some r ∈ N0. Denote by τr ( j) = � j/(r + 1)�. For any
n ∈ N0, we have

ES j
n =

n∧τr ( j)∑

m=0

SY ( j,m)(n)m . (15)

Moreover, for any n ≥ τr ( j), we have

ES j
n

(n)τr ( j)
=SY ( j, τr ( j))

+ 1

(τr ( j) − 1)!
τr ( j)−1∑

k=0

(
τr ( j) − 1

k

)
(−1)τr ( j)−k−1

n − k
ES j

k .

(16)

Proof Note that

(
EezY

)n = EezSn =
∞∑

j=0

ES j
n
z j

j ! . (17)

By (10) and Theorem 2, we see that

(
EezY

)n =
n∑

m=0

(n)m

(
EezY − 1

)m

m! =
n∑

m=0

(n)m

∞∑

j=m(r+1)

SY ( j,m)
z j

j !

=
∞∑

j=0

z j

j !
n∧τr ( j)∑

m=0

SY ( j,m)(n)m .

This, together with (17), shows (15). On the other hand, if n = τr ( j), formula (16)
directly follows from definition (3). Assume that n > τr ( j). The following combina-
torial identity
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p∑

l=0

(
s

l

)
(−1)l =

(
s − 1

p

)
(−1)p, p, s ∈ N0, p ≤ s − 1,

can be easily shown by induction on p. Using (3), (15) and the preceding identity, we
have

ES j
n =

τr ( j)∑

m=0

(
n

m

) m∑

k=0

(
m

k

)
(−1)m−kES j

k

=
τr ( j)∑

k=0

(
n

k

)
ES j

k

τr ( j)∑

m=k

(
n − k

m − k

)
(−1)m−k

=
τr ( j)∑

k=0

(
n

k

)
ES j

k

(
n − k − 1

τr ( j) − k

)
(−1)τr ( j)−k

=
(

n

τr ( j)

) τr ( j)∑

k=0

(
τr ( j)

k

)
n − τr ( j)

n − k
(−1)τr ( j)−kES j

k .

This, together with definition (3), shows (16). The proof is complete. ��
The classical Stirling numbers of the second kind S( j,m) can also be defined by

means of the equations

x j =
j∑

m=0

S( j,m)(x)m, j ∈ N0. (18)

In this sense, formula (15) may be thought as the probabilistic counterpart of (18).

Corollary 1 Let Y ∈ G0. Then,

|SY ( j,m)| ≤ E(|Y1| + · · · + |Ym |) j
m! , 0 ≤ m ≤ j .

Proof Let 0 ≤ m ≤ j . By (5) and the second equality in (9), we see that |SY ( j,m)| ≤
S|Y |( j,m). Applying (15) with r = 0, we get

E(|Y1| + · · · + |Ym |) j =
m∑

k=0

S|Y |( j, k)(m)k ≥ S|Y |( j,m)m!.

This completes the proof. ��
This result extends the well-known upper bound for the classical Stirling numbers

of the second kind, namely

S( j,m) ≤ m j

m! , 0 ≤ m ≤ j .
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The case in which Y ∈ G1 is real-valued deserves special attention. First, denote by
σ 2 = EY 2 its variance anddefine the real-valued randomvariable Ỹ whosedistribution
function is given by

FỸ (y) = 1

σ 2

∫ y

−∞
x2FY (dx), y ∈ R,

where FY is the distribution function of Y and it is assumed that σ 2 > 0. Note that
for any function f we have

σ 2E f (Ỹ ) = EY 2 f (Y ). (19)

In the trivial case in which Y = 0, a.s., we define Ỹ = 0, a.s., so that formula (19) still
holds. Second, consider the random variable Wm(Ỹ ) as defined in (6). Finally, recall
that if Z is a random variable having the standard normal distribution, then

EZ2m = (2m)!
m!2m , m ∈ N0. (20)

With these ingredients, we give the following.

Corollary 2 Let Y ∈ G1 be real-valued. Then,

SY ( j,m) =
(

j

2m

)
E(σ Z)2mEWm(Ỹ ) j−2m, (21)

whenever j ≥ 2m, whereas SY ( j,m) = 0, for j < 2m. In particular,

SY (2 j, j) = E(σ Z)2 j , SY (2 j + 1, j) = j(2 j + 1)E(σ Z)2 j
EY 3

3σ 2 . (22)

Proof The proof of (21) follows along the lines of that of Theorem 2, by taking into
account (20) and the fact that

EezY − 1 = z2

2
EY 2ezβ(2)Y = σ 2z2

2
Eezβ(2)Ỹ ,

as follows from (19). The identities in (22) are a consequence of (21) and the equalities

Eβ(2) = 1

3
, EỸ = EY 3

σ 2 .

