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Abstract
We prove a functional limit theorem for vector-valued functionals of the fractional
Ornstein–Uhlenbeck process, providing the foundation for the fluctuation theory of
slow/fast systems driven by both long- and short-range-dependent noise. The limit
process has both Gaussian and non-Gaussian components. The theorem holds for any
L2 functions, whereas for functions with stronger integrability properties the conver-
gence is shown to hold in the Hölder topology, the rough topology for processes in

C
1
2+. This leads to a ‘rough creation’ / ‘rough homogenization’ theorem, by which we

mean the weak convergence of a family of random smooth curves to a non-Markovian
random process with non-differentiable sample paths. In particular, we obtain effec-
tive dynamics for the second-order problem and for the kinetic fractional Brownian
motion model.

Keywords Passive tracer · Fractional noise · Multi-scale · Mixed functional central
and non-central limit theorems · Rough creation · Rough homogenization · Rough
topology
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1 Introduction

The functional limit theorem we study here lays the foundation for the fluctuation
problem for a slow/fast system with the fast variable given by a family of non-strong
mixing stochastic processes, this will be discussed in [19], see [18] for the preliminary
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version.Apivot theorem for obtaining effective dynamics for the slowmoving particles
in a fast turbulent environment are scaling limit theorems for the convergence of the
following functionals

Xε :=
(

X1,ε, . . . , X N ,ε
)
, Xk,ε = αk(ε)

∫ t

0
Gk(yε

s )ds, (1.1)

with weak convergence in Cα([0, T ],R), where T is some finite fixed time horizon,
α(ε) a suitable scaling and Gk : R → R. If yε

t = y t
ε
and yt is a strong mixing process,

α(ε) = 1√
ε
and the limit is aMarkov process, for details see, e.g. the book [23] and the

references therein. For stochastic processes whose auto-correlation function does not
decay sufficiently fast at infinity there is no reason to have the

√
ε scaling or to obtain

a diffusive limit. Furthermore, the scaling limit and the limit function may depend on
the individual functions Gk .

In this article, we take yε
t to be the stationary and rescaled fractional Ornstein–

Uhlenbeck process with Hurst parameter H , which, for H > 1
2 , exhibits long-range

dependence (LRD) and is not strong-mixing. Our interest for long range dependent
/ non-strong mixing noise comes the time series data of the river Nile. In a study of
water flows of the Nile river, Hurst and his colleagues [20] observed long-range time
dependence and found that the time dependence varies proportionally to t H where
H ∼ 0.73, by contrast, Brownian motions and stable processes have independent
increments. Fractional Brownian motions (fBM) were then proposed by Benoit Man-
delbrot and John Van Ness [28] for modelling the Hurst phenomenon. A fBM is a
continuous mean zero Gaussian process with stationary increments and covariance
E(Bt − Bs)

2 = |t − s|2H , it is self-similar with similarity exponent H , and distin-
guished by the Gaussian property and stationary, but dependent increments. See, e.g.
[26] and the reference therein for stochastic calculus for fBM’s.

Self-similar processes appeared also inmathematically rigorous descriptions of crit-
ical phenomena and in renormalisation theory. In [38], Sinai constructed non-Gaussian
self-similar fields; while Dobrushin [12] studied self-similar fields subordinated to
self-similar Gaussian fields (multiple Wiener integrals). Those self-similar stochastic
processes with stationary increments are a particular interesting class. When normal-
ized to begin at 0, to have mean 0 and to have variance 1 at t = 1, they necessarily
have the covariance 1

2 (t
2H + s2H − |t − s|2H ). Those of Gaussian variety are fBMs.

Hermite processes are non-Gaussian self-similar processes with stationary increments
and the above-mentioned covariance. They appeared as scaling limits of functionals
of long-range dependent Gaussian processes, see [36]. Jona-Lasinio was also con-
cerned with the construction of a systematic theory of limit distributions for sums of
‘strongly dependent’ random variables for which the classical central limit theorems
do not hold, [22], see also the book [13].

Let us first consider the convergence of one single component, the scalar case.
The scaling constant αk(ε) depends on the function Gk , and is a reflection of the
self-similarity exponents of the limiting process. If αk(ε) = 1√

ε
, the limit of Xk,ε is

a Wiener process and the functional central limit theorem is expected to hold. Let μ

denote the centred and normalized Gaussian measure onR and mk denote the Hermite
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rank of a centred function Gk ∈ L2(μ), which is the smallest nonzero term in its chaos
expansion. Let (H , m) �→ H∗(m) denote the function given by (1.3), which decreases
with m. Then, the relevant scaling constants are given as below:

α
(
ε, H∗(mk)

) =

⎧⎪⎨
⎪⎩

1√
ε
, if H∗(mk) < 1

2 ,

1√
ε| ln (ε)| , if H∗(mk) = 1

2 ,

εH∗(m)−1, if H∗(mk) > 1
2 .

(1.2)

See Lemma 2.4 for a preliminary computation indicating the scales. In the past, the
limit theorems for the non-Gaussian limits had been called non-central limit theorems,
we use the terminology ‘functional central limit theorems’ for all cases.

The intuition for this comes from its counterpart for sequences. If Yn is a mean
zero, stationary, and strong mixing sequence, such that σ 2

n = E(
∑n

i=1 Yi )
2 → ∞,

E(
∑n

i=1 Yi )
4 = O(σ 4

n ), then 1
σn

∑n
i=1 Yi−→N (0, 1). If Yn is not strong mixing, this

CLT may fail. Indeed, if Xn is a stationary mean zero variance 1 Gaussian sequence
with auto-correlation r(n) ∼ cn−γ for some γ ∈ (0, 1) and c ∈ R (allowing for
negative correlations), G a centred function with Hermite rank m ≥ 1, and A(n) a
sequence such that

lim
n→∞ var

(
1

A(n)

n∑
k=1

G(Xk)

)
= 1.

Then, zn = 1
A(n)

∑[nt]
k=1 G(Xn) is expected to converge in finite dimensional distribu-

tions. The scaling constant A(n) is of the order n1− 1
2 γ m in the long-range-dependent

case, of order
√

n in the short-range-dependent case, and of order
√

n ln n for the
borderline case, see [6,8]. By long-range dependence, we mean

∑∞
n=1 |r(n)| = +∞.

The limit process, limn→∞ zn , is a Wiener process for fast decaying correlations,
i.e. in case γ ∈ ( 1

m , 1), [6]. In the borderline case, γ = 1
m , the scaling limit is also a

Wiener process. However, if γ ∈ (0, 1
m ) the correlations fail to decay sufficiently fast,

the scaling limit is a Hermite process in the m-th chaos, [8,12]. The first convergence
to a non-Gaussian similar process was shown in [36] where the aim was to construct
a not strong mixing sequence of random variables, he achieved this by showing the
sequence of random variables has a non-Gaussian scaling limit which is now known
as the Rosenblatt process. In [8], vector valued combinations of short- and long-range-
dependent sums were studied, however, the limit of each component is assumed to be
moment determinate (which can only happen when they are in the L2 chaos expansion
of order less or equal to 2). This is due to a restriction in the asymptotic independence
result in [33], which was extended in [29].

We return to the continuous functional limit theorems. For the scalar case, the
continuous version CLT for γ ∈ ( 1

m , 1) was obtained in [4], the borderline case
γ = 1

m in [2]. These are shown for the convergence in finite dimensional distribution
and for G to be a centred L2 function. They also obtained uniform convergences in
the continuous topology for a restrictive class of functions G (assuming sufficiently
fast decay of the coefficients in the Wiener chaos expansion). This was extended in
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[30] to vector valued Xε, when each component of Xε falls in the Brownian case,
with convergence understood in the sense of finite dimensional distributions. The
result in [30] was improved in [11], where the fast chaos decay restrictions on Gk ,
for Gk ∈ L p for p > 2, are removed with techniques from Malliavin calculus. In
the continuous long-range-dependent case Taqqu, [40], obtained convergence in the
continuous topology. These results, although fragmented (in some regimes these are
only known for scalar valued processes or only at the level of sequences), provide a
fairly good picture of what is going on.

There exists however no vector valued functional limit theorem with joint conver-
gence, when the scaling limit of the components are mixed, in this article we provide
a complete description for the joint convergence of {Xk,ε} for Gk ∈ L2(μ). We have a
functional limit theorem for vector valued processes whose components may exhibit
both short and long-range dependence. For Gk satisfying a stronger integrability con-
dition, we can also show weak convergence in the Cα([0, T ],Rd)-topology and for
each fixed time in L2 for the low Hermite rank case, which already have interest-
ing applications. Furthermore, they are the basis for the convergence in a suitable
rough topology, which due to the change of the nature of the problem will appear in
[18] where rough path theory is used to study slow/fast systems, leading to ‘rough
creation’ / ‘rough homogenization’ in which the effective limit is not necessarily a
Markov process.

