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Abstract
In this paper, we study the reflected backward stochastic differential equations driven
by G-Brownian motion with two reflecting obstacles, which means that the solution
lies between two prescribed processes. A new kind of approximate Skorohod condition
is proposed to derive the uniqueness and existence of the solutions. The uniqueness
can be proved by a priori estimates and the existence is obtained via a penalization
method.
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1 Introduction

Given a filtered probability space (�,F , (Ft )t∈[0,T ], P), Pardoux and Peng [20] first
introduced the following type of nonlinear backward stochastic differential equations
(BSDEs for short):

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds −

∫ T

t
ZsdBs,

where the generator f (·, y, z) is progressively measurable and Lipschitz continuous
with respect to (y, z), ξ is an FT -measurable and square integrable terminal value.
They proved that there exists a unique pair of progressively measurable processes
(Y , Z) satisfying this equation. The BSDE theory attracts a great deal of attention due
to its wide applications in mathematical finance, stochastic control and quasilinear
partial differential equations (see [8,21], etc).

One of the most important extensions is the reflected BSDE initiated by El Karoui
et al. [7]. In addition to the generator f and the terminal value ξ , there is an additional
continuous process S, called the obstacle, prescribed in this problem. The reflection
means that the solution is forced to be above this given process S. More precisely,
the solution of the reflected BSDE with parameters (ξ, f , S) is a triple of processes
(Y , Z , L) such that

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds + LT − Lt −

∫ T

t
ZsdBs,

Yt ≥ St , t ∈ [0, T ], and
∫ T

0
(Ys − Ss)dLs = 0, P-a.s.,

where L is an increasing process to push the solution upward. Besides, it should
behave in a minimal way, which means that L only acts when the solution Y reaches
the obstacle S. This requirement corresponds to the mathematical expression

∫ T
0 (Ys −

Ss)dLs = 0, called Skorohod condition. The reflected BSDE is a useful tool to study
problems of pricing American options, the obstacle problem for quasilinear PDEs as
well as the variational inequalities (see [1,7]).

Building upon these results, Cvitanic and Karaztas [3] studied BSDEs with two
reflecting obstacles, which means that the solution Y is forced to stay between a lower
obstacle L and an upper obstacle U . This can be achieved by the combined actions of
two increasing processes: one is to push the solution upward, the other is to push it
downward and both of them act in a minimal way when Y tries to cross the obstacles.
They also established the relation between the solution of the doubly reflected BSDE
and the value function of Dynkin game. For more details about this topic, we refer to
the papers [2,6,9–11,25].

Note that the classical BSDEand reflectedBSDE theory can only dealwith financial
problems under mean uncertainty, not volatility uncertainty, and can give probabilistic
interpretations for quasilinear PDEs, not fully nonlinear ones. Motivated by these
facts, Peng [22,23] systematically established the G-expectation theory. A new type
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of Brownian motion B, called G-Brownian motion, whose increments are stationary
and independent, was constructed. Different from the classical case, the quadratic
variation process 〈B〉 is not deterministic. The basic notions and tools, such as the
stochastic integral with respect to G-Brownian motion B and G-Itô’s formula, were
also established.

A few years later, Hu et al. [12] established the well-posedness of BSDEs driven
by G-Brownian motion (G-BSDEs for short) as the following:

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds +

∫ T

t
g(s, Ys, Zs)d〈B〉s −

∫ T

t
ZsdBs − (KT − Kt ),

where the generators f , g are Lipschitz continuous with respect to (Y , Z). Under
conditions similar to the classical case, applying theGalerkin approximation technique
and the PDE approach, they proved that there exists a unique solution (Y , Z , K ) to
this equation, where K is a decreasing G-martingale. Besides, in the accompanying
paper [13], they also obtained the comparison theorem, Girsanov transformation and
the nonlinear Feynman–Kac formula.

Li et al. [15] first studied the reflected G-BSDE with a lower obstacle. Due to the
appearance of the decreasing G-martingale, the Skorohod condition was replaced by
a martingale condition in order to get the uniqueness of the solutions. The existence
was proved by the approximation method via penalization. Li and Peng [14] also
considered the upper obstacle case. However, in order to pull the solution down below
the upper obstacle, one needs to add a decreasing process L in theG-BSDE.Hence, the
main difficulty is that the process L − K is not monotonic as in the lower obstacle case.
Although they did not obtain the uniqueness, they showed that the solution constructed
by a penalization method is a maximal one by a variant comparison theorem.

In this paper, we investigate the doubly reflected BSDE driven by G-Brownian
motionwith two obstacles (L, U ). As in the classical case, there should be two increas-
ing processes A+, A−: one aims to push the solution upward while the other is to pull
the solution downward, and both processes behave in a minimal way such that they
satisfy the Skorohod condition. Besides, there will also be a decreasing G-martingale
K as in the G-BSDE, which exhibits the uncertainty of the model. Therefore, it is
natural to conjecture that a solution to this doubly reflected G-BSDE should be a
5-tuples of processes (Y , Z , K , A+, A−) with Lt ≤ Yt ≤ Ut satisfying

⎧⎪⎨
⎪⎩

Yt = ξ + ∫ T
t f (s, Ys, Zs)ds + ∫ T

t g(s, Ys, Zs)d〈B〉s − ∫ T
t ZsdBs

+(A+
T − A+

t ) − (A−
T − A−

t ) − (KT − Kt ),∫ T
0 (Ys − Ls)dA+

s = ∫ T
0 (Us − Ys)dA−

s = 0.

However, the processes A+, A− and K here are mixed together, and the above Sko-
rohod condition is not applicable. In this paper, we write A for A+ − A− − K and
replace the Skorohod condition by a new kind of Approximate Skorohod Condition,
which turns into the martingale condition when there is only one obstacle.
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The uniqueness of the solutions is obtained by a priori estimates requiring some
delicate analysis. In order to prove the existence, we consider the following G-BSDEs
parameterized by n = 1, 2, . . .,

Y n
t = ξ +

∫ T

t
f (s, Y n

s , Zn
s )ds +

∫ T

t
g(s, Y n

s , Zn
s )d〈B〉s −

∫ T

t
Zn

s dBs

+ (An,+
T − An,+

t ) − (An,−
T − An,−

t ) − (K n
T − K n

t ),

where An,+
t = ∫ t

0 n(Y n
s − Ls)

−ds, An,−
t = ∫ t

0 n(Y n
s − Us)

+ds.
The objective, similar to the classical case studied by Cvitanic and Karaztas [3], is

to show that the sequence (Y n, Zn, An), where An = An,+ − An,− − K n , converges to
a triple of processes (Y , Z , A), and that (Y , Z , A) is a solution to the doubly reflected
G-BSDE. To this end, the dominated convergence theorem and the property of weakly
compactness played crucial role in Cvitanic and Karaztas [3]. However, these tools
are not available under the G-expectation framework.

Our proof is divided into two stages.
Stage 1 We establish the uniform estimates for Y n under the norm ‖·‖Sα

G
, and prove

that (Y n −U )+ and (Y n − L)− converge to 0 under the norm ‖ · ‖Sα
G
. These properties

hold true under the assumption that the upper and lower obstacles belong to the space
Sβ

G(0, T ) and they are separated by some generalized G-Itô process (see (A3’). The
latter implies that the limit Y (if exists) lies between the upper and lower obstacles.

Stage 2 We show that the sequences An,+
T , An,−

T , K n
T (resp. Zn) are uniformly

bounded under the norm ‖ · ‖Lα
G
(resp. ‖ · ‖Hα

G
). For this purpose, we prove that

(Y n − U )+ converges to 0 with the explicit rate 1
n , which requires that the upper

obstacle is a generalized G-Itô process.
Based on the above analysis, we obtain the convergence of (Y n, Zn, An), and con-

sequently the existence of the doubly reflected G-BSDE.
Recall that the G-expectation can be represented as the supremum of the linear

expectation under the probability P overall P ∈ P , where P is a collection of mutu-
ally singular martingale measures. Therefore, the G-expectation theory shares many
similarities with the quasi-sure analysis by Denis andMartini [5] and the second-order
BSDEs by Soner et al. [27] and Matoussi et al. [17]. Compared with these works, one
advantage of the G-expectation framework is that the solution to the G-BSDEs is a
(generalized) G-Itô process, and that the decomposition of (generalized) G-Itô pro-
cesses is unique. This amounts to say that the derivatives ∂t u, ∂x u and the second-order
derivative ∂2x u of a function u(t, x) are all well defined in the G-expectation space,
which is crucial to give the probabilistic representations for (path dependent) fully
nonlinear PDEs. In other words, the solutions of G-BSDEs have strong regularity
and can be universally defined in the spaces of the G-framework, which enhances the
results in [27] and [17].

The problem considered in this paper is closely related to Matoussi et al. [16],
which studied the second-order BSDEs with general reflections, but it is formulated
in a quite different way.
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1. The solution (Y , Z , A) to the doubly reflected G-BSDE is defined in the
G-framework, in which the processes have strong regularity and remarkable
properties. As is mentioned above, in the G-framework, the unique decompo-
sition of Itô processes implies that the derivative ∂2x u is well-defined, which
embodies the advantages of the G-expectation compared to the linear expecta-
tions.