The proof is complete. ��
Corollary 3 Let Y ∈ G1 be real-valued. Then,

ES j
n =

n∧� j/2�∑

m=0

SY ( j,m)(n)m . (23)
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As a consequence, the sequence ES2 jn /(n) j , n ≥ j , decreases to E(σ Z)2 j .
Moreover, for any n ≥ j , we have

ES j
n

(n)� j/2�
=SY ( j, � j/2�)

+ 1

(� j/2� − 1)!
� j/2�−1∑

k=0

(
j − 1

k

)
(−1)� j/2�−k−1

n − k
ES j

k .

(24)

Proof As follows from(21), theStirlingnumbers SY (2 j,m) are positive.This, together
with (22) and (23), implies that the sequence ES2 jn /(n) j , n ≥ j , decreases to
SY (2 j, j) = E(σ Z)2 j . The remaining assertions readily follow from Theorem 3
by choosing r = 1. The proof is complete. ��

Let Y ∈ G1 be real-valued. Traditionally, the problem of convergence concerning
the moments ES j

n , as n → ∞, is carried out by establishing first the central limit
theorem

Sn
σ
√
n

→ Z , n → ∞,

and afterward showing (see, for instance, von Bahr [20]) that

E

(
Sn

σ
√
n

) j

→ EZ j , n → ∞.

The explicit expressions in Corollaries 2 and 3 directly give us the precise asymptotic
behaviour of the moments ES j

n as far as rates of convergence and leading coefficients
are concerned. Note, in particular, that the odd moments ES2 j+1

n have the order of
magnitude of (n) j (resp. (n) j−1)with leading coefficients SY (2 j+1, j) (resp. SY (2 j+
1, j − 1)) in the case that EY 3 �= 0 (resp. EY 3 = 0), as follows from (22).

On the other hand, ES2 jn /(n) j decreasingly converges to E(σ Z)2 j . This mono-
tonicity property is no longer true, in general, for the odd moments, since the leading
coefficient ofES2 j+1

n /(n) j depends onEY 3. Another consequence of formula (24) is

that, with the help of (22), we can quickly compute the moments ES j
n for any n ≥ j

in terms of the corresponding moments for n < j .

4 Lévy Processes and Centered Subordinators

Lévyprocesses are, in continuous time, the analogue to sumsof independent identically
distributed random variables in discrete time. It therefore seems plausible to obtain for
such processes similar moment results to those given in the preceding section. Recall
that a Lévy process (Y (t))t≥0 is a stochastically continuous process starting at the
origin and having independent stationary increments. A subordinator (X(t))t≥0 is a
Lévy process having right continuous nondecreasing paths.
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Let (W (t))t≥0 be a zero mean square integrable Lévy process whose characteristic
function is given by (cf. Steutel and van Harn [17, p. 181])

EeiξW (t) = exp

(
t
∫

R

(
eiξ x − 1 − iξ x

)
K (dx)

)
, ξ ∈ R, t ≥ 0, (25)

where K (dx) is a Lévy measure on R, which puts mass 0 on {0} and satisfies

∫

R

|x | K (dx) < ∞, 0 < κ2 =
∫

R

x2 K (dx) < ∞.

The characteristic function (25) can be written as

EeiξW (t) = exp

(
− tκ2ξ2

2
Eeiξβ(2)U

)
, ξ ∈ R, t ≥ 0, (26)

where β(2) is defined in (4) and U is a random variable independent of β(2), with
distribution function

FU (x) = 1

κ2

∫ x

−∞
y2 K (dy), x ∈ R.

We see from (26) thatEW (t) = 0 andEW 2(t) = tκ2, t ≥ 0, so that κ2 is the variance
of W (1).

Now, let (B(t))t≥0 be a standard Brownian motion onR, independent of (W (t))t≥0
and define the Lévy process (Y (t))t≥0 by setting

Y (t) = W (t) + σ B(t), t ≥ 0, σ ≥ 0. (27)

Observe that EY (t) = 0, EY 2(t) = t(κ2 + σ 2), t ≥ 0, and

EeiξY (t) = exp

(
− tσ 2ξ2

2
− tκ2ξ2

2
Eeiξβ(2)U

)
, ξ ∈ R, t ≥ 0, (28)

as follows from (26) and (27). Let V be a random variable uniformly distributed on
[0, 1] and independent of β(2) and U . Then, we can rewrite (28) as

EeiξY (t) = exp

(
− t(σ 2 + κ2)ξ2

2
E exp

(
iξβ(2)U1{V<κ2/(σ 2+κ2)}

))