Application. Consider the second-order equation on R:

ẋε
t = εH−1 f (xε

t )yε
t , xε

0 = x0

dyε
t = −1

ε
yε

t dt + σ

εH
d B H

t , y0 ∼ ε−H σ

∫ 0

−∞
e

t−s
ε d B H

s .

Taking ε → 0, does xε
t converge? In case H = 1

2 and f = 1, this is essentially the
Kramer-Smolouchowski limit (this is also called the kinetic Brownian motion model).
For H 
= 1

2 and for f = 1 this was shown in [1,7,43] to converge to a fBM, see
also [14] for the case with a magnetic field. Given H > 1

3 and f ∈ C3
b (for any H if

f = 1), we can show xε
t converges to the solution of the equation ẋt = f (xt ) d B H

t
with initial value x0 where the integral in the differential equation is interpreted as a
Riemann-Stieltjes integral. Furthermore, we obtain the following bound in Cγ ′

where
0 < γ ′ < γ < H :

∥∥∥|xε· − x·|Cγ ′
([0,T ])

∥∥∥
L p

� T γ εH−γ ,

This computation is straightforward, see Propositions 3.1 and 3.2 for detail.
With the functional limit theorem below, Theorem A, we can conclude also the

convergence of solutions of the equations, for h ∈ C2b (Rd ,Rd) and g ∈ Cb(R,R),

ẋε
t = α(ε) f (xε

t ) G(yε
t ) + h(xε

t ) g(yε
t ).
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We show that xε
t converges in Cγ ([0, T ],R) for γ ∈ (0, H∗(m)∨ 1

2 − 1
p ) either to the

solution of the equation

dx̄t = c f (x̄t ) d Z H∗(m),m
t + ḡ h(x̄t ),

where Z H∗(m),m
t is a Hermite process, or to the solution to the Stratonovich stochastic

differential equation

dx̄t = c f (x̄t ) ◦ dWt + ḡ h(x̄t )

where Wt is a standard Wiener process (given enough integrability on G). Here, c is
a specific constant (c.f. Eq. (3.6) depending on G arising from the homogenization
procedure. For the above, we follow [11] and use Malliavin calculus to obtain suitable
moment bounds on

∫ t
0 G(yε

s )ds. These results appeared in the previous version of the
current paper [18]. Equations driven by fractional Brownian motions are also studied
for the averaging regime, see [21] and [16]. A fluctuation theorem around the effective
average was obtained [3].

Main Results We denote our underlying probability space by (�,F ,P). Let μ

denote the standard Gaussian distribution and we choose σ such that the stationary
scaled fOU process, to be defined below, satisfies yε

t ∼ μ. Let {Hm, m ≥ 0} be the
orthogonal Hermite polynomials on L2(μ), such that they have leading coefficient 1
and L2(μ) norm

√
m!. Given G ∈ L2(μ), then it posses an expansion of the form

G(x) = ∑∞
k=0 ck Hk(x), where ck = 1

k! 〈G, Hk〉L2(μ). A function G is centred if and
only if c0 = 0. The smallest m with cm 
= 0 is called the Hermite rank of G. In case
the correlations of yε

t do not decay sufficiently fast the path integral α(ε)
∫ t
0 G(yε

s )ds
ought to be approximated by that of the first term of its Wiener chaos expansion. By
orthogonality of the Hm’s, it is sufficient to study the asymptotics ofα(ε)

∫ t
0 Hm(yε

s )ds
to deduce α(ε).

Although the solutions to the fOU equation converge exponentially fast to each
other, their autocorrelation function decays only algebraically. The indicator for the
behaviour of α(ε)

∫ t
0 Hm(yε

s )ds turns out to be

H∗(m) = m(H − 1) + 1, (1.3)

and the self-similarity exponent of the limiting process is determined by α(ε, H∗(m)).
For large m, the limit will be a Wiener process, and otherwise the limit Zt should
have the scaling property: εH∗(m)Z t

ε
∼ Zt . Indeed, Zt are the self-similar Hermite

processes. To state the functional limit theorem concisely, we make the following
convention,

Convention 1.1 Given a collection of functions (Gk ∈ L2(μ), k ≤ N ), we will label
the high rank ones first, so the first n functions satisfy H∗(mk) ≤ 1

2 , where n ≥ 0,
and the remaining satisfy H∗(mk) > 1

2 .

Theorem A Let yε be the stationary solution to the scaled fractional Ornstein–
Uhlenbeck equation (2.4) with standard Gaussian distribution μ. Let Gk : R → R be
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centred functions in L2(μ) with Hermite ranks mk. Write

Gk =
∞∑

l=mk

ck,l Hl , αk(ε) = α(H∗(mk), mk), Xk,ε = αk(ε)

∫ t

0
Gk(yε

s )ds.

Set

X W ,ε =
(

X1,ε, . . . , Xn,ε
)
, X Z ,ε =

(
Xn+1,ε, . . . , X N ,ε

)
.

Then, the following holds:

1. (a) There exist stochastic processes X W = (X1, . . . , Xn) and X Z =
(Xn+1, . . . , X N ) such that on every finite interval [0, T ],

(X W ,ε, X Z ,ε) −→ (X W , X Z ),

in the sense of finite dimensional distributions. Furthermore, for any t > 0

lim
ε→0

‖X Z ,ε
t → X Z

t ‖L2(�) = 0.

(b) If furthermore each Gk satisfies Assumption 1.2 below, the convergence is
weakly in Cγ ([0, T ],RN ) for every γ < 1

2 − 1
mink≤n pk

, if there is at least
one component converging to a Wiener process. Otherwise they converge in
Cγ ([0, T ],RN ) for every γ < mink>n H∗(mk) − 1

pk
.

2. We now describe the limit X = (X W , X Z ).
(1) X W ∈ Rn and X Z ∈ RN−n are independent.
(2) X W = U Ŵt where Ŵt is a standard Wiener process and U is a square

root of the matrix (Ai, j ),

Ai, j =
∫ ∞

0
E
(
Gi (ys)G j (y0)

)
ds =

∞∑
q=mi ∨m j

ci,q c j,q (q!)
∫ ∞

0
�(r)q dr

and �(r) = E(yr y0). In other words, E
(

Xi
t X j

s

)
= 2(t ∧ s)Ai, j for

i, j ≤ n.
(3) Let Z H∗(mk ),mk

t be the Hermite processes, represented by (2.1). Then,

X Z = (cn+1,mn+1 Zn+1
t , . . . , cN ,m N Z N

t ),

where,

Zk
t = mk !

K (H∗(mk), mk)
Z H∗(mk ),mk

t . (1.4)

We emphasize that the Wiener process Wt defining the Hermite processes is
the same for every k (c.f. Eq. (2.1)), which is in addition independent of Ŵt .
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Assumption 1.2 (Functional Limit Cγ assumptions) Let Gk ∈ L2(μ) with Hermite
rank mk ≥ 1.

• High rank case. If H∗(mk) ≤ 1
2 , assume Gk ∈ L pk (μ) where 1

2 − 1
pk

> 1
3 (i.e.

pk > 6).
• Low rank case. If H∗(mk) > 1

2 , assume Gk ∈ L pk (μ) where H∗(mk)− 1
pk

> 1
2 .

Remark 1.3 The case H = 1
2 is classical, and is not of interest here. In this case the

result is independent of the Hermite rank and the scaling is given by α(ε) = 1√
ε
, due

to the exponential decay of correlations.

An immediate application is the following rough homogenisation theorem for a toy
model:

Theorem B Let H ∈ ( 13 , 1) \ { 12 }, f ∈ C3b(Rd ,Rd), h ∈ C2b (Rd ;Rd), G ∈ C(R,R)

satisfying Assumption 1.2 and g ∈ Cb(R;R). Let α(ε) = α(ε, H∗(m)). Fix a finite
time T and consider

ẋε
t = α(ε) f (xε

t )G(yε
t ) + h(xε

t )g(yε
t ), xε

0 = x0. (1.5)

1. If H∗(m) > 1
2 , xε

t converges weakly in Cγ ([0, T ],Rd) to the solution to the Young

differential equation dx̄t = c f (x̄t ) d Z H∗(m),m
t + ḡh(x̄t )dt with initial value x0 for

γ ∈ (0, H∗(m) − 1
p ).

2. If H∗(m) ≤ 1
2 , xε

t converges weakly in Cγ ([0, T ],R) to the solution of the
Stratonovich stochastic differential equation dx̄t = c f (x̄t ) ◦ dWt + ḡh(x̄t )dt
with x̄0 = x0, where γ ∈ (0, 1

2 − 1
p ).

We also take the liberty to point out an intermediate result on the joint convergence
of stochastic processes in finite L2 chaos, for it maybe of service. The proof is a slight
modification of results in [29,41].

Proposition 5.1 Let q1 ≤ q2 ≤ · · · ≤ qn ≤ p1 ≤ p2 ≤ · · · ≤ pm. Let f ε
i ∈ L2(Rpi ),

gε
i ∈ L2(Rqi ), Fε = (

Ip1( f ε
1 ), . . . , Ipm ( f ε

m)
)

and Gε = (
Iq1(g

ε
1), . . . , Iqn (g

ε
n)
)
,

where Iq denotes the Wiener integral of order q. Suppose that for every i, j , and any
1 ≤ r ≤ qi :

‖ f ε
j ⊗r gε

i ‖ → 0.