2. In [16] and the corrigendum [18], the process V (corresponding to the process A
in this paper) is defined and characterized by the Skorohod condition individually
for each probability P in P . In this paper, the process A and the correspond-
ing approximate Skorohod condition are given universally with respect to all
probabilities P in P .

This paper is organized as follows. In Sect. 2, we present some notions and results
onG-expectation andG-BSDEs as preliminaries. In Sect. 3, we first state the definition
of solutions to doubly reflected G-BSDEs and establish some a priori estimates from
whichwe can derive the uniqueness of the solution.We then introduce the penalization
method to prove the existence of the solution in Sect. 4.

2 Preliminaries

In this section, we review notations and results in the G-expectation framework, which
are concerned with the G-Itô calculus and BSDE driven by G-Brownian motion. For
simplicity, we only consider the one-dimensional case. For more details, we refer to
the papers [12,13,22–24].

Let � = C0([0,∞);R), the space of real-valued continuous functions starting
from the origin, be endowed with the following norm,

ρ(ω1, ω2) :=
∞∑

i=1

2−i [( max
t∈[0,i] |ω

1
t − ω2

t |) ∧ 1], for ω1, ω2 ∈ �.

Let B be the canonical process on �. Set

Lip(�) := {ϕ(Bt1, . . . , Btn ) : n ∈ N, t1, . . . , tn ∈ [0,∞), ϕ ∈ Cb,Lip(R
n)},

where Cb,Lip(R
n) denotes the set of bounded Lipschitz functions on R

n . Let
(�, Lip(�), Ê) be the G-expectation space, where the function G : R → R is defined
by

G(a) := 1

2
Ê[aB2

1 ] = 1

2
(σ̄ 2a+ − σ 2a−).

In this paper, we always assume that G is non-degenerate, i.e., σ 2 > 0. In fact, the
(conditional) G-expectation for ξ ∈ Lip(�) can be calculated as follows. Assume that
ξ can be represented as

ξ = ϕ(Bt1, Bt2 , . . . , Btn ).
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Then, for t ∈ [tk−1, tk), k = 1, . . . , n,

Êt [ϕ(Bt1, Bt2 , . . . , Btn )] = uk(t, Bt ; Bt1 , . . . , Btk−1),

where, for any k = 1, . . . , n, uk(t, x; x1, . . . , xk−1) is a function of (t, x) parameter-
ized by (x1, . . . , xk−1) such that it solves the following fully nonlinear PDE defined
on [tk−1, tk) × R:

∂t uk + G(∂2x uk) = 0

with terminal conditions

uk(tk, x; x1, . . . , xk−1) = uk+1(tk, x; x1, . . . , xk−1, x), k < n

and un(tn, x; x1, . . . , xn−1) = ϕ(x1, . . . , xn−1, x). Hence, the G-expectation of ξ is
Ê0[ξ ].

For each p ≥ 1, the completion of Lip(�) under the norm ‖ξ‖L p
G

:= (Ê[|ξ |p])1/p is

denoted by L p
G(�). The conditional G-expectation Êt [·] can be extended continuously

to the completion L p
G(�). The canonical process B is the 1-dimensional G-Brownian

motion in this space.
For each fixed T ≥ 0, set �T = {ω·∧T : ω ∈ �}. We may define Lip(�T ) and

L p
G(�T ) similarly. Besides, Denis et al. [4] proved that the G-expectation has the

following representation.

Theorem 2.1 [4] There exists a weakly compact set P of probability measures on
(�,B(�)), such that

Ê[ξ ] = sup
P∈P

EP [ξ ] for all ξ ∈ L1
G(�).

P is called the set that represents Ê.

LetP be a weakly compact set that represents Ê. For thisP , we define the capacity

c(A) := sup
P∈P

P(A), A ∈ B(�).

A set A ∈ B(�T ) is called polar if c(A) = 0. A property holds “quasi-surely” (q.s.)
if it holds outside a polar set. In the following, we do not distinguish the two random
variables X and Y if X = Y , q.s.

For ξ ∈ Lip(�T ), let E(ξ) = Ê[supt∈[0,T ] Êt [ξ ]] and E is called the G-evaluation.
For p ≥ 1 and ξ ∈ Lip(�T ), define ‖ξ‖p,E = [E(|ξ |p)]1/p and denote by L p

E (�T )

the completion of Lip(�T ) under ‖ · ‖p,E . The following theorem can be regarded as
Doob’s maximal inequality under G-expectation.
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Theorem 2.2 [28] For any α ≥ 1 and δ > 0, Lα+δ
G (�T ) ⊂ Lα

E (�T ). More precisely,
for any 1 < γ < β := (α + δ)/α, γ ≤ 2, we have

‖ξ‖α
α,E ≤ γ ∗{‖ξ‖α

Lα+δ
G

+ 141/γ Cβ/γ ‖ξ‖(α+δ)/γ

Lα+δ
G

}, ∀ξ ∈ Lip(�T ),

where Cβ/γ = ∑∞
i=1 i−β/γ , γ ∗ = γ /(γ − 1).

For T > 0 and p ≥ 1, the following spaces will be frequently used in this paper.

– M0
G(0, T ) := {η : ηt (ω) = ∑N−1

j=0 ξ j (ω)1[t j ,t j+1)(t), where ξ j ∈ Lip(�t j ), t0 ≤
· · · ≤ tN is a partition of [0, T ]};

– M p
G(0, T ) is the completion of M0

G(0, T ) under the norm ‖η‖M p
G
;

– H p
G(0, T ) is the completion of M0

G(0, T ) under the norm ‖η‖H p
G
;

– S0
G(0, T ) = {h(t, Bt1∧t , . . . , Btn∧t ) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(R

n+1)};
– S p

G(0, T ) is the completion of S0
G(0, T ) under the norm ‖η‖S p

G
,

where ‖η‖M p
G

:= (Ê[∫ T
0 |ηs |pds])1/p, ‖η‖H p

G
:= {Ê[(∫ T

0 |ηs |2ds)p/2]}1/p and

‖η‖S p
G

= {Ê[supt∈[0,T ] |ηt |p]}1/p.
We denote by 〈B〉 the quadratic variation process of the G-Brownian motion B.

For two processes η ∈ M p
G(0, T ) and ζ ∈ H p

G(0, T ), Peng established the G-Itô
integrals

∫ ·
0 ηsd〈B〉s and

∫ ·
0 ζsdBs . Similar to the classical Burkholder–Davis–Gundy

inequality, the following property holds.

Proposition 2.1 [13] If η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], then

supu∈[t,T ] |
∫ u

t ηsdBs |p ∈ L1
G(�T ) and

σ pcpÊt

[(∫ T

t
|ηs |2ds

)p/2]
≤ Êt

[
sup

u∈[t,T ]

∣∣∣∣
∫ u

t
ηsdBs

∣∣∣∣
p
]

≤ σ̄ pC pÊt

[(∫ T

t
|ηs |2ds

)p/2]
,

where 0 < cp < C p < ∞ are constants.

We now introduce some basic results of G-BSDEs. Consider the following type of
G-BSDE

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds +

∫ T

t
g(s, Ys, Zs)d〈B〉s −

∫ T

t
ZsdBs − (KT − Kt ),(1)

where

f (t, ω, y, z), g(t, ω, y, z) : [0, T ] × �T × R × R → R

satisfy the following properties:

(H1) There exists some β > 1 such that for any y, z ∈ R, f (·, ·, y, z), g(·, ·, y, z) ∈
Mβ

G(0, T );
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(H2) There exists some L > 0 such that

| f (t, y, z) − f (t, y′, z′)| + |g(t, y, z) − g(t, y′, z′)| ≤ L(|y − y′| + |z − z′|).

For simplicity, we denote bySα
G(0, T ) the collection of processes (Y , Z , K ) such

that Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), and K is a decreasing G-martingale with K0 = 0
and KT ∈ Lα

G(�T ). Hu et al. [12,13] established the existence and uniqueness result
for Eq. (1) as well as the comparison theorem.

Theorem 2.3 [12] Assume that ξ ∈ Lβ
G(�T ) and f , g satisfy (H1) and (H2) for some

β > 1. Then, for any 1 < α < β, Eq. (1) has a unique solution (Y , Z , K ) ∈ Sα
G(0, T ).

Moreover, we have

|Yt |α ≤ CÊt [|ξ |α +
∫ T

t
| f (s, 0, 0)|α + |g(s, 0, 0)|αds],

where the constant C depends on α, T , σ and L.

Below is a generalization of Proposition 3.5 in [12].