= exp

(
− t(σ 2 + κ2)ξ2

2
Eeiξβ(2)T	

)
, ξ ∈ R, t ≥ 0,

(29)

where

T	 = U1{V<κ2/(σ 2+κ2)}. (30)
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On the other hand, a subordinator (X(t))t≥0 is called centered if E(X(t) − t) = 0
and E(X(t) − t)2 < ∞, t ≥ 0. In such a case, the characteristic function of X(t) is
then given by (cf. Steutel and van Harn [17, p. 107] and [2])

Eeiξ X(t) = exp

(
tE

eiξT − 1

T

)
, ξ ∈ R, t ≥ 0,

where T is a nonnegative random variable. Denote by τ 2 = ET . This notation comes
from the fact that E(X(t) − t)2 = tτ 2, t ≥ 0. Consider the nonnegative random
variable T ∗ whose distribution function is given by

FT ∗(y) = 1

τ 2

∫ y

0
xFT (dx), y ≥ 0,

and equal to zero for y < 0, where FT is the distribution function of T and it is
assumed that τ 2 > 0. In the case in which T = 0, a.s., we simply define T ∗ = 0, a.s.
Observe that for any function f we have

τ 2E f (T ∗) = ET f (T ).

It turns out that (cf. [2])

Eeiξ(X(t)−t) = exp

(
− tτ 2ξ2

2
Eeiξβ(2)T ∗

)
, ξ ∈ R, t ≥ 0, (31)

where the randomvariables T ∗ andβ(2) are independent. Themain difference between
formulas (29) and (31) is that T	 is real-valued, whereas T ∗ is nonnegative. We finally
observe that if (X(t))t≥0 is the standard Poisson process, then T = T ∗ = 1, whereas
for the gamma process, the random variables T and T ∗ have the probability densities
ρ(θ) = e−θ and ρ∗(θ) = θe−θ , θ ≥ 0, respectively.

Once representations (29) and (31) are given,we canobtain closed-formexpressions
for the moments of Y (t) and X(t) − t in a simple way, as the following result shows.

Theorem 4 Assume that T	 and T ∗, appearing in (30) and (31), respectively, belong
to G0. For any j ∈ N0 and t ≥ 0, we have

g j (t) := EY (t) j

t� j/2�
=

� j/2�∑

m=0

(
j

2m

)
(σ 2 + κ2)mEZ2mEWm(T	)

j−2m 1

t� j/2�−m
,

and

h j (t) := E(X(t) − t) j

t� j/2�
=

� j/2�∑

m=0

(
j

2m

)
E(τ Z)2mEWm(T ∗) j−2m 1

t� j/2�−m
.

Moreover, the functions g2 j (t) and h j (t) are completely monotonic.
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Proof The identities in Theorem 4 follow by expanding the characteristic functions
given in (29) and (31), and recalling (20). The last statements concerning complete
monotonicity follow from the facts thatEWm(T	)

2( j−m) andEWm(T ∗) j−2m are non-
negative for m ≤ � j/2�. The proof is complete. ��

With respect to Theorem 4, similar comments to those made after Corollary 3 are
valid. Details are omitted.

5 Edgeworth Expansions

Let y ∈ R and let Z be a random variable having the standard normal density

g(y) = 1√
2π

e−y2/2.

Denote by G(y) the standard normal distribution function. Recall that the Hermite
polynomials (Hn(y))n≥0 are defined by

g(y)Hn(y) = (−1)ng(n)(y).

Since

1

2π

∫

R

Eeiζ(Z−y)dξ = 1

2π

∫

R

e−iξ ye−ξ2/2dξ = 1√
2π

Ee−iyZ = g(y),

differentiation under the integral sign with respect to y gives us

1

2π

∫

R

(iξ)nEeiζ(Z−y)dξ = (−1)ng(n)(y) = g(y)Hn(y). (32)

Let Y ∈ G0 be a real-valued random variable having an integrable characteristic
function. Suppose that EY = 0 and EY 2 = 1. Denote by Fn(y) the distribution
function of Sn/

√
n. Under such circumstances, it is well known (see, for instance,

Petrov [15, p. 117]) that

Fn(y) − G(y) = − 1

2π

∫

R

e−iξ yEe
iξ Sn/

√
n − Eeiξ Z

iξ
dξ. (33)

We will show that the Edgeworth expansion of Fn(y) − G(y) can be described in
a simple way in terms of the Stirling numbers associated with the complex-valued
random variable

Ŷ = Y + i Z , (34)
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where Y and Z are supposed to be independent. To this end, fix r = 2, 3, . . . Consider
the sets

� = {(m, j) : 1 ≤ m ≤ n, j ≥ m(r + 1)},

and

�k = {(m, j) ∈ � : j = 2m + k}, k = r − 1, r , r + 1, . . . (35)

We are in a position to state the following.