Then, Fε → U and Gε → V weakly imply that (Fε, Gε) → (U , V ) jointly, where
U and V are taken to be independent random variables.

2 Preliminaries

We take the Hermite polynomials of degree m to be

Hm(x) = (−1)me
x2
2

dm

dxm
e

x2
2 .

123



Journal of Theoretical Probability (2022) 35:426–456 433

Thus, H0(x) = 1, H1(x) = x . Let Ĥ be the inverse of H∗(m) = m(H − 1) + 1:

Ĥ(m) = 1

m
(H − 1) + 1.

2.1 Hermite Processes

The rank 1 Hermite processes Z H ,1 are fractional BMs, the formulation (2.1) below
is exactly the Mandelbrot-Van Ness representation for a fBM.

Definition 2.1 Let m ∈ N with Ĥ(m) > 1
2 . The class of Hermite processes of rank m

is given by the following mean-zero processes,

Z H ,m
t = K (H , m)

m!
∫

Rm

∫ t

0

m∏
j=1

(s − ξ j )
−( 12+ 1−H

m )

+ ds dW (ξ1) . . . dW (ξm), (2.1)

where the constant K (H , m) is chosen so their variances are 1 at t = 1.

The integration in (2.1) is understood as a multipleWiener-Itô integral (over the region
Rn without the diagonal). Note Ĥ(1) = H .

By the properties of Wiener integrals, two Hermite processes Z H ,m and Z H ′,m′
,

defined by the same Wiener process, are uncorrelated if m 
= m′. The Hermite pro-
cesses have stationary increments and finite moments of all orders with covariance

E(Z H ,m
t Z H ,m

s ) = 1

2
(t2H + s2H − |t − s|2H ). (2.2)

Therefore, using Kolmogorov’s theorem 2.6, one can show that the Hermite processes
Z H ,m

t have sample paths of Hölder regularity up to H . They are also self-similar with
exponent H which means λH Z H ,m

·
λ

∼ Z H ,m
. .

Remark 2.2 In some literature, see, e.g. [27]where further details onHermite processes
can also be found, the Hermite processes are defined with a different exponent as
below:

Z̃ H ,m
t = K (H , m)

m!
∫

Rm

∫ t

0

m∏
j=1

(s − ξ j )
H− 3

2+ ds dW (ξ1) . . . dW (ξm).

The two notions are related by

Z H∗(m),m
t = Z̃ H ,m

t , Z H ,m
t = Z̃ Ĥ(m),m

t . (2.3)

We refer to [10,35,37] for detailed studies of fBM’s which are used in this article.
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2.2 Fractional Ornstein–Uhlenbeck Processes

Let us normalise the fractional Brownian motion, so that B H
0 = 0 and E(B H

1 )2 = 1.
Disjoint increments of B H

t have a covariance of the form:

E(Bt − Bs)(Bu − Bv) = 1

2

(
|t − v|2H + |s − u|2H − |t − u|2H − |s − v|2H

)
.

We define the stationary fractional Ornstein–Uhlenbeck processes to be yt =
σ
∫ t
−∞ e−σ(t−s)d B H

s , where B H
t is a two-sided fractional BM, σ is chosen such that

yt is distributed asμ = N (0, 1). It is the solution of the following Langevin equation:

dyt = −yt dt + σd B H
t , y0 = σ

∫ 0

−∞
esd B H

s .

We take yε
t , the fast or rescaled fOU, to be the stationary solution of

dyε
t = −1

ε
yε

t dt + σ

εH
d B H

t . (2.4)

Observe that yε· and y ·
ε
have the same distributions, yε

t = σ
εH

∫ t
−∞ e− 1

ε
(t−s)d B H

s . In
particular, both yt and yε

t are Hölder continuous with Hölder exponents γ ∈ (0, H).
Let us denote their correlation functions by � and �ε:

�(s, t) := E(ys yt ), �ε(s, t) := E(yε
s yε

t ).

Let �(s) = E(y0ys) for s ≥ 0 and extended toR by symmetry, then �(s, t) = �(t −s)
and similarly for �ε. For H > 1

2 , the set of functions for which Wiener integrals are
defined include L2 functions and so � posses an analytical expression. Indeed, since

E(B H
t B H

s ) = H(2H − 1)
∫ t

0

∫ s

0
|r1 − r2|2H−2dr1dr2,

we have

∂2

∂t∂s
E(B H

t B H
s ) = H(2H − 1)|t − s|2H−2,

which is integrable, and therefore we may use the Wiener isometry to compute the
covariances

E(yt ys) = σ 2H(2H − 1)
∫ t

−∞

∫ s

−∞
e−(s+t−r1−r2)|r1 − r2|2H−2dr1dr2.

For u > 0, we set

�(u) = σ 2H(2H − 1)
∫ u

−∞

∫ 0

−∞
e−(u−r1−r2)|r1 − r2|2H−2dr1dr2.
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Using this, the following correlation decay was shown in [10].

Lemma 2.3 Let H ∈ (0, 1
2 )∪( 12 , 1). Then, �(s) = 2σ 2H(2H −1)s2H−2+ O(s2H−4)

as s → ∞. In particular, for any t 
= s,

|�(s, t)| � 1 ∧ |t − s|2H−2. (2.5)

Hence,
∫∞
0 �m(s)ds is finite if and only if H∗(m) < 1

2 , or H = 1
2 and m ∈ N, as

in the latter the usual OU process admits exponential decay of correlations.

Lemma 2.4 Let H ∈ (0, 1) \ { 12 }, fix a finite time horizon T , then for t ∈ [0, T ] the
following holds uniformly for ε ∈ (0, 1

2 ]:
(∫ t

ε

0

∫ t
ε

0
|�(u, r)|m dr du

) 1
2

�

⎧⎪⎪⎨
⎪⎪⎩

√
t
ε

∫∞
0 |�(s)|mds, if H∗(m) < 1

2 ,√
( t
ε
)| ln ( 1

ε

)|, if H∗(m) = 1
2 ,( t

ε

)H∗(m)
, if H∗(m) > 1

2 .

(2.6)

(∫ t

0

∫ t

0
|�ε(u, r)|m dr du

) 1
2

�

⎧⎪⎪⎨
⎪⎪⎩

√
tε
∫∞
0 |�(s)|mds, if H∗(m) < 1

2 ,√
tε| ln ( 1

ε

)|, if H∗(m) = 1
2 ,( t

ε

)H∗(m)−1
, if H∗(m) > 1

2 .

(2.7)

Note, if H = 1
2 , for and any m ∈ N, the bound is always

√
t
ε

∫∞
0 �m(s)ds. In particular,

t
∫ t

0
|�ε(s)|mds � t(2H∗(m)∨1)

α(ε, H∗(m))2
. (2.8)

Proof We first observe that
∫ ∞

0
�m(s)ds < ∞ ⇐⇒ H∗(m) <

1

2
⇐⇒ H < 1 − 1

2m
. (2.9)

By a change of variables and using estimate (2.5) on the decay of the auto-correlation
function,

∫ t
ε

0

∫ t
ε

0
|�(|u − r |)|mdrdu = 2

t

ε

∫ t
ε

0
|�(s)|mds

�
{

t
ε

∫∞
0 �m(s)ds, if H∗(m) < 1

2 ,( t
ε

)2H∗(m)
, otherwise.

,
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For the case H∗(m) = 1
2 , we use

∫ t
ε

0
|�(s)|mds ≤

∫ T
ε

0
|�(s)|mds �

∫ T
ε

0

(
1 ∧ 1

s

)
ds �

∣∣ ln
(

T

ε

)∣∣ � ∣∣ ln
(
1

ε

)∣∣.

To complete the proof, we observe that by a simple change of variables,

∫ t

0

∫ t

0
|�ε(u, r)|m dr du = ε2

∫ t
ε

0

∫ t
ε

0
|�(u, r)|m dr du.

��
Next, we recall the Garsia-Rodemich-Romsey-Kolmogorv inequality.

Lemma 2.5 (Garsia-Rodemich-Romsey-Kolmogorov inequality) Let T > 0. Let θ :
[0, T ] → Rd . For any positive numbers γ, p, there exists a constant C(γ, p) such
that

sup
s 
=t,s,t∈[0,T ]

|θ(t) − θ(s)|
|t − s|γ ≤ C(γ, p)

(∫ T

0

∫ T

0

|θs − θr |p

|s − r |γ p+2 dsdr

) 1
p

.

See [17, section A.2] in Appendix, as well as [39], for a proof. As a consequence of
this inequality, one obtains the following theorem.