Theorem 2.4 Let f , g satisfy (H1) and (H2) for some β > 1. Assume

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds +

∫ T

t
g(s, Ys, Zs)d〈B〉s

−
∫ T

t
ZsdBs − (KT − Kt ) + (AT − At ),

where Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), K , A are both decreasing process with A0 =
K0 = 0 and AT , KT ∈ Lα

G(�T ) for some β ≥ α > 1. Then there exists a constant
Cα := C(α, T , σ , σ̄ , L) > 0 such that

Ê

[(∫ T

0
|Zs |2ds

) α
2
]

≤ Cα

{
‖Y‖α

Sα
G

+ ‖Y‖
α
2
Sα

G
×

( (
Ê

[(∫ T

0
f 0s ds

)α
]) 1

2

+
(
Ê

[(∫ T

0
g0

s ds

)α
]) 1

2

+ (
m A,K

α

)1/2)}
,

where f 0s = | f (s, 0, 0)|, g0
s = |g(s, 0, 0)|, m A,K

α = min{Ê[|AT |α], Ê[|KT |α]}.
Proof Applying Itô’s formula to |Yt |2, we have

|Y0|2 +
∫ T

0
|Zs |2d〈B〉s = |ξ |2 −

∫ T

0
2Ys ZsdBs −

∫ T

0
2Ysd(Ks − As)

+
∫ T

0
2Ys f (s)ds +

∫ T

0
2Ys g(s)d〈B〉s,
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where f (s) = f (s, Ys, Zs) and g(s) = g(s, Ys, Zs). Then

(∫ T

0
|Zs |2d〈B〉s

) α
2

≤ Cα

{
|ξ |α +

∣∣∣∣
∫ T

0
Ys f (s)ds

∣∣∣∣
α
2

+
∣∣∣∣
∫ T

0
Ys ZsdBs

∣∣∣∣
α
2

+
∣∣∣∣
∫ T

0
Ys g(s)d〈B〉s

∣∣∣∣
α
2

+
∣∣∣∣
∫ T

0
YsdKs

∣∣∣∣
α
2

+
∣∣∣∣
∫ T

0
YsdAs

∣∣∣∣
α
2

}
.

By simple calculation, we can obtain

Ê

[(∫ T

0
|Zs |2ds

) α
2
]

≤Cα

{
‖Y‖α

Sα
G

+ ‖Y‖
α
2
Sα

G

[
(Ê[|KT |α]) 1

2 + (Ê[|AT |α]) 1
2

+
(
Ê

[(∫ T

0
f 0s ds

)α
]) 1

2

+
(
Ê

[(∫ T

0
g0

s ds

)α
]) 1

2 ]}
.

(2)

On the other hand, noting that

KT = ξ − Y0 +
∫ T

0
f (s)ds +

∫ T

0
g(s)d〈B〉s −

∫ T

0
ZsdBs + AT ,

we get

Ê[|KT |α] ≤ Cα

{
‖Y‖α

Sα
G

+ Ê

[(∫ T

0
|Zs |2ds

) α
2
]

+ Ê[|AT |α]

+ Ê

[(∫ T

0
f 0s ds

)α
]

+ Ê

[(∫ T

0
g0

s ds

)α
] }

.

(3)

Suppose that Ê[|KT |α] ≥ Ê[|AT |α]. By (2) and (3), we have

Ê

[(∫ T

0
|Zs |2ds

) α
2
]

≤ Cα

{
‖Y‖α

Sα
G

+ ‖Y‖
α
2
Sα

G
×

((
Ê

[(∫ T

0
f 0s ds

)α
]) 1

2

+
(
Ê

[(∫ T

0
g0

s ds

)α
]) 1

2

+ (
Ê[|AT |α])1/2

)}
.

By symmetry of K and A, we get the desired result. ��
Theorem 2.5 [13] Let (Y l

t , Zl
t , K l

t )t≤T , l = 1, 2, be the solutions of the following
G-BSDEs:
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Y l
t = ξ l +

∫ T

t
f l(s, Y l

s , Zl
s)ds +

∫ T

t
gl(s, Y l

s , Zl
s)d〈B〉s

+ V l
T − V l

t −
∫ T

t
Zl

sdBs − (K l
T − K l

t ),

where processes {V l
t }0≤t≤T are assumed to be right-continuous with left limits (RCLL),

q.s., such that Ê[supt∈[0,T ] |V l
t |β ] < ∞, f l , gl satisfy (H1) and (H2), ξ l ∈ Lβ

G(�T )

with β > 1. If ξ1 ≥ ξ2, f 1 ≥ f 2, g1 ≥ g2 and V 1
t − V 2

t is an increasing process,
then Y 1

t ≥ Y 2
t .

Compared to the classical BSDE, there appears, in theBSDEdriven byG-Brownian
motion, an additional non-increasing G-martingale K , which exhibits the uncertainty
of the model. The difficulty in the analysis of G-BSDE mainly lies in the appearance
of this component. Song [29] proved that the non-increasing G-martingale could not
be form of {∫ t

0 ηsds} or {∫ t
0 γsd〈B〉s}, where η, γ ∈ M1

G(0, T ). More generally, he
proved the following result.

Theorem 2.6 [29] Assume that for t ∈ [0, T ], ∫ t
0 ζsdBs + ∫ t

0 ηsds + Kt = Lt , where
ζ ∈ H1

G(0, T ), η ∈ M1
G(0, T ) and K , L are non-increasing G-martingales. Then we

have
∫ t
0 ζsdBs = 0,

∫ t
0 ηsds = 0 and Kt = Lt .

Remark 2.1 A process of the following form is called a generalized G-Itô process:

ut = u0 +
∫ t

0
ηsds +

∫ t

0
ζsdBs + Kt ,

where η ∈ M1
G(0, T ), ζ ∈ H1

G(0, T ) and K is a non-increasing G-martingale. Theo-
rem 2.6 shows that the decomposition for generalized G-Itô processes is unique.

3 G-BSDE with Two Reflection Barriers

In this section, we give the formulation of the doubly reflected BSDE driven by G-
Brownian motion. Particularly, the approximate Skorohod condition is introduced to
guarantee the uniqueness of the solutions, which will be proved via some a priori
estimates given later.

3.1 Formulation of Doubly Reflected BSDE Driven by G-BrownianMotion

We formulate the doubly reflected BSDE driven by G-Brownian motion in detail. For
simplicity, we only consider the case of 1-dimensional G-Brownian motion. However,
our results and methods still hold for the case d > 1. We are given the following data:
the generators f and g, the lower obstacle process {Lt }t∈[0,T ], the upper obstacle
process {Ut }t∈[0,T ] and the terminal value ξ .
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Here f and g are maps

f (t, ω, y, z), g(t, ω, y, z) : [0, T ] × �T × R
2 → R.

Below, we list the assumptions on the data of the doubly reflected G-BSDEs.
There exists some β > 2 such that

(A1) for any y, z, f (·, ·, y, z), g(·, ·, y, z) ∈ Sβ
G(0, T );

(A2) | f (t, ω, y, z) − f (t, ω, y′, z′)| + |g(t, ω, y, z) − g(t, ω, y′, z′)| ≤ κ(|y − y′| +
|z − z′|) for some κ > 0;

(A3) {Lt }t∈[0,T ], {Ut }t∈[0,T ] ∈ Sβ
G(0, T ), Lt ≤ Ut , t ∈ [0, T ], q.s. and the upper

obstacle is a generalized G-Itô process of the following form

Ut = U0 +
∫ t

0
b(s)ds +

∫ t

0
σ(s)dBs + Kt ,

where {b(t)}t∈[0,T ], {σ(t)}t∈[0,T ] ∈ Sβ
G(0, T ), K ∈ Sβ

G(0, T ) is a non-increasing
G-martingale;

(A4) ξ ∈ Lβ
G(�T ) and LT ≤ ξ ≤ UT , q.s.

Remark 3.1 Notice that Assumptions (A1)–(A4) are quite similar to the ones in [3]
since the non-increasing G-martingale K is equal to 0 when G reduces to a linear
function.

We call a triple of processes (Y , Z , A) with Y , A ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ),
for some 2 ≤ α ≤ β, a solution to the doubly reflected G-BSDE with the data
(ξ, f , g, L, U ) if the following properties hold:

(S1) Lt ≤ Yt ≤ Ut , t ∈ [0, T ];
(S2) Yt = ξ + ∫ T

t f (s, Ys, Zs)ds + ∫ T
t g(s, Ys, Zs)d〈B〉s − ∫ T

t ZsdBs + (AT − At );
(S3) (Y , A) satisfies Approximate Skorohod Condition with order α (ASCα).

Condition (ASCα): We say a pair of processes (Y , A) with Y , A ∈ Sα
G(0, T ) satisfies

the approximate Skorohod condition with order α (with respect to the obstacles L, U )
if there exist non-decreasing processes {An,+}n∈N, {An,−}n∈N and non-increasing G-
martingales {K n}n∈N, such that
– Ê[|An,+

T |α + |An,−
T |α + |K n

T |α] ≤ C , where C is independent of n;

– Ê[ sup
t∈[0,T ]

|At − (An,+
t − An,−

t − K n
t )|α] → 0, as n → ∞;

– lim
n→∞ Ê[| ∫ T

0 (Ys − Ls)d An,+
s |α/2] = 0;

– lim
n→∞ Ê[| ∫ T

0 (Us − Ys)d An,−
s |α/2] = 0.