Theorem 5 Let Y ∈ G0 be a real-valued random variable having an integrable char-
acteristic function. Assume that EY k = EZk, k = 1, 2, . . . , r for some r ≥ 2. For
any n ∈ N and y ∈ R, we have

Fn(y) − G(y) = −g(y)
∞∑

k=r−1

1

nk/2
∑

(m, j)∈�k

SŶ ( j,m)

j !
(n)m

nm
Hj−1(y). (36)

Proof Let ξ ∈ R. By (34), the integrand in (33) can be written as

Eeiξ(Z−y)

(
Eeiξ Ŷ/

√
n
)n − 1

iξ
. (37)

By Lemma 2, the random variable Ŷ belongs to Gr . We therefore have from Theorem 2
and (35)

(
Eeiξ Ŷ/

√
n
)n − 1

iξ
= 1

iξ

n∑

m=1

(n)m

(
Eeiξ Ŷ/

√
n − 1

)m

m!

= 1

iξ

n∑

m=1

(n)m

∞∑

j=m(r+1)

SŶ ( j,m)

j !
(

iξ√
n

) j

=
∞∑

k=r−1

1

nk/2
∑

(m, j)∈�k

SŶ ( j,m)

j !
(n)m

nm
(iξ) j−1.

Hence, integrating (37) with respect to ξ , the conclusion follows from (32). The proof
is complete. ��

Fix r ≥ 2. Comparedwith the usual full Edgeworth expansions, Theorem 5 gives us
an explicit and relatively simple expansion of Fn(y)−G(y), making clear, at the same
time, that its order of magnitude is that of n−(r−1)/2, provided that the first moments of
Y and Z (up to the order r ≥ 2) coincide. The coefficients in this expansion depend on
the Stirling numbers SŶ ( j,m) associated with the complex-valued random variable
Ŷ defined in (34). As noted after Theorem 1, such numbers are actually real numbers,
which can be evaluated by means of Theorem 2.
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For instance, let us evaluate the leading coefficient in (36). As follows from (35),
we have �r−1 = {(1, r + 1)}. Thus, the leading coefficient in (36) is equal to

−g(y)Hr (y)
SŶ (r + 1, 1)

(r + 1)! = −g(y)Hr (y)
EŶ r+1

(r + 1)! ,

as follows from Theorem 2. On the other hand, if r + 1 is odd, it can be checked from
(34) thatEŶ r+1 = EYr+1, whereas if r +1 = 2s, we have from (20) and the moment
assumptions in Theorem 5

EŶ r+1 = EŶ 2s =
2s∑

k=0

(
2s

k

)
EY kE(i Z)2s−k

= EY 2s +
s−1∑

l=0

(
2s

2l

)
EZ2l(−1)s−lEZ2(s−l)

= EY 2s + (2s)!
s!2s

s−1∑

l=0

(
s

l

)
(−1)s−l = EY 2s − (−1)sEZ2s .

6 Cumulants

Recall that the cumulant generating function of a random variable Y ∈ G0 is defined
as

KY (z) = logEezY =
∞∑

j=1

κ j (Y )
z j

j ! , (38)

where the coefficients (κ j (Y )) j≥1 are called the cumulants of Y . Such cumulants can
be written in terms of the Stirling numbers SY ( j,m), as shown in the following result.

Theorem 6 Let Y ∈ G0. For any j ∈ N, we have

κ j (Y ) =
j∑

m=1

(−1)m−1(m − 1)!SY ( j,m) =
j∑

k=1

(
j

k

)
(−1)k−1

k
ES j

k . (39)

Proof Using the expression

log(1 + x) =
∞∑

m=1

(−1)m−1 x
m

m
, |x | < 1,
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and choosing z in a neighborhood of the origin so that |EezY − 1| < 1, we get

KY (z) = log
(
1 + EezY − 1

)
=

∞∑

m=1

(−1)m−1(m − 1)!
(
EezY − 1

)m

m!

=
∞∑

m=1

(−1)m−1(m − 1)!
∞∑

j=m

SY ( j,m)
z j

j !

=
∞∑

j=1

z j

j !
j∑

m=1

(−1)m−1(m − 1)!SY ( j,m).

In view of (38), this shows the first equality in (39). The second one readily follows
from definition (3) and the well-known combinatorial identity

p∑

l=0

(
s + l

l

)
=

(
s + p + 1

p

)
, p, s ∈ N0.

The proof is complete. ��
Wefinallymention that, in certain particular cases,wefind for the cumulants simpler

formulas than those given in (39). For instance, in the case of the Lévy processes
considered in (29), it can be checked that

κ j (Y (t)) = t(σ 2 + κ2)ET j−2
	 , j = 2, 3, . . . , t ≥ 0.

A similar formula holds for the centered subordinators defined in (31).
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