Theorem 2.6 (Kolmogorov’s Theorem) Let θ be a stochastic process. Suppose that for
s, t ∈ [0, T ], p > 1 and δ > 0,

E|θ(t) − θ(s)|p ≤ cp|t − s|1+δ,

where cp is a constant. Then, for γ < δ
p , θ ∈ Cγ ([0, T ],R), and in particular

‖|θ |Cγ ([0,T ])‖p ≤ C(γ, p)(cp)
1
p

(∫ T

0

∫ T

0
|u − v|δ−γ p−1dudv

) 1
p

,

where right hand side is finite when γ ∈ (0, δ
p ).

Lemma 2.7 For any γ ∈ (0, H), p > 1, the following estimates hold:

sup
s,t≥0

‖ys − yt‖L p

1 ∧ |s − t |H
� 1, E sup

s 
=t,s,t∈[0,T ]

( |ys − yt |
|t − s|γ

)p

� T C(γ, p).

Proof We use the fractional Ornstein–Uhlenbeck equation

ys − yr = −
∫ s

r
yudu + B H

s − B H
r ,
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to obtain E|ys − yr |2 � (s − r)2E|y1|2 + q|s − r |2H . Using the stationarity of yt ,
one also has E|ys − yr |2 ≤ 2E|y1|2 = 2. Since for Gaussian random variables the L2

norm controls the L p norm we have

‖ys − yr‖L p �
{
1, if |s − r | ≥ 1;
|s − r |H , if l|s − r | ≤ 1.

Thus, by symmetry and a change of variables,
∫ T
0

∫ T
0

E|ys−yr |p

|s−r |γ p+2 dsdr � T and appli-

cation of Kolmogorov’s theorem 2.6 concludes the proof. ��

3 Applications

3.1 The Second-Order Problem

If x is a stochastic process, we write xs,t = xt − xs .

Proposition 3.1 Let H ∈ (0, 1), γ ∈ (0, H), p > 1 and fix a finite time T . Let
Xε

t = εH−1
∫ t
0 yε

s ds, then,

sup
s,t∈[0,T ]

∥∥∥Xε
s,t − σ B H

s,t

∥∥∥
L p

� εH ,

∥∥∥∥
∣∣∣Xε − σ B H

∣∣∣Cγ ′
([0,t],R)

∥∥∥∥
L p

� tγ εH−γ ,

for any γ ′ < γ < H and for t ∈ [0, T ].

Proof Set vε
t = εH−1yε

t , then, v
ε
t solves the following equation

dvε
t = −1

ε
vε

t dt + σ

ε
d B H

t .

Using the equation for vε
t , we have

Xε
s,t = εH−1

∫ t

s
yε

r dr =
∫ t

s
vε

r dr = ε(vε
t − vε

s ) + σ B H
s,t .

Therefore, for any p > 1,

sup
s,t∈[0,T ]

∥∥∥Xε
s,t − σ B H

s,t

∥∥∥
L p

= sup
s,t∈[0,T ]

∥∥ε(vε
t − vε

s )
∥∥

L p

= εH sup
s,t∈[0,T ]

∥∥yε
t − yε

s

∥∥
L p � εH .

In the last step, we used the stationarity of yε
t .
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Thus, applying Kolmogorov’s theorem 2.6 to Xε −σ B H , we see that the following
holds for any t ∈ [0, T ], p > 1 and any γ ′ < γ

‖|Xε − σ B H |Cγ ′
([0,t],R)

‖L p � εH
(

t

ε

)γ

,

hence, the claim follows. ��
As an application, we consider the following slow/fast system,

{
ẋε

t = εH−1 f (xε
t ) yε

t ,

xε
0 = x0.

(3.1)

To describe its limit, we review the concept of Young integrals. If f , g : [0, T ] → R
with f ∈ Cα and g ∈ Cβ such that α + β > 1, then the Riemann-Stieljes integral
makes sense, and

∫ t

0
fsdgs = lim

|P |→0

∑
[u,v]⊂P

fu(gu − gv) ∈ Cβ.

For details see [42]; this integral is called a Young integral. Since Young integrals have
the regularity of its integrand, for H > 1

2 the equation ẋt = f (xt ) d B H
t makes sense.

In [25], it was shown that if f ∈ C3b , then the equation has a unique global solution
from each initial value. This type of equations are Young equation, the simplest type
of rough differential equation. The notation C3b denotes the space of bounded functions
such that their first three derivatives are bounded.

Proposition 3.2 Let H ∈ ( 13 , 1) and f ∈ C3b(Rd ,Rd). Then for any γ ∈ (0, H),

γ ′ < γ , xε
t converges in L p in Cγ ′

([0, T ],Rd) to the solution of the rough differential
equation:

ẋt = σ f (xt ) d B H
t , x0 = x0. (3.2)

Furthermore, for t ∈ [0, T ],
∥∥∥|xε − x |Cγ ′

([0,t],R)

∥∥∥
L p

� tγ εH−γ .

Proof The idea is to consider Eq. (3.1) as a Young/rough differential equation. In case
H ∈ ( 12 , 1), we can rewrite our equation as

ẋε
t = f (xε

t )d Xε
t ,

where Xε = εH−1
∫ t
0 yε

s ds is as in the previous lemma. Young’s continuity theorem,
see Theorem 3.6, states that xε converges weakly provided Xε converges weakly in a
Hölder space of regularity greater than 1

2 .
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For H ∈ ( 13 ,
1
2 ), we need to rewrite our equation into a rough differential equation,

ẋε
t = f (xε

t )dXε
t ,

where Xε is given by Xε enhanced with its canonical lift

X
ε
s,t =

∫ t

s
(Xε

r − Xε
s )d Xε

r .

As we restrict ourselves to one dimension we obtain, by symmetry, Xε
s,t = 1

2 (Xε
s,t )

2,

hence, Xε converges to a fBm σ B H enhanced with BH
s,t = 1

2

(
σ B H

s,t

)2
. As the solution

map, �, to a RDE satisfies, see [15] or Theorem 3.6 below,

|�(Xε) − �(BH )|Cγ ′ � �γ (Xε,BH ),

where �γ denotes the inhomogeneous rough path norm of regularity γ and BH =
(σ B H , 1

2

(
σ B H

s,t

)2
). Thus, the L p convergence of the solutions follows from the L p

convergence of the drivers, hence, we can conclude the proof by Proposition 3.1. ��
Remark 3.3 Krammer-Smoluchowski limits/Kinetic fBM’s are studied in [1,7,43]. See
also [14–16].

Remark 3.4
1. For H < 1

2 and m = 1, Theorem A appears to contradict with Proposition 3.1;
in the first we claim the limit is a Brownian motion, whereas in the second we
claim that it is a fractional Brownian motion. Both results are correct and can be
easily explained. It lies in the fact that

∫
R �(s) ds vanishes if H < 1

2 , and so the
Brownian motion limit is degenerate. Since according to [10],

�(s) = σ 2�(2H + 1) sin(π H)

2π

∫

R
eisx |x |1−2H

1 + x2
dx, (3.3)

and by the decay estimate from (2.5), � is integrable, s(λ) is the value at zero
of the inverse Fourier transform of �(s), which is up to a multiplicative constant
|λ|1−2H

1+λ2
. This is also the spectral density of yt and has value 0 at 0. This means we

have scaled too much and the correct scaling is to multiply the integral
∫ t
0 yε

s ds by
εH−1 in which case we obtain a fBm as limit.

2. For m > 1 and H < 1
2 the Wiener limit is not trivial. Indeed,

∫

R
�(s)mds = C

∫

R

m︷ ︸︸ ︷∫

R
. . .

∫

R

m∏
k=1

eisxk
|xk |1−2H

1 + |xk |2 dx1 . . . dxm ds

= C

m︷ ︸︸ ︷∫

R
. . .

∫

R

|x2 + · · · + xm |1−2H

1 + |x2 + · · · + xm |2
m∏

k=2

|xk |1−2H

1 + |xk |2 
= 0.

123



440 Journal of Theoretical Probability (2022) 35:426–456

3.2 The 1d Fluctuation Problem

In this section, we give an application of Theorem A. Given a function g ∈ L1(μ) we
denote ḡ = ∫R g(y)μ(dy).

Lemma 3.5 The stationary Ornstein–Uhlenbeck process is ergodic. Thus,
∫ t
0 g(yε

s )ds →
t ḡ in probability for every g ∈ L1(μ).

Proof A stationary Gaussian process is ergodic if its spectral measure has no atom,
see [9,37]. The spectral measure F of a stationary Gaussian process is obtained from
Fourier transforming its correlation function and �(λ) = ∫R eiλx d F(x). According to
[10]:

�(s) = �(2H + 1) sin(π H)

2π

∫

R
eisx |x |1−2H

1 + x2
dx, (3.4)

so the spectral measure is absolutely continuous with respect to the Lebesgue mea-

sure with spectral density, up to a nonzero constant, given by s(x) = |x |1−2H

1+x2
. Since

∫ t
0 g(yε

t )dt equals ε
∫ t

ε

0 g(ys)ds in law, the former converges in law to t ḡ by Birkhoff’s
ergodic theorem. The claim now follows as weak convergence to a constant implies
convergence in probability. ��

In the following proof we will need the following theorem from Young/rough path
theory for details we refer to [15,17,24,25]. We denote the space of rough paths of
regularity β by C β .