Below is the main result of this paper, which gives the wellposedness of the doubly
reflected G-BSDE.

Theorem 3.1 Suppose that ξ , f , g, L and U satisfy (A1)–(A4). Then the reflected G-
BSDE with data (ξ, f , g, L, U ) has a unique solution (Y , Z , A). Moreover, for any
2 ≤ α < β we have Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ) and A ∈ Sα

G(0, T ).
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Remark 3.2 Since the solution to a doubly reflected G-BSDE is constructed by a
family of penalized G-BSDEs (see Sect. 4), hence the existence holds only for the
case that α < β due to Theorem 2.3. However, if there are two solutions (Y i , Zi , Ai )

with Y i , Ai ∈ Sβ
G(0, T ) and Zi ∈ Hβ

G(0, T ), i = 1, 2, by Proposition 3.1, we have
Y 1 ≡ Y 2. Consequently, Z1 ≡ Z2 and A1 ≡ A2. Therefore, the uniqueness result
still holds when α = β.

Remark 3.3 Recall that in the classical case (see [3]), the Skorohod condition below is
required to guarantee the uniqueness of the solution (Y , Z , A) to the doubly reflected
BSDE with parameters (ξ, f , L, U ):

∫ T
0 (Ys − Ls)dA+

s = ∫ T
0 (Us − Ys)dA−

s = 0,
where A+, A− are two non-decreasing processes and A = A+ − A−.

Therefore, amore natural definition of the solution to theG-RBSDE (ξ, f , g, L, U )

is a triple of processes (Y , Z , A) satisfying (S1), (S2) and the following Skorohod
condition.
Condition (SC): The process A is decomposed as A = Ã− K with Ã a finite variation
process and K a non-increasing G-martingale, such that

∫ T

0
(Ys − Ls)d Ã+

s =
∫ T

0
(Us − Ys)d Ã−

s = 0,

where Ã+, Ã− are two non-decreasing processes and A = A+ − A−.

Since the Skorohod condition is stronger than the approximate Skorohod condition,
it follows from Theorem 3.1 that the solution satisfying Condition (SC) is unique.
The existence of the solutions satisfying Condition (SC) is equivalent to prove the
decomposition of the process A in Theorem 3.1:

A = Ã − K , where Ã is a finite variation process satisfying the Skorohod condition
and K is a non-increasing G-martingale.

The existence and uniqueness of this decomposition are both interesting problems,
which will be considered in future.

Remark 3.4 Suppose that U ≡ ∞, i.e., the doubly reflected G-BSDE is reduced to
the reflected G-BSDE with a lower obstacle. We can show that A ∈ Sα

G(0, T ) is non-
decreasing and satisfies the martingale condition, that is, {− ∫ t

0 (Ys − Ls)dAs}t∈[0,T ] is
a non-increasingG-martingale,which is the definition of solution to reflectedG-BSDE
with a lower obstacle (see [15]).

In fact, let {An,+}n∈N, {An,−}n∈N and {K n}n∈N be the approximation sequences for
A. It is clear that An,− ≡ 0 for any n ∈ N. Note that {An,+ − K n} is non-decreasing
and

lim
n→∞ Ê

[
sup

t∈[0,T ]
|At − (An,+

t − K n
t )|α

]
= 0,

then A is non-decreasing. Since Y ≤ L and K n is a non-increasing G-martingale,
it follows that {− ∫ t

0 (Ys − Ls)dK n
s }t∈[0,T ] is a non-increasing G-martingale for any
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n ∈ N. It suffices to show that

lim
n→∞ Ê

[
sup

t∈[0,T ]
| −

∫ t

0
(Ys − Ls)dAs −

∫ T

0
(Ys − Ls)dK n

s |
]

= 0.

It is easy to check that

Ê

[
sup

t∈[0,T ]
| −

∫ t

0
(Ys − Ls)dAs −

∫ T

0
(Ys − Ls)dK n

s |
]

≤ Ê

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
(Ys − Ls)d(As − Ãn

s )

∣∣∣∣
]

+ Ê

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
(Ys − Ls)dAn,+

s

∣∣∣∣
]

,

where Ãn = An,+ − K n . Applying Lemma 3.1 below yields the desired result.
By a similar analysis as above, if L ≡ −∞, the definition of solution to doubly

reflected G-BSDE can be reduced to the one of the upper obstacle case studied in [14].

Remark 3.5 For some results, wewill replaceAssumptions (A1), (A3) by the following
weaker ones.

(A1’) For any y, z, f (·, ·, y, z), g(·, ·, y, z) ∈ Mβ
G(0, T );

(A3’) {Lt }t∈[0,T ], {Ut }t∈[0,T ] ∈ Sβ
G(0, T ), Lt ≤ Ut , t ∈ [0, T ], q.s. and there exists

a generalized G-Itô process I such that L ≤ I ≤ U , where

It = I0 +
∫ t

0
bI (s)ds +

∫ t

0
σ I (s)dBs + K I

t ,

with bI ∈ Mβ
G(0, T ), σ I ∈ Hβ

G(0, T ), K I
0 = 0 and K I ∈ Sβ

G(0, T ) a non-
increasing G-martingale.

Remark 3.6 Since the generator g plays the same role as f , in the following of this
paper, we only consider the case that g = 0.

3.2 Some A Priori Estimates

In this subsetion, we give a priori estimate for the solution of the reflected G-BSDE,
which implies the uniqueness of the solution to doubly reflected G-BSDE. In the
following of this paper, we denote by C a constant depending on α, T , κ, σ , but not
on n, which may vary from line to line.

Let us denote by V ar T
0 (A) the total variation of a process A on [0, T ]. We first

introduce the following lemma.

Lemma 3.1 For α > 1, let A, {An}n∈N ⊂ Sα
G(0, T ) be processes such that

Ê[|V ar T
0 (An)|α] ≤ C and

lim
n→∞ Ê

[
sup

t∈[0,T ]
|At − An

t |α
]

= 0,
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where C is independent of n. Then, we have Ê[|V ar T
0 (A)|α] ≤ C. Moreover, if Y ∈

S p
G(0, T ), with p = α

α−1 , we have

lim
n→∞ Ê

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
Ysd(As − An

s )

∣∣∣∣
]

= 0.

Proof We first show that A is a finite variation process. Let

A =
{

n−1∑
i=1

ai I(ti ,ti+1](s); |ai | = 1, 0 ≤ t0 < · · · < tn = T , n ∈ N

}
.

Since supt∈[0,T ] |At − An
t | converges to 0 under the norm ‖ · ‖L1

G
, we may choose a

subsequence, still denoted by An , such that supt∈[0,T ] |At − An
t | converges to 0, q.s.

It follows that for any a ∈ A

lim
n→∞

∫ T

0
a(s)dAn

s =
∫ T

0
a(s)dAs .

Then we have

V ar T
0 (A) = sup

a∈A

∫ T

0
a(s)dAs = sup

a∈A
lim inf

n

∫ T

0
a(s)dAn

s

≤ lim inf
n

sup
a∈A

∫ T

0
a(s)dAn

s = lim inf
n

V ar T
0 (An).

Hence, it follows from the assumption that Ê[|V ar T
0 (A)|α] ≤ C . It remains to prove

that for any Y ∈ S p
G(0, T ), with p = α

α−1 , we have

lim
n→∞ Ê

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
Ysd(As − An

s )

∣∣∣∣
]

= 0.

In fact, for each m ∈ N, let Ỹ m
t = ∑m−1

i=0 Ytm
i

I[tm
i ,tm

i+1
(t), where tm

i = iT
m , i =

0, 1, . . . , m. Set

I = sup
t∈[0,T ]

∣∣∣∣
∫ t

0
Ỹ m

s d(As − An
s )

∣∣∣∣ , II = sup
t∈[0,T ]

∣∣∣∣
∫ t

0
(Ys − Ỹ n

s )d(As − An
s )

∣∣∣∣ .
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By simple calculation, we have

Ê[I] ≤
m−1∑
i=0

Ê

[
sup

s∈[0,T ]
|Ys |(|An

tm
i+1

− Atm
i+1

| + |An
tm
i

− Atm
i
|)
]

≤ (Ê

[
sup

s∈[0,T ]
|Ys |p])1/p

m−1∑
i=0

{(Ê[|An
tm
i+1

− Atm
i+1

|α
]
)1/α + (Ê[|An

tm
i

− Atm
i
|α])1/α},

Ê[II] ≤ (Ê

[
sup

s∈[0,T ]
|Ys − Ỹ m

s |p

]
)1/p{(Ê[|V ar T

0 (An)|α])1/α + (Ê[|V ar T
0 (A)|α])1/α}.

Letting n tend to infinity yields that Ê[I] → 0, for any m ∈ N. Then, letting m
approach to infinity, we obtain that Ê[II] → 0 by Lemma 3.2 in [12]. The proof is
complete. ��
Proposition 3.1 Let (ξ1, f 1, L, U ) and (ξ2, f 2, L, U ) be two sets of data each one
satisfying all Assumptions (A1)–(A4). Let (Y i , Zi , Ai ) be a solution of the reflected G-
BSDE with data (ξ i , f i , L, U ), i = 1, 2, respectively. Set Ŷt = Y 1

t −Y 2
t , ξ̂ = ξ1−ξ2.

Then, for any 2 ≤ α ≤ β, there exists a constant C := C(α, T , κ, σ ) > 0 such that

|Ŷt |α ≤ CÊt [|ξ̂ |α +
∫ T

t
|λ̂s |αds],

where λ̂s = | f 1(s, Y 2
s , Z2

s ) − f 2(s, Y 2
s , Z2

s )|.
Proof Set Ẑt = Z1

t − Z2
t , Ât = A1

t − A2
t . By the G-Itô formula, we have

d|Ŷt |2 = −2Ŷt ( f 1(t, Y 1
t , Z1

t ) − f 2(t, Y 2
t , Z2

t ))dt + 2Ŷt ẐtdBt + Ẑ2
t d〈B〉t − 2Ŷt d Ât .

For any r > 0, applying G-Itô’s formula to Hα/2
t ert = (|Ŷt |2)α/2ert , we have

Hα/2
t ert +

∫ T

t
rers Hα/2

s ds +
∫ T

t

α

2
ers Hα/2−1

s (Ẑs)
2d〈B〉s

= |ξ̂ |αerT + α(1 − α

2
)

∫ T

t
ers Hα/2−2

s (Ŷs)
2(Ẑs)

2d〈B〉s

+
∫ T

t
αers Hα/2−1

s Ŷs( f 1(s, Y 1
s , Z1

s ) − f 2(s, Y 2
s , Z2

s ))ds

+
∫ T

t
αers Hα/2−1

s Ŷsd Âs −
∫ T

t
αers Hα/2−1

s Ŷs ẐsdBs .

(4)
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From Assumption (A2) of f 1, we have

∫ T

t
αers Hα/2−1

s Ŷs( f 1(s, Y 1
s , Z1

s ) − f 2(s, Y 2
s , Z2

s ))ds

≤
∫ T

t
αers H

α−1
2

s {| f 1(s, Y 1
s , Z1

s ) − f 1(s, Y 2
s , Z2

s )| + λ̂s}ds

≤
∫ T

t
αers H

α−1
2

s {κ(|Ŷs | + |Ẑs |) + λ̂s}ds

≤ r̃
∫ T

t
ers Hα/2

s ds + α(α − 1)

4

∫ T

t
ers Hα/2−1

s (Ẑs)
2d〈B〉s

+
∫ T

t
αers Hα/2−1/2

s |λ̂s |ds,

where r̃ = ακ + ακ2

σ 2(α−1)
. Then by Young’s inequality, we obtain

∫ T

t
αers Hα/2−1/2

s |λ̂s |ds ≤ (α − 1)
∫ T

t
ers Hα/2

s ds +
∫ T

t
ers |λ̂s |αds.

Let {Ai,n,+}n∈N, {Ai,n,−}n∈N and {K i,n}n∈N be the approximation sequences for
Ai , i = 1, 2. Set Ai,n = Ai,n,+ − Ai,n,− − K i,n , i = 1, 2. It is easy to check that

∫ T

t
αers Hα/2−1

s ŶsdA1
s

=
∫ T

t
αers Hα/2−1

s Ŷsd(A1
s − A1,n

s ) +
∫ T

t
αers Hα/2−1

s Ŷsd A1,n
s

≤
∣∣∣∣
∫ T

t
αers Hα/2−1

s Ŷsd(A1
s − A1,n

s )

∣∣∣∣ +
∫ T

t
αers Hα/2−1

s (Ŷs)
+dA1,n,+

s

+
∫ T

t
αers Hα/2−1

s (Ŷs)
−dA1,n,−

s −
∫ T

t
αers Hα/2−1

s (Ŷs)
+dK 1,n

s .

By Lemma 3.1, we have for any t ∈ [0, T ]

lim
n→∞ Ê

[∣∣∣∣
∫ T

t
αers Hα/2−1

s Ŷsd(A1
s − A1,n

s )

∣∣∣∣
]

= 0.

Note that Y i
s ≥ Ls , for any s ∈ [0, T ] and i = 1, 2, which implies that Ŷs ≤ Y 1

s − Ls .
Hence, we have (Ŷs)

+ ≤ Y 1
s − Ls . By simple calculation, we obtain that
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Ê[
∫ T

t
αers Hα/2−1

s (Ŷs)
+dA1,n,+

s ]

≤ CÊ

[
sup

t∈[0,T ]
(|Y 1

t | + |Y 2
t |)α−2

∫ T

t
(Ŷs)

+d A1,n,+
s

]

≤ C(Ê

[
sup

t∈[0,T ]
(|Y 1

t |α + |Y 2
t |α)

]
)

α−2
α (Ê

[∣∣∣∣
∫ T

t
(Ŷs)

+d A1,n,+
s

∣∣∣∣
α
2
]
)
2
α .

Recalling the definition of approximate Skorohod condition, we have

lim
n→∞ Ê

[∣∣∣∣
∫ T

t
αers Hα/2−1

s (Ŷs)
+dA1,n,+

s

∣∣∣∣
]

= 0.

Similar analysis as above yields that

lim
n→∞ Ê

[∣∣∣∣
∫ T

t
αers Hα/2−1

s (Ŷs)
−dA1,n,−

s

∣∣∣∣
]

= 0,

lim
n→∞ Ê

[∣∣∣∣
∫ T

t
αers Hα/2−1

s (Ŷs)
+dA2,n,−

s

∣∣∣∣
]

= 0,

lim
n→∞ Ê

[∣∣∣∣
∫ T

t
αers Hα/2−1

s (Ŷs)
−dA2,n,+

s

∣∣∣∣
]

= 0.

Set Mn
t = ∫ t

0 αers Hα/2−1
s (Ŷs ẐsdBs + (Ŷs)

+dK 1,n
s + (Ŷs)

−dK 2,n
s ), n ≥ 1. By

Lemma 3.4 in [12], Mn is a G-martingale. Let r = r̃ + α. Combining the above
inequalities, we get

Hα/2
t ert + (Mn

T − Mn
t )

≤ |ξ̂ |αerT +
∫ T

t
ers |λ̂s |αds +

2∑
i=1

∣∣∣∣
∫ T

t
αers Hα/2−1

s Ŷsd(Ai
s − Ai,n

s )

∣∣∣∣

+
∫ T

t
αers Hα/2−1

s (Ŷs)
+d(A1,n,+

s + A2,n,−
s )

+
∫ T

t
αers Hα/2−1

s (Ŷs)
−d(A1,n,−

s + A2,n,+
s )

Taking conditional expectations on both sides and letting n → ∞, there exists a
constant C := C(α, T , L, σ ) > 0 such that

|Ŷt |α ≤ CÊt [|ξ̂ |α +
∫ T

t
|λ̂s |αds].

The proof is complete. ��
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4 Proof of theMain Result

In this section, we will focus on the penalization method in order to get the existence
of solutions to doubly reflected G-BSDEs. For n ∈ N, consider the following family
of G-BSDEs

Y n
t = ξ +

∫ T

t
f (s, Y n

s , Zn
s )ds −

∫ T

t
Zn

s dBs − (K n
T − K n

t )

+ n
∫ T

t
(Y n

s − Ls)
−ds − n

∫ T

t
(Y n

s − Us)
+ds.

(5)

Now let An,−
t = n

∫ t
0 (Y n

s −Us)
+ds, An,+

t = n
∫ t
0 (Y n

s −Ls)
−ds. Then {An,±

t }t∈[0,T ]
are nondecreasing processes. We can rewrite G-BSDE (5) as

Y n
t = ξ +

∫ T

t
f (s, Y n

s , Zn
s )ds −

∫ T

t
Zn

s dBs − (K n
T − K n

t )

+ (An,+
T − An,+

t ) − (An,−
T − An,−

t ).

(6)

4.1 Uniform Estimates of Yn

Under weaker Assumptions (A1’), (A2), (A3’), (A4), we show that {Y n}∞n=1 are uni-
formly bounded under the norm ‖ · ‖Sα

G
.

Lemma 4.1 For 2 ≤ α < β, there exists a constant C independent of n, such that

Ê

[
sup

t∈[0,T ]
|Y n

t |α
]

≤ C .