Theorem 3.6 Let Y0 ∈ Rd , β ∈ ( 13 , 1), γ ∈ ( 12 , 1) f ∈ C3b(Rd ,Rd), h ∈ C2b(Rd ,Rd),
X ∈ C β([0, T ],R) andZ ∈ C γ ([0, T ],R) such that β+γ > 1. Then, the differential
equation

Yt = Y0 +
∫ t

0
f (Ys)dXs +

∫ t

0
h(Ys)dZs (3.5)

has a unique solution which belongs to Cβ∧γ . Furthermore, the solution map
� f ,h : R × C β([0, T ],R) × C γ ([0, T ],R) → Cβ∧γ ([0, T ],R), where the first
component is the initial condition and the second and third components the drivers,
is continuous.

Given a centred function G ∈ L2(μ), with chaos expansion G =∑∞
k=m ck Hk and let

c ≥ 0 be given by

c2 =

⎧⎪⎪⎨
⎪⎪⎩

( cm m!
K (H ,m)

)2, H∗(m) > 1
2

2
∑∞

k=m(ck)
2k! ∫∞

0 �k(s)ds, H∗(m) < 1
2

2m!(cm)2, H∗(m) = 1
2 .

(3.6)

Theorem 3.7 Let H ∈ ( 13 , 1) \ { 12 }, f ∈ C3b(Rd ,Rd), h ∈ C2b(Rd ;Rd), G ∈ C(R,R)

satisfying Assumption 1.2 and g ∈ Cb(R;R). Let α(ε) = α(ε, H∗(m)). Fix a finite
time T and consider

ẋε
t = α(ε) f (xε

t )G(yε
t ) + h(xε

t )g(yε
t ), xε

0 = x0. (3.7)
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1. If H∗(m) > 1
2 , xε

t converges weakly in Cγ ([0, T ],Rd) to the solution to the Young

differential equation dx̄t = c f (x̄t ) d Z H∗(m),m
t + ḡh(x̄t )dt with initial value x0 for

γ ∈ (0, H∗(m) − 1
p ).

2. If H∗(m) ≤ 1
2 , xε

t converges weakly in Cγ ([0, T ],R) to the solution of the
Stratonovich stochastic differential equation dx̄t = c f (x̄t ) ◦ dWt + ḡh(x̄t )dt
with x̄0 = x0, where γ ∈ (0, 1

2 − 1
p ).

Proof As in Proposition 3.2 we can rewrite our equations as Young/rough differential

equations and therefore reduceour analysis to thedrivers
(
α(ε)

∫ t
0 G(yε

s )ds,
∫ t
0 g(yε

s )ds
)
.

By Theorem A, α(ε)
∫ t
0 G(yε

s )ds converges in finite dimensional distributions either
to a Wiener or a Hermite process. By Lemma 3.5,

∫ t
0 g(yε

s )ds converges in proba-

bility to the deterministic path t ḡ. Hence,
(
α(ε)

∫ t
0 G(yε

s )ds,
∫ t
0 g(yε

s )ds
)
converges

jointly in finite dimensional distributions. Furthermore, ‖ ∫ t
0 g(yε

s )ds‖∞ ≤ t‖g‖∞,
this combined with the moment bounds obtained in Theorem A enables us to apply
Theorem 3.6 to conclude the proof. ��

Remark 3.8 The constant c could be 0, for further details see Remark 3.4.

4 Proof of Theorem A

We first establish the L2(�) convergence of Xε
t = α(ε)

∫ t
0 G(yε

s )ds, where G =∑∞
k=m ck Hk has low Hermite rank, followed by a reduction theorem. We then prove

moment bounds and conclude the proof of Theorem A.

4.1 Preliminary Lemmas

The basic scalar valued functional limit theorem, for low rank Hermite functions,

was proved in [40] for εH∗(m)
∫ t

ε

0 G(Xs)ds with Xt = ∫R p(t − ξ)dWξ a moving
average, where in order to prove convergence one uses the self-similarity of a Wiener
process leading to weak convergence as this equivalence of course is only in law.
Nevertheless, in our case we can choose a properly scaled fast variable and write,
yε

t = ∫R ĝ(
t−ξ
ε

)dWξ for a function ĝ, and thus avoid using self-similarity. The key
idea is to write a Wiener integral representation beginning with

yε
t = ε−H σ

∫ t

−∞
e− t−r

ε d B H
r =

∫

R
hε(t, s)dWs, where,

hε(t, s) = ε− 1
2

σ

c1(H)
e− t−s

ε

∫ t−s
ε

0
ev v

H− 3
2+ dv,

(4.1)

123



442 Journal of Theoretical Probability (2022) 35:426–456

and c1(H) =
√∫ 0

−∞
(
(1 − s)H− 1

2 − (−s)H− 1
2

)2
ds + 1

2H . This can be obtained by

applying the integral representation for fBM’s:

B H
t =

∫ ∞

−∞
g(t, s)dWs, where g(t, s) = 1

c1(H)

∫ t

0
(r − s)

H− 3
2+ dr , (4.2)

and by repeated applications of integration by parts (to the Young integrals):

σ

∫ t

−∞
e− t−s

ε d B H
s = σ B H

t − σ

ε

∫ t

−∞
e− t−s

ε B H
s ds

= σ B H
t − σ

ε

∫ t

−∞
e− t−s

ε

(∫

R
g(s, r)dWr

)
ds = σ

∫

R

∫ t

−∞
e− t−s

ε ∂s g(s, r)dsdWr

= σ

c1(H)

∫

R

∫ t

−∞
e− t−s

ε (s − r)
H− 3

2+ dsdWr .

One may also use the following, see [34], taking f ∈ L1 ∩ L2:

∫

R
f (u)d B H

u = 1

c1(H)

∫

R

∫

R
f (u)(u − s)

H− 3
2+ du dWs .

Lemma 4.1 Letλdenote the Lebesgue measure, then as ε → 0, εH∗(m)−1
∫ t
0 Hm(yε

s )ds

converges to m!
K (H ,m)

Z H∗(m),m
t in L2(�). Equivalently,

∥∥∥∥∥
∫ t

0

m∏
i=1

hε(s, ui )ds −
∫ t

0

m∏
i=1

(s − ui )
H− 3

2+ ds

∥∥∥∥∥
L2(Rm ,λ)

→ 0. (4.3)

Proof This can be shown by applying [40, Theorem 4.7], where weak convergence is
obtained. With a small modification and using [40, Lemma 4.5, Lemma 4.6] directly
we obtain the L2(�) convergence:

E

(∫

Rm

∫ t

0

m∏
i=1

p

(
s − ξ

ε

)
εH− 3

2 dsdWξ − Z H∗(m),m

K (H , m)

)2
→ 0,

using the Wiener integral representation of the Hermite processes this is equivalent,
by a multiple Wiener-Itô isometry, to

∫

Rm

(∫ t

0

m∏
i=1

p

(
s − ξi

ε

)
εH− 3

2 ds −
∫ t

0

m∏
i=1

(s − ξi )
H− 3

2+ ds

)2
dξ1 . . . dξm → 0.

(4.4)
Examining Taqqu’s proof, we note that in fact the L2 convergence of (4.4) is obtained
under the following conditions.
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1
∫
R p(s)2ds < ∞.

2 |p(s)| ≤ Cs H− 3
2 L(u) for almost all s > 0.

3 p(s) ∼ s H− 3
2 L(s) as s → ∞.

4 There exists a constant γ such that 0 < γ < (1 − H) ∧ (H − (1 − 1
2m )) such

that
∫ 0
−∞ |p(s)p(xy + s)|ds = o(x2H−2L2(x))y2H−2−2γ as x → ∞ uniformly

in y ∈ (0, t].
where L denotes a slowly varying function (for every λ > 0 limx→∞ L(λx)

L(x)
) = 1). Set

ĝ(s) = σ

c1(H)
e−s
∫ s

0
euu

H− 3
2+ du, (4.5)

then,

yε
t = ε− 1

2

∫ t

−∞
ĝ

(
t − s

ε

)
dWs .

We are now in Taqqu’s framework and it is only left the check ĝ defined by (4.5)
satisfies these conditions. To increase readability, we suppress the constant σ

c1(H)
in

the following computations. For s < 1,

e−s
∫ s

0
euu H− 3

2 du ≤
∫ s

0
u H− 3

2 du � s H− 1
2 .

We calculate for s > 1 via integration by parts

e−s
∫ s

0
euu H− 3

2 du ≤ e−s
∫ 1

0
euu H− 3

2 du + e−s
∫ s

1
euu H− 3

2 du

� e−s + s H− 3
2 + e−s

∫ s

1
euu H− 5

2 du � s H− 3
2 .