Proof Let It = I0 +∫ t
0 bI (s)ds +∫ t

0 σ I (s)dBs + K I
t be the generalized G-Itô process

such that L ≤ I ≤ U . Set Ȳ n
t = Y n

t − It , Z̄ n
t = Zn

t −σ I (t), Ht = (Ȳ n
t )2, Ūt = Ut − It ,

L̄ t = Lt − It , and f̄t = f (t, Y n
t , Zn

t ) + bI (t). G-BSDE (5) can be rewritten as

Ȳ n
t = ξ − IT +

∫ T

t
f̄ (s)ds + n

∫ T

t
(Ȳ n

s − L̄s)
−ds − n

∫ T

t
(Ȳ n

s − Ūs)
+ds

−
∫ T

t
Z̄ n

s dBs − (K n
T − K n

t ) + (K I
T − K I

t ).
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For any r > 0, applying Itô’s formula to Hα/2
t ert , we get

Hα/2
t ert +

∫ T

t
rers Hα/2

s ds +
∫ T

t

α

2
ers Hα/2−1

s (Z̄ n
s )2d〈B〉s

= |ξ − IT |αerT + α(1 − α

2
)

∫ T

t
ers Hα/2−2

s (Ȳ n
s )2(Z̄ n

s )2d〈B〉s

−
∫ T

t
αers Hα/2−1

s nȲ n
s (Ȳ n

s − Ūs)
+ds +

∫ T

t
αers Hα/2−1

s nȲ n
s (Ȳ n

s − L̄s)
−ds

+
∫ T

t
αers Hα/2−1

s Ȳ n
s f̄sds −

∫ T

t
αers Hα/2−1

s (Ȳ n
s Z̄ n

s dBs + Ȳ n
s dK n

s − Ȳ n
s dK I

s ).

Noting that −Ȳ n
s (Ȳ n

s − Ūs)
+ ≤ 0 and Ȳ n

s (Ȳ n
s − L̄s)

− ≤ 0, we get

Hα/2
t ert +

∫ T

t
rers Hα/2

s ds +
∫ T

t

α

2
ers Hα/2−1

s (Z̄ n
s )2d〈B〉s

≤ |ξ − IT |αerT + α(1 − α

2
)

∫ T

t
ers Hα/2−2

s (Ȳ n
s )2(Z̄ n

s )2d〈B〉s

+
∫ T

t
αers Hα/2−1/2

s | f̄s |ds − (MT − Mt ),

where

Mt =
∫ t

0
αers Hα/2−1

s (Ȳ n
s Z̄sdBs + (Ȳ n

s )+dK n
s + (Ȳ n

s )−dK I
s )

is a G-martingale. From Assumption (A2) of f , we have

∫ T

t
αers Hα/2−1/2

s | f̄s |ds

≤
∫ T

t
αers Hα/2−1/2

s {| f (s, 0, 0)| + |bI (s)| + κ[|Ȳ n
s | + |Z̄ n

s | + |Is | + |σ I (s)|]}ds

≤
(

ακ + ακ2

σ 2(α − 1)

)∫ T

t
ers Hα/2

s ds + α(α − 1)

4

∫ T

t
ers Hα/2−1

s (Z̄ n
s )2d〈B〉s

+
∫ T

t
αers Hα/2−1/2

s [| f (s, 0, 0)| + |bI (s)| + κ(|Is | + |σ I (s)|)]ds.

By Young’s inequality, we obtain

∫ T

t
αers Hα/2−1/2

s [| f (s, 0, 0)| + |bI (s)| + κ(|Us | + |σ I (s)|)]ds

≤
∫ T

t
ers[| f (s, 0, 0)|α + |bI (s)|α + κα|Is |α + κα|σ I (s)|α]ds
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+ 4(α − 1)
∫ T

t
ers Hα/2

s ds.

Combining the above inequalities, we get

H
α
2

t ert +
∫ T

t
(r − α̃)ers H

α
2

s ds +
∫ T

t

α(α − 1)

4
ers H

α−2
2

s (Z̄ n
s )2d〈B〉s + (MT − Mt )

≤ |ξ − IT |αerT +
∫ T

t
ers[| f (s, 0, 0)|α + |bI (s)|α + κα|Is |α + κα|σ I (s)|α]ds,

where α̃ = 4(α − 1) + ακ + ακ2

σ 2(α−1)
. Setting r = α̃ + 1 and taking conditional

expectations on both sides, we derive that

Hα/2
t ert ≤ Êt [|ξ − IT |αerT +

∫ T

t
ers [| f (s, 0, 0)|α + |bI (s)|α + κα |Is |α + κα |σ I (s)|α]ds].

Then, there exists a constant C independent of n such that

|Ȳ n
t |α ≤ CÊt [|ξ − IT |α +

∫ T

t
[| f (s, 0, 0)|α + |bI (s)|α + |σ I (s)|α + |Is |α]ds].

Noting that |Y n
t |α ≤ C(|Ȳ n

t |α + |It |α) and applying Theorem 2.2, we finally get the
desired result. ��

4.2 Convergence of (Yn − U)+ and (Yn − L)−

Under Assumptions (A1’), (A2), (A3’), (A4), we show that (Y n −U )+ and (Y n − L)−
converge to 0 under the norm ‖ · ‖Sα

G
. First, we prove a simple lemma.

Lemma 4.2 For S ∈ Sβ
G(0, T ) with β > 1, define

∫ t
s e−nudsu := e−nt St − e−ns Ss +∫ t

s nSue−nudu, and set in(t) = Êt [|
∫ T

t e−n(s−t)dss |α] for some 1 ≤ α < β. Then, as
n → ∞, we have,

Ê

[
sup

t∈[0,T ]
|in(t)|

]
→ 0.

Proof Notice that the mappings Dn : Sβ
G(0, T ) → S1

G(0, T ) by Dn(S) = in are
uniformly continuous with respect to n, i.e.,

‖Dn(S) − Dn(S′)‖S1G

≤ 3ααÊ

[
sup

t∈[0,T ]
Êt [ sup

s∈[0,T ]
|Ss − S′

s | sup
s∈[0,T ]

|Sθ
s |α−1]

]
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≤ 3αα

(
Ê

[
sup

t∈[0,T ]
Êt [ sup

s∈[0,T ]
|Ss − S′

s |α]
]) 1

α
(
Ê

[
sup

t∈[0,T ]
Êt [ sup

s∈[0,T ]
|Sθ

s |α]
]) α−1

α

.

where Sθ = θ S + (1− θ)S′ for some θ ∈ [0, 1]. By Theorem 2.2, it suffices to prove
this lemma for a dense subset of Sβ

G(0, T ). For a G-Itô process St = S0+∫ t
0 bS(s)ds+∫ t

0 σ S(s)dBs + ∫ t
0 cS(s)d〈B〉s with bS, cS, σ S ∈ M0

G(0, T ), we have

|in(t)| ≤Cα

(
Êt

[∣∣
∫ T

t
e−n(s−t)(|bS(s)| + |cS(s)|)ds

∣∣α
]

+ Êt

[∣∣
∫ T

t
e−n(s−t)σ S(s)dBs

∣∣α
])

≤Cα

n
α
2

(
1

n
α
2
Êt

[
sup

s∈[0,T ]
(|bS(s)| + |cS(s)|)α

]
+ Êt

[
sup

s∈[0,T ]
|σ S(s)|α

])
.

So, we get Ê
[
supt∈[0,T ] |in(t)|α] → 0 as n goes to ∞. ��

Lemma 4.3 Let Ỹ n, M̃n ∈ Sα
G(0, T ) and f̃ n ∈ Mα

G(0, T ) for some 1 < α ≤ β satisfy

Ỹ n
t = ξ +

∫ T

t
f̃ n(s)ds + n

∫ T

t
(Ỹ n

s − Ls)
−ds − n

∫ T

t
(Ỹ n

s − Us)
+ds − (M̃n

T − M̃n
t ).

Assuming that M̃n is a martingale under a time-consistent sublinear expectation Ẽ,
we have

(Ỹ n
t − Ut )

+ ≤
∣∣∣∣Ẽt [

∫ T

t
e−n(s−t) f̃ n(s)ds +

∫ T

t
e−n(s−t)dUs]

∣∣∣∣, (7)

(Ỹ n
t − Lt )

− ≤
∣∣∣∣Ẽt [

∫ T

t
e−n(s−t) f̃ n(s)ds +

∫ T

t
e−n(s−t)dLs]

∣∣∣∣. (8)

Proof For S ∈ Sβ
G(0, T ), setting Ȳ n

t = Ỹ n
t − St , Ūt = Ut − St and L̄ t = Lt − St , we

have

e−nt Ȳ n
t +

∫ T

t
e−nsd M̃n

s

= e−nT (ξ − ST ) +
∫ T

t
ne−ns

(
Ȳ n

s − (Ȳ n
s − Ūs)

+ + (Ȳ n
s − L̄s)

−
)
ds

+
∫ T

t
e−ns f̃ n(s)ds +

∫ T

t
e−nsdss .

(1) If St = Ut , we have ξ − ST = ξ − UT ≤ 0, and

Ȳ n
s − (Ȳ n

s − Ūs)
+ + (Ȳ n

s − L̄s)
− = −(Ỹ n

s − Us)
− + (Ỹ n

s − Ls)
− ≤ 0. (9)
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So, we have

(Ỹ n
t − Ut )

+ ≤
∣∣∣∣Ẽt [

∫ T

t
e−n(s−t) f̃ n(s)ds +

∫ T

t
e−n(s−t)dUs]

∣∣∣∣.