This of course implies that ĝ is L2(λ) integrable. Finally, observe that
∫ 0
−∞ |ĝ(s)ĝ(xy+

s)|ds = 0 as ĝ(s) = 0 for s < 0. With these we apply [40, Theorem 4.7] to conclude
the L2 convergence of the kernels. ��

Lemma 4.2 Let G ∈ L2(μ) be a centred function with Hermite rank m satisfying
H∗(m) > 1

2 . Let H ∈ ( 12 , 1). Then, the following statements hold for the stationary
scaled fOU process yε

s . Fix t > 0, then,

∥∥∥∥εH∗(m)−1
∫ t

0
G(yε

s )ds − cmm!
K (H∗(m), m)

Z H∗(m),m
t

∥∥∥∥
L2(�)

→ 0.
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Proof For G = Hm , the claim has already been shown in Lemma 4.1. To conclude
the claim in the case of a general G, we compute,

∥∥∥∥εH∗(m)−1
∫ t

0
(G − cm Hm)(yε

s )ds

∥∥∥∥
2

L2(�)

= ε2H∗(m)−2
∞∑

k=m+1

c2k k!o(ε2H∗(m)−2) → 0

(4.6)

as
∑∞

k=m+1 c2k
√

k! < ∞ as G ∈ L2(μ). This finishes the proof. ��

The fact that only the first term in the chaos expansion gives a contributions is in
the literature often called a reduction lemma. In the high Hermite rank case however it
is not possible to restrict one’s analysis to a pure Hermite polynomial, but as the next
lemma shows finite linear combinations are indeed sufficient. To make the application
later on easier, we directly prove it in the multi-dimensional case.

Lemma 4.3 (Reduction Lemma) Fix H ∈ (0, 1)\{ 12 }. For M ∈ N, define the truncated
functions:

Gk,M =
M∑

j=mk

ck, j H j , Xk,ε
M (t) = αk(ε)

∫ t

0
Gk,M (yε

s )ds.

If for every M ∈ N, (X1,ε
M , . . . , X N ,ε

M )
(ε→0)−→ (X1

M , . . . , X N
M ) in finite dimensional

distributions, then,

(
X1,ε, . . . , X N ,ε

)
(ε→0)−→ (X1, . . . , X N )

in finite dimensional distributions.

Proof Firstly,

Xk,ε(t) − Xk,ε
M (t) = αk(ε)

∫ t

0

(
Gk(yε

s ) − Gk,M (yε
s )
)

ds

= αk(ε)

∫ t

0

∞∑
j=M+1

ck, j H j (yε
s )ds.
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Using properties of the Hermite polynomials, we obtain

E

⎛
⎝αk(ε)

∫ t

0

∞∑
j=M+1

ck, j H j (yε
s )ds

⎞
⎠

2

= αk(ε)
2
∫ t

0

∫ t

0

∞∑
j=M+1

(ck, j )
2E
(
Hj (yε

s )Hj (yε
r )
)
drds

= αk(ε)
2

∞∑
j=M+1

(ck, j )
2 j !
∫ t

0

∫ t

0
�ε(|s − r |) j drds �

∞∑
j=M+1

(ck, j )
2 j !

As
∑∞

j=m(ck, j )
2 j ! < ∞ we obtain

∑∞
j=M+1(ck, j )

2 j ! → 0 as M → ∞. Thus,

lim
M→∞ lim

ε→0
E
(

αk(ε)

∫ t

0
Gk(yε

s )ds − αk(ε)

∫ t

0
Gk,M (yε

s )ds

)2
→ 0, (4.7)

Let {tγk,l , k ≤ N , l ≤ A} be a sequence of positive numbers. Now, by the triangle
inequality,

lim
M→∞ lim

ε→0

∥∥∥∥∥∥
∑
k,l

γk,l

(
Xk,ε(tl) − Xk,ε

M (tl)
)
∥∥∥∥∥∥

L2(�)

→ 0.

With Theorem 3.2 in [5], this proves the claim. ��

4.2 Moment Bounds

We will use some results from Malliavin Calculus. Let xs be a stationary Gaussian
process with β(s) = E(xs x0), such that β(0) = 1. As a real separable Hilbert space
we use H = L2(R+, ν) where for a Borel-set A we have ν(A) = ∫R+ 1A(s)dβs .

Let H ⊗q denote the q-th tensor product of H . For h ∈ H , we may define
the Wiener integrals W (h) = ∫∞

0 hsdxs by W ([a, b]) = x(b) − x(a) (where
a, b ≥ 0), linearity and the Wiener isometry (〈1[0,t], 1[0,s]〉 = β(t − s)). Iter-
ated Wiener integrals are defined similarly and by its values on indictor functions:
Im(1A1×···×Am ) = ∏m

i=1 W (Ai ) where Ai are pairwise disjoint Borel subsets of R+.
If F denotes the σ -field generated by x , then any F-measurable L2(�) function F
has the chaos expansion: F = EF +∑∞

m=1 Im( fm) where fm ∈ L2(Rm+). This is
due to the fact that L2(�) = ⊕∞

m=0 Hm where Hm is the closed linear space gen-
erated by {Hm(W (h)) : ‖h‖L2 = 1}, Hm are the m-th Hermite polynomials, and
Hm = Im(L2

sym(Rm+)). The last fact is due to Hm(W (h)) = Im(h⊗m
). In the follow-

ing Dk,p(H ⊗m) denotes the closure of Malliavin smooth random variables under the

following norm ‖u‖Dk,p(H ⊗m ) =
(∑k

j=0 E
(‖D j u‖p

H ⊗m

)) 1
p
.
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Lemma 4.4 (Meyer’s inequality) [32] Let δ denote the divergence operator. Then for
u ∈ D

k,p(H ⊗m),

‖δm(u)‖L p(�) �
m∑

k=0

‖u‖Dk,p(H ⊗m ). (4.8)

Lemma 4.5 [11] If G : R → R is a function of Hermite rank m, then G has the
following multiple Wiener-Itô-integral representation:

G(xs) = δm
(

Gm(xs)1
⊗m
[0,s]
)
, (4.9)

where Gm has the following properties:

(1) ‖Gm‖L p(μ) � ‖G‖L p(μ),
(2) Gm(x1) is m times Malliavin differentiable and its kth derivative, denoted by

G(k)
m (x1)1

⊗k
[0,1], satisfies ‖G(k)

m ‖L p(μ) � ‖G‖L p(μ).

In the lemma below we estimate the moments of
∫ t
0 G(x r

ε
)dr , where we need the

multiple Wiener-Itô-integral representation above to transfer the correlation function
to L2 norms of indicator functions. We use an idea from [11] for the estimates below.

Lemma 4.6 Let xt = W ([0, t]) be a stationary Gaussian process with correlation
β(t) = ∣∣E(xt x0)

∣∣, stationary distribution μ and H the L2 space over R+ with
measure β(r)dr. If G is a function of Hermite rank m and G ∈ L p(μ), for p > 2,
then,

∥∥∥∥
1

ε

∫ t

0
G(x r

ε
)dr

∥∥∥∥
L p(�)

� ‖G‖L p(μ)

(∫ t
ε

0

∫ t
ε

0
β(|u − r |)mdrdu

) 1
2

. (4.10)

For the stationary scaled fractional OU process yε
t , we have

∥∥∥∥
1

ε

∫ t

0
G(yε

r )dr

∥∥∥∥
L p(�)

�

⎧⎪⎪⎨
⎪⎪⎩

‖G‖L p(μ)

√
t
ε

∫∞
0

∣∣�m(s)
∣∣ds, if H∗(m) < 1

2 ,

‖G‖L p(μ)

√
t
ε
ln | 1

ε
|, if H∗(m) = 1

2 ,

‖G‖L p(μ)

( t
ε

)H∗(m)
, otherwise.

,

(4.11)
in particular, ∥∥∥∥

∫ t

0
G(yε

r )dr

∥∥∥∥
L p(�)

� ‖G‖L p(μ)t H∗(m)∨ 1
2

α(ε, H∗(m))
. (4.12)
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Proof We first use Lemma 4.5 and then apply Meyer’s inequality from Lemma 4.4 to
obtain

∥∥∥∥
1

ε

∫ t

0
G(x r

ε
)dr

∥∥∥∥
L p(�)

=
∥∥∥∥∥
∫ t

ε

0
G(xr )dr

∥∥∥∥∥
L p(�)

=
∥∥∥∥∥
∫ t

ε

0
δm
(

Gm(xr )1
⊗m
[0,r ]
)

dr

∥∥∥∥∥
L p(�)

�
m∑

k=0

∥∥∥∥∥
∫ t

ε

0
Dk
(

Gm(xr )1
⊗m
[0,r ]
)

dr

∥∥∥∥∥
L p(�,H ⊗m+k )

=
m∑

k=0

∥∥∥∥∥
∫ t

ε

0
G(k)

m (xr )1
⊗m+k
[0,r ] dr

∥∥∥∥∥
L p(�,H ⊗m+k )

.