(2) If St = Lt , we have ξ − ST = ξ − LT ≥ 0, and

Ȳ n
s − (Ȳ n

s − Ūs)
+ + (Ȳ n

s − L̄s)
− = (Ỹ n

s − Ls)
+ − (Ỹ n

s − Us)
− ≥ 0. (10)

So, we have

(Ỹ n
t − Lt )

− ≤
∣∣∣∣Ẽt [

∫ T

t
e−n(s−t) f̃ n(s)ds +

∫ T

t
e−n(s−t)dLs]

∣∣∣∣.

The proof is complete. ��
Lemma 4.4 Assume that (A1’), (A2), (A3’) and (A4) hold. As n goes to ∞, for any
2 ≤ α < β, we have

Ê

[
sup

t∈[0,T ]
|(Y n

t − Ut )
+|α

]
→ 0, Ê

[
sup

t∈[0,T ]
|(Y n

t − Lt )
−|α

]
→ 0. (11)

Proof For each given ε > 0, we can choose a Lipschitz function l(·) such that I[−ε,ε] ≤
l(x) ≤ I[−2ε,2ε]. Thus we have

f (s, Y n
s , Zn

s ) − f (s, Y n
s , 0)

= ( f (s, Y n
s , Zn

s ) − f (s, Y n
s , 0))l(Zn

s ) + aε,n
s Zn

s =: mε,n
s + aε,n

s Zn
s ,

where aε,n
s = (1 − l(Zn

s ))( f (s, Y n
s , Zn

s ) − f (s, Y n
s , 0))(Zn

s )−1 ∈ M2
G(0, T ) with

|aε,n
s | ≤ κ . It is easy to check that |mε,n

s | ≤ 2κε. Then we can get

f (s, Y n
s , Zn

s ) = f (s, Y n
s , 0) + aε,n

s Zn
s + mε,n

s .

Now we consider the following G-BSDE:

Y ε,n
t = ξ +

∫ T

t
aε,n

s Z ε,n
s ds −

∫ T

t
Z ε,n

s dBs − (K ε,n
T − K ε,n

t ).

For each ξ ∈ L p
G(�T ) with p > 1, define

Ẽ
ε,n
t [ξ ] := Y ε,n

t ,

which is a time-consistent sublinear expectation. Set B̃ε,n
t = Bt − ∫ t

0 aε,n
s ds. By

Theorem 5.2 in [13], {B̃ε,n
t } is a G-Brownian motion under Ẽε,n[·].
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We rewrite G-BSDE (5) as the following

Y n
t = ξ +

∫ T

t
f ε,n(s)ds −

∫ T

t
n(Y n

s − Us)
+ds +

∫ T

t
n(Y n

s − Ls)
−ds

−
∫ T

t
Zn

s d B̃ε,n
s − (K n

T − K n
t ),

(12)

where f ε,n(s) = f (s, Y n
s , 0) + mε,n

s . Since K n is a martingale under Ẽε,n[·] by
Theorem 5.1 in [13], it follows from (7) in Lemma 4.3 that

(Y n
t − Ut )

+ ≤
∣∣∣∣Ẽε,n

t [
∫ T

t
e−n(s−t) f ε,n(s)ds +

∫ T

t
e−n(s−t)dUs]

∣∣∣∣.

By Theorem 2.3, for 2 ≤ α < β, it follows that

Ê

[
sup

t∈[0,T ]
|(Y n

t − Ut )
+|α

]

≤ Ê

[
sup

t∈[0,T ]

∣∣∣∣Ẽε,n
t [

∫ T

t
e−n(s−t) f ε,n(s)ds +

∫ T

t
e−n(s−t)dUs]

∣∣∣∣
α]

≤ CαÊ

[
sup

t∈[0,T ]
Êt [

∣∣∣∣
∫ T

t
e−n(s−t) f ε,n(s)ds +

∫ T

t
e−n(s−t)dUs

∣∣∣∣
α

]
]
,

(13)

which converges to 0 as n goes to ∞ by Lemma 4.2. Similarly, we can prove

lim
n→∞ Ê

[
sup

t∈[0,T ]
|(Y n

t − Lt )
−|α

]
= 0.

The proof is complete. ��

4.3 Uniform Estimates of Zn, Kn, An,− and An,+

In this subsection, we give the uniform estimates for Zn , K n , An,+ and An,− under
Assumptions (A1)–(A4). To this end, we prove that (Y n − U )+ converges to 0 with
the explicit rate 1

n , which requires that the upper obstacle to be a generalized G-Itô
process.

Lemma 4.5 For 2 ≤ α < β, there exists a constant C independent of n, such that

Ê

[
sup

t∈[0,T ]
|(Y n

t − Ut )
+|α

]
≤ C

nα
.
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Proof Now Ut = U0 + ∫ t
0 b(s)ds + ∫ t

0 σ(s)dBs + Kt with b, σ ∈ Sβ
G(0, T ), and

K ∈ Sβ
G(0, T ) a non-increasing G-martingale. Below, we employ the notations in the

proof of Lemma 4.4.
We rewrite Ut as

Ut = U0 +
∫ t

0
bε,n(s)ds +

∫ t

0
σ(s)d B̃ε,n

s + Kt , (14)

where bε,n(s) = b(s) + aε,n
s σ(s). By (13), we have, for 2 ≤ α < β,

Ê

[
sup

t∈[0,T ]
|(Y n

t − Ut )
+|α

]

≤ Ê

[
sup

t∈[0,T ]

∣∣∣∣Ẽε,n
t [

∫ T

t
e−n(s−t) f ε,n(s)ds +

∫ T

t
e−n(s−t)dUs]

∣∣∣∣
α]

≤ Ê

[
sup

t∈[0,T ]

∣∣∣∣Ẽε,n
t [

∫ T

t
e−n(s−t)(| f ε,n(s)| + |bε,n(s)|)ds]

∣∣∣∣
α]

.

By Theorem 2.3, it follows that

Ê

[
sup

t∈[0,T ]
|(Y n

t − Ut )
+|α

]
≤ 1

nα
Ê

[
sup

t∈[0,T ]

∣∣∣∣Ẽε,n
t [ sup

s∈[0,T ]
| f ε,n(s) + bε,n(s)|]

∣∣∣∣
α]

≤Cα

1

nα
Ê

[
sup

t∈[0,T ]
Êt [ sup

s∈[0,T ]
| f ε,n(s) + bε,n(s)|α]

]
.

Since Ê

[
supt∈[0,T ] Êt [sups∈[0,T ] | f ε,n(s) + bε,n(s)|α]

]
are uniformly bounded, we

get the desired result. ��
Lemma 4.6 For 2 ≤ α < β, there exists a constant C independent of n, such that

Ê[|K n
T |α] ≤ C, Ê[|An,−

T |α] ≤ C, Ê[|An,+
T |α] ≤ C, and Ê

[(∫ T

0
|Zn

s |2ds

) α
2
]

≤ C .

Proof By Lemma 4.5, there exists a constant C independent of n such that

Ê[|An,−
T |α] = nα

Ê

[(∫ T

0
(Y n

s − Us)
+ds

)α
]

≤ C .

Then, it follows from Theorem 2.4 that Ê[(∫ T
0 |Zn

s |2ds)
α
2 ] are uniformly bounded.

Noting that

K n
T − An,+

T = ξ − Y n
0 +

∫ T

0
f (s, Y n

s , Zn
s )ds −

∫ T

0
Zn

s dBs + An,−
T ,
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we conclude that Ê[|K n
T − An,+

T |α] are uniformly bounded. Since K n
T and −An,+

T are
non-positive, the proof is complete. ��

4.4 Proof of Theorem 3.1

In this subsection, we prove that Y n , Zn , and An = An,+ − K n − An,−, n ≥ 1 are
Cauchy sequences with respect to the norms ‖ · ‖Sα

G
, ‖ · ‖Hα

G
and ‖ · ‖Sα

G
, respectively,

and that their limits are a solution to the doubly reflected G-BSDE.

Lemma 4.7 For 2 ≤ α < β, we have

lim
n,m→∞ Ê

[
sup

t∈[0,T ]
|Y n

t − Y m
t |α

]
= 0,

lim
n,m→∞ Ê

[(∫ T

0
|Zn

s − Zm
s |2ds

) α
2
]

= 0,

lim
n,m→∞ Ê

[
sup

t∈[0,T ]
|An

t − Am
t |α

]
= 0.

Proof For any r > 0, and n, m ∈ N, set

Ŷt = Y n
t − Y m

t , Ẑt = Zn
t − Zm

t , K̂t = K n
t − K m

t ,

Â+
t = An,+

t − Am,+
t , Â−

t = An,−
t − Am,−

t , f̂t = f (t, Y n
t , Zn

t ) − f (t, Y m
t , Zm

t ).

Denote Ht = |Ŷt |2. Applying Itô’s formula to Hα/2
t ert , we get

Hα/2
t ert +

∫ T

t
rers Hα/2

s ds +
∫ T

t

α

2
ers Hα/2−1

s (Ẑs)
2d〈B〉s

= α(1 − α

2
)

∫ T

t
ers Hα/2−2

s (Ŷs)
2(Ẑs)

2d〈B〉s +
∫ T

t
αers Hα/2−1

s Ŷsd( Â+
s − Â−

s )

+
∫ T

t
αers Hα/2−1

s Ŷs f̂sds −
∫ T

t
αers Hα/2−1

s (Ŷs ẐsdBs + Ŷsd K̂s).

Noting that An,−
t = n

∫ t
0 (Y n

s − Us)
+ds, An,+

t = n
∫ t
0 (Y n

s − Ls)
−ds, we have

∫ T

t
αers Hα/2−1

s Ŷsd( Â+
s − Â−

s )

=
∫ T

t
αers Hα/2−1

s

[
(Y n

s − Ls) − (Y m
s − Ls)

]
(dAn,+

s − dAm,+
s )

−
∫ T

t
αers Hα/2−1

s

[
(Y n

s − Us) − (Y m
s − Us)

]
(dAn,−

s − dAm,−
s )
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≤
∫ T

t
αers Hα/2−1

s

[
(Y n

s − Ls)
−dAm,+

s + (Y m
s − Ls)

−dAn,+
s

]

+
∫ T

t
αers Hα/2−1

s

[
(Y n

s − Us)
+dAm,−

s + (Y m
s − Us)

+dAn,−
s

]
=:

∫ T

t
�sds.

Therefore,

Hα/2
t ert +

∫ T

t
rers Hα/2

s ds +
∫ T

t

α

2
ers Hα/2−1

s (Ẑs)
2d〈B〉s

≤ α(1 − α

2
)

∫ T

t
ers Hα/2−2

s (Ŷs)
2(Ẑs)

2d〈B〉s +
∫ T

t
αers Hα/2−1

s Ŷs f̂sds

+
∫ T

t
�sds − (MT − Mt ),

where Mt = ∫ t
0 αers Hα/2−1

s (Ŷs ẐsdBs + (Ŷs)
+dK m

s + (Ŷs)
−dK n

s ) is a G-martingale.
Applying the Hölder inequality, we have

∫ T

t
αers H

α−1
2

s | f̂s |ds ≤(ακ + ακ2

σ 2(α − 1)
)

∫ T

t
ers Hα/2

s ds

+ α(α − 1)

4

∫ T

t
ers Hα/2−1

s (Ẑs)
2d〈B〉s .

Letting r = 1 + ακ + ακ2

σ 2(α−1)
, we have

Hα/2
t ert + (MT − Mt ) ≤

∫ T

t
�sds.

Taking conditional expectation on both sides of the above inequality, it follows that

Hα/2
t ert ≤ Êt [

∫ T

t
�sds]. (15)

Consequently, we have

Ê

[
sup

t∈[0,T ]
|Ŷt |α

]
≤ Ê

[
sup

t∈[0,T ]
Êt [

∫ T

0
�sds]

]
. (16)

By symmetry and Theorem 2.2, it suffices to prove that there exists some γ > 1, such
that

lim
n,m→∞ Ê

[(∫ T

0
Hα/2−1

s (Y n
s − Ls)

−dAm,+
s

)γ
]

= 0. (17)
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For 1 < γ < β/α,

Ê

[(∫ T

0
Hα/2−1

s (Y n
s − Ls)

−dAm,+
s

)γ
]

≤ Ê

[
sup

s∈[0,T ]
|Ŷs |(α−2)γ sup

s∈[0,T ]
(
(Y n

s − Ls)
−)γ (

Am,+
T

)γ

]

≤
(
Ê

[
sup

s∈[0,T ]
|Ŷs |αγ ]

) α
α−2

(
Ê[ sup

s∈[0,T ]
(
(Y n

s − Ls)
−)αγ

] ) 1
α

Ê[(Am,+
T

)αγ ] 1
α ,

which converges to 0 as n goes to ∞ by Lemmas 4.1, 4.4 and 4.6.
By a similar analysis as in the proof of Theorem 5.1 in [15], for some 2 ≤ α < β,

we get that

Ê

[(∫ T

0
|Ẑt |2dt

) α
2
]

≤ C

{
Ê

[
sup

t∈[0,T ]
|Ŷt |α

]
+ (Ê

[
sup

t∈[0,T ]
|Ŷt |α

]
)1/2

}
,

Ê

[
sup

t∈[0,T ]
| Ât |α

]
≤ C

{
Ê

[
sup

t∈[0,T ]
|Ŷt |α

]
+ Ê

[(∫ T

0
|Ẑt |2dt

) α
2
]}

.

The proof is complete. ��

Now, we prove our main result.

Proof of Theorem 3.1 First we prove the uniqueness. Suppose that (Y i , Zi , Ai ), i =
1, 2 are solutions of the reflected G-BSDE with data (ξ, f , , L, U ). Proposition 3.1
yields that Y 1 ≡ Y 2. Applying G-Itô’s formula to (Y 1

t − Y 2
t )2 ≡ 0 and taking expec-

tation (we may refer to Equation (4)), we get

Ê

[(∫ T

0
|Z1

s − Z2
s |2d〈B〉s

)α/2]
= 0.

It follows that Z1 ≡ Z2. Then it is easy to check A1 ≡ A2.
Now we are in a position to show the existence. By Lemma 4.7, there exist Y ∈

Sα
G(0, T ), Z ∈ Hα

G(0, T ) and a finite variation process A ∈ Sα
G(0, T ) such that when

n goes to infinity,

Ê

[
sup

t∈[0,T ]
|Y n

t − Yt |α
]

→ 0, Ê

[(∫ T

0
|Zn

t − Zt |2ds

) α
2
]

→ 0, Ê

[
sup

t∈[0,T ]
|An

t − At |α
]

→ 0,

where An
t = An,+

t − K n
t − An,−

t . By Lemma 4.4 , we derive that Lt ≤ Yt ≤ Ut , for
any t ∈ [0, T ]. It remains to show that A satisfies the approximate Skorohod condition
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with orderα.We claim that {An,+}n∈N, {An,−}n∈N and {K n}n∈N are the approximation
sequences. It is sufficent to prove that

lim
n→∞ Ê

[∣∣∣∣
∫ T

0
(Ys − Ls)dAn,+

s

∣∣∣∣
α/2]

= 0.

In fact, it is easy to check that

∫ T

0
(Ys − Ls)dAn,+

s =
∫ T

0
(Ys − Y n

s )dAn,+
s +

∫ T

0
(Y n

s − Ls)n(Y n
s − Ls)

−ds

≤ sup
t∈[0,T ]

|Ys − Y n
s |An,+

T .

It follows that

Ê

[∣∣∣∣
∫ T

0
(Ys − Ls)dAn,+

s

∣∣∣∣
α/2]

≤ (Ê

[
sup

t∈[0,T ]
|Yt − Y n

t |α
]
)1/2(Ê[|An,+

T |])1/2.

Hence, the claim holds. The proof is complete.

Remark 4.1 The analysis for the penalization method above can also be used for the
single obstacle case, which will extend the results in [15] and [14] to a more general
setting. More precisely, suppose that L ∈ Sβ

G(0, T ) is bounded from above by some
generalized G-Itô process I satisfying (A3’). Then the reflected G-BSDEwith a lower
obstacle whose parameters are given by (ξ, f , g, L) admits a unique solution, where
( f , g) satisfies (A1’), (A2) and ξ ∈ Lβ

G(�T ) such that ξ ≥ LT . The reflected G-
BSDE with an upper obstacle whose parameters are given by (ξ, f , g, U ) admits a
unique solution, where ( f , g, U ) satisfies (A1)–(A3) and ξ ∈ Lβ

G(�T ) with ξ ≤ UT .

By the construction via penalization, we obtain the following comparison theorem
for doubly reflected G-BSDEs.

Theorem 4.1 Let (ξ i , f i , Li , Ui ) be two sets of data satisfying (A1)–(A4), i = 1, 2.
We furthermore assume the following:

(i) ξ1 ≤ ξ2, q.s.;
(ii) f 1(t, y, z) ≤ f 2(t, y, z), ∀(y, z) ∈ R

2;
(iii) L1

t ≤ L2
t , U 1

t ≤ U 2
t , 0 ≤ t ≤ T , q.s.

Let (Y i , Zi , Ai ) be the solutions of the doubly reflected G-BSDE with data
(ξ i , f i , Li , Ui ), i = 1, 2, respectively. Then

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T q.s.

Proof For i = 1, 2, consider the following G-BSDEs parameterized by n = 1, 2, . . .,

Y i,n
t = ξ i,n +

∫ T

t
f i (s, Y i,n

s , Zi,n
s )ds −

∫ T

t
Z i,n

s dBs − (K i,n
T − K i,n

t )
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− n
∫ T

t
(Y i,n

s − Ui
s )

+ds +
∫ T

t
n(Y i,n

s − Li
s)

−ds.

By Theorem 2.5, for any t ∈ [0, T ] and n = 1, 2, . . ., we have Y 1,n
t ≤ Y 2,n

t . Letting
n go to infinity, we get the desired result. ��
Remark 4.2 Similar result still holds for the comparison theorem if the function g
which corresponds to the d〈B〉 term is not 0.
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