Here for Gm is as given in Lemma 4.5 and G(k)
m denotes its k-th order Malliavin

derivative. We estimate the individual terms using the linearity of the inner product
and the isometry 〈1[0,r ], 1[0,s]〉H = E(xr xs) = β(r − s),

(∥∥∥∥∥
∫ t

ε

0
G(k)

m (xr )1
⊗m+k
[0,r ] dr

∥∥∥∥∥
H ⊗m+k

)2

=
〈∫ t

ε

0
G(k)

m (xr )1
⊗m+k
[0,r ] dr ,

∫ t
ε

0
G(k)

m (xu)1⊗m+k
[0,r ] du

〉

H ⊗m+k

=
∫ t

ε

0

∫ t
ε

0
G(k)

m (xr )G
(k)
m (xu)〈1⊗m+k

[0,r ] , 1⊗m+k
[0,u] 〉H ⊗m+k drdu

=
∫ t

ε

0

∫ t
ε

0
G(k)

m (xr )G
(k)
m (xu)

(
β(r − u)

)m+k
dr du.

Using Minkowski’s inequality, we obtain

m∑
k=0

∥∥∥∥∥
∫ t

ε

0
G(k)

m (xr )1
⊗m+k
[0,r ] dr

∥∥∥∥∥
L p(�,H ⊗m+k )

≤
m∑

k=0

⎛
⎝
∥∥∥∥∥
∫ t

ε

0

∫ t
ε

0
G(k)

m (xr )G
(k)
m (xu)β(r − u)m+kdrdu

∥∥∥∥∥
L

p
2 (�)

⎞
⎠

1
2

≤
m∑

k=0

(∫ t
ε

0

∫ t
ε

0

∥∥∥G(k)
m (xr )G

(k)
m (xu)

∥∥∥
L

p
2 (�)

β(r − u)m+kdrdu

) 1
2

.
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We then estimate E|G(k)
m (xr )G

(k)
m (xu)| p

2 by Hölder’s inequality and use the fact that
xt is stationary. Since the right hand side is then controlled by

RH S ≤
m∑

k=0

‖G(k)
m ‖L p(μ)

(∫ t
ε

0

∫ t
ε

0
|β(|u − r |)|m+kdrdu

) 1
2

� ‖G‖L p(μ)

(∫ t
ε

0

∫ t
ε

0
|β(|u − r |)|mdrdu

) 1
2

,

concluding (4.10). We finally apply Lemma 2.4 to conclude (4.11). ��

Now we are ready to prove our main theorem.

4.3 Concluding the Proof

Proof Step 1, CLT in the pure Wiener case
Wefirst dealwith the highHermite rank components. For k ≤ n wedefine the truncated
functions Gk,M =∑M

j=mk
ck, j H j and set

Xk,ε
M = αk(ε)

∫ t

0
Gk,M (yε

s )ds.

Then, by the reduction Lemma 4.3 above, it is sufficient to show the convergence
of (X1,ε

M , . . . , Xn,ε
M ) for every M . By [4] and [2] each component alone converges to

a Wiener process. Hence, as each Xk,ε
M belongs to a finite chaos we can make use

of the normal approximation theorem from [32, Theorem 6.2.3]: if each component
of a family of mean zero vector valued stochastic processes, with components of
the form Iqi ( fi,n), where fi,n are symmetric L2 functions in qi variables, converges
in law to a Gaussian process, then they converge jointly in law to a vector valued
Gaussian process, provided that their covariance functions converge. Furthermore,
the covariance functions of the limit distribution are limε→0 E[Xi,ε(t)X j,ε(s)]. Let
m = min(mi , m j ) we use

E(Hk(yε
t )Hl(yε

s )) = δk,l
(
E(yε

s yε
t )
)k
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to obtain, for s ≤ t ,

E
[
αi (ε)α j (ε)

∫ t

0
Gi,M (yε

u)du
∫ s

0
G j,M (yε

r )dr

]

=
M∑

k=m

αi (ε)α j (ε)ci,kc j,k(k!)2
∫ t

0

∫ s

0
(E(yε

r yε
u))kdrdu

=
M∑

k=m

αi (ε)α j (ε)ci,kc j,k(k!)2
(∫ s

0

∫ s

0
�ε(u − r)kdrdu

+
∫ t

s

∫ s

0
�ε(u − r)kdrdu

)
.

By Lemma 2.4, we obtain, for ε → 0,

αi (ε)α j (ε)

∫ t

s

∫ s

0
�ε(u − r)kdrdu → 0.

Hence,

lim
ε→0

RH S = 2
M∑

k=m

ci,kc j,k(k!)2 lim
ε→0

(
εαi (ε)α j (ε)s

∫ s
ε

0
(�(v))kdv

)

= 2(s ∧ t)
M∑

k=m

ci,kc j,k(k!)2
∫ ∞

0
�(u)kdu

= 2(s ∧ t)
∫ ∞

0
E(Gi,M (ys)G j,M (y0))ds,

proving the finite chaos case. We now prove that the correlations of the limit converge
as M → ∞. Indeed,

lim
M→∞ 2(s ∧ t)

M∑
k=m

ci,kc j,k(k!)2
∫ ∞

0
�(u)kdu

= 2(s ∧ t)
∞∑

k=m

ci,kc j,k(k!)2
∫ ∞

0
�(u)kdu

= 2(s ∧ t)
∫ ∞

0
E(Gi (ys)G j (y0))ds.

As Gi,M → Gi in L2(μ), and similarly for j , this proves the joint convergence of the
high Hermite rank components.

Step 2, CLT in the pure Hermite case
In this step, we focus on the vector component whose entries satisfy H∗(mk) > 1

2 .
Recall, this implies H > 1

2 . By Lemma 4.2, evaluations of each component of
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(Xn+1, . . . , X N ) converge in L2(�). Hence, they converge as well jointly in L2(�).
Now, choose finitely many points tk, j ∈ [0, T ] and constants ak, j ∈ R, then,∑

k, j ak, j Xk,ε
tk, j

converges in L2(�) to
∑

k, j ak, j Xk
tk, j

and thus we may conclude joint
convergence in finite dimensional distributions by an application of the Cramer-Wold
theorem.

Step 3, Joint convergence
We have already shown that X W ,ε → X W and X Z ,ε → X Z in finite dimensional
distributions, it is only left to prove their joint convergence. By Lemma 4.3 and Eq.
(4.6), we may again reduce the problem to

Gi =
M∑

k=mi

ci,k Hk, G j = c j,m j Hm j , 1 ≤ i ≤ n, j > n.

Now, we can rewrite Hm(yε
s ) = Im( f m,ε

s ), where Im denotes a m-fold Wiener-Itô
integral and a function f m,ε

s ∈ L2(Rm, μ). Now, for 1 ≤ i ≤ n we obtain,

αi (ε)

∫ t

0
Gi (yε

s )ds = αi (ε)

∫ t

0

M∑
k=mi

ci,k Hk(yε
s )ds

= αi (ε)

∫ t

0

M∑
k=mi

ci,k Ik( f k,ε
s )ds =

M∑
k=mi

ci,k Ik( f̂ k,ε
t ),

where

f̂ k,ε
t =

∫ t

0
f k,ε
s ds.

Similarly for j > n,

∫ t

0
G j (yε

s )ds =
∫ t

0
c j,m j Hm j (yε

s )ds = c j,m j Im j ( f̂
m j ,ε

t ).

Hence, we only need to show that the collection of stochastic processes of the
form Imk ( f̂ mk ,ε

t ) converges jointly in finite dimensional distribution. It is thus
sufficient to show that for every finite collection of times, t1, . . . , tQ ∈ [0, T ],
the vector,

{
Ik( f̂ k,ε

tl ), k = m, . . . , M, l = 1, . . . , Q
}
converges jointly, where m =

mink=1,...,N mk . Let n0 denote the smallest natural number such that H∗(n0) < 1
2 .

For k > n0, the collection Ik( f̂ k,ε
tl ) converges to a normal distribution, hence, by the

moment bounds in Lemma 4.6 ‖(k!)Ik( f̂ k,ε
tl )‖H⊗k =

√
E
(

Ik( f̂ k,ε
tl )2

)
converges to a

constant. The convergence of such a sequence is equivalent to the convergence of the
contractions, as defined in Eq. (5.1), of their kernels. Indeed, by a generalised fourth
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moment theorem [31, Theorem 1], we have

‖ f̂ k,ε
tl ⊗r f̂ k,ε

tl ‖H 2k−2r → 0, r = 1, . . . , k − 1.

By Cauchy-Schwarz, we obtain for r = 1, . . . , k1,

∥∥∥ f̂ k1,ε
tl1

⊗r f̂ k2,ε
tl2

∥∥∥
H k1+k2−2r

≤
∥∥∥ f̂ k1,ε

tl1
⊗r f̂ k1,ε

tl1

∥∥∥
H p−r

∥∥∥ f̂ k2,ε
tl2

⊗r f̂ k2,ε
tl2

∥∥∥
H q−r

→ 0,

for all tl1 , tl2 ∈ [0, T ], 1 ≤ k1 ≤ n0 < k2 ≤ M . We can now apply an asymptotic
independence result, Proposition 5.1 inAppendix, to conclude the joint convergence in
finite dimensional distributions of Xε to (X W , X Z ). Furthermore, X W is independent
of X Z .

The correlations between Xi
t and X j

t ′ , where i, j > n, are 0 if mi 
= m j , otherwise
given by the L2 norm of their integrands, which follows from the Wiener-Itô isometry
and are given by

ci,mi c j,m j

∫ t

0

∫ t ′

0

∫

Rmi

mi∏
i=1

(s − ξi )
Ĥ(m)− 3

2+
mi∏

i=1

(r − ξi )
Ĥ(m)− 3

2+ dξ1 . . . ξmi drds.

Step 4, Convergence in the Hölder norms.

We first choose γ ′ ∈
(
γ, (H∗(mk) ∧ 1

2 ) − 1
pk

)
. Then, using the Markov-Chebyshev

inequality, we obtain that, as M tends to ∞,

P
(
|Xk,ε|Cγ ′

([0,T ],R)
> M

)
≤ ‖θ |Cγ ′

([0,T ],R)
‖pk

M pk

→ 0,

since ‖|θ |Cγ ′ ‖pk < ∞ by Lemma 4.6 and an application of Kolmogorov’s theorem

2.6. Furthermore, since Cγ ′([0,T ];R) is compactly embedded in Cγ ([0, T ];R) for 1 >

γ ′ > γ , by an type Arzela-Ascoli argument, the sets {Xk,ε
t : |Xk,ε|Cγ ′

([0,T ],R)
≤ M}

are sequentially compact in Cγ ([0, T ],R). Hence, {Xk,ε
t } is tight in Cγ ([0, T ],R).

See, e.g. [17]. As tightness in each component implies joint tightness, we obtain that
Xε is tight in Cγ ([0, T ],RN ), where γ ∈ (0, 1

2 − 1
mink≤n pk

) in case 0 < n and

γ ∈ (0,mink>n H∗(mk) − 1
pk

) otherwise. By the above discussion, any limit of a
converging subsequence has the same finite dimensional distributions, hence, every
subsequence converges to the same limit. This concludes the proof for the convergence
in the Hölder norm. ��

5 Appendix: Joint Convergence by Asymptotic Independence

For the proof in the previous section,weneed the followingwhichmodifies results from
[33] and [29]. Let Ip( f ) denote the pth iterated Itô-Wiener integral of a symmetric
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function f of p variables,

Ip( f ) = p!
∫ ∞

−∞

∫ sp−1

−∞
. . .

∫ s2

−∞
f (s1, . . . , sp)dWs1dWs2 . . . dWsp .

If f ∈ L2(Rp) and g ∈ L2(Rq) are symmetric functions and p, q ≥ 1, their r th-
contraction is given by

f ⊗r g =
∫

Rr
f (x1, . . . , x p−r , s1, . . . , sr )g(y1, . . . , yq−r , s1, . . . , sr )ds1 . . . dsr ,

(5.1)
where r ≤ p ∧ q. If f ⊗1 g = ∫R f (x1, . . . , x p−1, s)g(y1, . . . , yq−1, s)ds vanishes,
so do all higher order contractions.

Proposition 5.1 Let q1 ≤ q2 ≤ · · · ≤ qn ≤ p1 ≤ p2 ≤ · · · ≤ pm. Let f ε
i ∈ L2(Rpi ),

gε
i ∈ L2(Rqi ), Fε = (

Ip1( f ε
1 ), . . . , Ipm ( f ε

m)
)

and Gε = (
Iq1(g

ε
1), . . . , Iqn (g

ε
n)
)
.

Suppose that for every i, j , and any 1 ≤ r ≤ qi :

‖ f ε
j ⊗r gε

i ‖ → 0.

Then Fε → U and Gε → V weakly imply that (Fε, Gε) → (U , V ) jointly, where U
and V are taken to be independent random variables.

These results benefit from the insights of Üstünel-Zakai [41] on the independence
of two iterated integrals Ip( f ) and Iq(g). They are independent if and only if the
1-contraction between f and g vanishes almost surely with respect to the Lebesgue
measure. An asymptotic independence result follows as below,

Lemma 5.2 [29, Thm. 3.1] Let Fε = Ip( f ε) and Gε = Iq(gε), where f ε ∈ L2(Rp)

and gε ∈ L2(Rq) . Then,

Cov
((

Fε
)2

,
(
Gε
)2)→ 0

is equivalent to ‖ f ε ⊗r gε‖ → 0, for 1 ≤ r ≤ p ∧ q.

It is also known that if two integrals Ip( f ) and Iq(g) are independent, then their
Malliavin derivatives are orthogonal, see [41]. This explains why Malliavin calculus
comes into prominent play, which has been developed to its perfection in [29, Lemma
3.2]. Given a smooth test function ϕ we define,

‖ϕ‖q = ‖ϕ‖∞ +
q∑

|k|=1

∥∥∥∥
∂k

∂k x

∥∥∥∥∞
,

where the sum runs over multi-indices k = (k1, . . . , km). Let L = −δD and through-
out this section fi : Rpi → R and g : Rq → R denote symmetric functions.

123



Journal of Theoretical Probability (2022) 35:426–456 453

Lemma 5.3 [29] Let q ≤ pi , g ∈ L2(Rq), G = Iq(g), fi ∈ L2(Rpi ), and Fi =
Ipi ( fi ) with E(F2

i ) = 1. Set F = (F1, . . . , Fm) and let θ be a smooth test function.
Then,

E
∣∣∣
〈
(I − L)−1θ(F)DFj , DG

〉
H

∣∣∣ ≤ c ‖θ‖q Cov(F2
j , G2),

where c is a constant depending on ‖F‖L2 , ‖G‖L2 , and q, m, p1, . . . , pm.

The final piece of the puzzle is the observation that the defect in being independent
is quantitatively controlled by the covariance of the squares of the relative components.
The following is from [29], our only modification is to take G to be vector valued. Let
gi : Rqi → R be symmetric functions.

Lemma 5.4 Given F = (Ip1( f1), . . . Ipm ( fm)
)

and G = (Iq1(g1), . . . , Iqn (gn)
)

such
that pk ≥ ql for every pair of k, l. Then, for all test functions ϕ and ψ , the follow-
ing holds for some constant c, depending on ‖F‖L2 , ‖G‖L2 , and m, n, p1, . . . , pm,
q1, . . . , qn,

E(ϕ(F)ψ(G)) − E(ϕ(F))E(ψ(G)) ≤ c‖Dψ‖∞‖ϕ‖qn

m∑
i=1

n∑
j=1

Cov(F2
i , G2

j )

Proof Define L−1(
∑∞

k=0 Ik(hm)) = ∑∞
k=1

1
k Ik(hm) ∈ D

2,2. The key equality is
−DL−1 = (I − L)−1D. As in [29],

ϕ(F) − E(ϕ(F)) = L L−1ϕ(F) =
m∑

j=1

δ((I − L)−1∂ jϕ(F)DFj ).

Multiplying both sides by ψ(G), taking expectations and using integration by parts
we obtain

E(ϕ(F)ψ(G)) − E(ϕ(F))E(ψ(G))

=
m∑

j=1

n∑
i=1

E
(
〈(I − L)−1∂ jϕ(F)DFj , DGi 〉H ∂iψ(G)

)

≤ ‖Dψ‖∞
m∑

j=1

n∑
i=1

∣∣∣E
(
〈(I − L)−1∂ jϕ(F)DFj , DGi 〉H

)∣∣∣.

To conclude, apply to each summand Lemma 5.3 with θ = ∂ jϕ and G = Gi . ��
Lemma 5.5 Let Fε = (Ip1( f ε

1 ), . . . Ipm ( f ε
m)
)

and Gε = (Iq1(g
ε
1), . . . , Iqn (g

ε
n)
)

with
q1 ≤ q2, . . . , qn ≤ p1 ≤ p2 ≤ · · · ≤ pm. Then for every i ≤ m, j ≤ n,

‖ f ε
j ⊗r gε

i ‖ → 0, 1 ≤ r ≤ p j ∧ qi
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implies that for any smooth test functions ϕ and ψ ,

E
(
ψ(Fε)ψ(Gε)

)− E
(
ψ(Fε)

)
E
(
ψ(Gε)

)→ 0.

Proof Just combine Lemmas 5.4 and 5.2. ��
Finally, we finish the proof of Proposition 5.1.

Proof Since (Fε, Gε) is bounded in L2(�) it is tight. Now choose aweakly converging
subsequence (Fn, Gn) with limit denoted by (X , Y ). Let ϕ and ψ be smooth test
functions, then by Lemma 5.5 and the bounds on ϕ,ψ , we pass to the limit under the
expectation sign and obtain

E(ϕ(X)ψ(Y )) = E(ϕ(X))E(ψ(Y )).

Thus, every limit measure is the product measure determined by U and V , hence,
(Fε, Gε) converges as claimed. ��
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