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Abstract
Assume that X� ∈ R

n is a centered random vector following a multivariate normal
distributionwith positive definite covariancematrix�. Let g : Rn → C bemeasurable
and of moderate growth, say |g(x)| � (1 + |x |)N . We show that the map � �→
E[g(X�)] is smooth, andwe derive convenient expressions for its partial derivatives, in
terms of certain expectationsE[(∂αg)(X�)] of partial (distributional) derivatives of g.
Aswe discuss, this result can be used to derive bounds for the expectationE[g(X�)] of
a nonlinear function g(X�) of a Gaussian random vector X� with possibly correlated
entries. For the case when g (x) = g1(x1) · · · gn(xn) has tensor-product structure,
the above result is known in the engineering literature as Price’s theorem, originally
published in 1958. For dimension n = 2, it was generalized in 1964 by McMahon to
the general case g : R2 → C. Our contribution is to unify these results, and to give
a mathematically fully rigorous proof. Precisely, we consider a normally distributed
randomvector X� ∈ R

n of arbitrary dimension n ∈ N, andwe allow the nonlinearity g
to be a general tempered distribution. To this end,we replace the expectationE [g(X�)]
by the dual pairing 〈g, φ�〉S ′,S , where φ� denotes the probability density function of
X� .
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1 Introduction

In this introduction, we first present a precise formulation of our version of Price’s
theorem, the proof ofwhichwe defer to Sect. 4.We then briefly discuss the relevance of
this theorem: In a nutshell, it is a useful tool for estimating the expectation of a nonlinear
function g(X�) of a Gaussian random vector X� ∈ R

n with possibly correlated
entries. In Sect. 3, we consider a specific example application which illustrates this.
The relation of our result to the classical versions [6,8] of Price’s theorem is discussed
in Sect. 2.

1.1 Our Version of Price’s Theorem

Let us denote by Symn := {
A ∈ R

n×n : AT = A
}
the set of symmetric matrices, and

by

Sym+
n := {

A ∈ Symn : ∀x ∈ R
n \ {0} : 〈x, Ax〉 > 0

}

the set of (symmetric) positive definite matrices, where we write 〈x, y〉 := xT y for
the standard scalar product of x, y ∈ R

n and |x | := √〈x, x〉 for the usual Euclidean
norm. For � ∈ Sym+

n , let

φ� : Rn → (0,∞), x �→ [
(2π)n · det�]− 1

2 · e− 1
2 〈x,�−1x〉, (1.1)

and note that φ� is the density function of a centered random vector X� ∈ R
n which

follows a joint normal distributionwith covariancematrix�—that is, X� ∼ N (0, �);
see for instance [5, Chapter 5, Theorem 5.1].

Let us briefly recall the notion of Schwartz functions and tempered distributions,
which will play an important role in what follows. First, with N = {1, 2, . . . } and
N0 = {0}∪N, any α ∈ N

n
0 will be called amultiindex, andwewrite |α| = α1+· · ·+αn

as well as ∂α = ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

, and zα = zα1
1 · · · zαn

n for z ∈ C
n . Finally, given

α, β ∈ N
n
0, we write β ≤ α if β j ≤ α j for all j ∈ {1, . . . , n}. With this notation, it is

not hard to see that the density function φ� from above belongs to the Schwartz class

S(Rn) = {
g ∈ C∞(Rn;C) : ∀ α ∈ N

n
0 ∀ N ∈ N ∃ C > 0 ∀ x ∈ R

n :
|∂αg(x)| ≤ C · (1+|x |)−N

}

of smooth, rapidly decaying functions; see for instance [3, Chapter 8] for more details

on this space. In fact, φ�(x) = c� · e− 1
2 〈�−1/2x,�−1/2x〉 = c� · �(�−1/2x), where

� is the usual Gaussian function �(x) = e− 1
2 |x |2 , which is well-known to belong to

S(Rn).
The space S ′(Rn) of tempered distributions consists of all linear functionals g :

S(Rn) → C which are continuous with respect to the usual topology on S(Rn); see
[3, Sections 8.1 and 9.2] for the details. Since φ� ∈ S(Rn), given any tempered
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distribution g ∈ S ′(Rn), the function

�g : Sym+
n → C, � �→ 〈g, φ�〉S ′,S (1.2)

is well-defined, where 〈·, ·〉S ′,S denotes the (bilinear) dual pairing between S ′(Rn)

and S(Rn). As an important special case, note that if g : Rn → C is measurable and
of moderate growth, in the sense that x �→ (1 + |x |)−N · g(x) ∈ L1(Rn) for some
N ∈ N, then

�g(�) = E
[
g(X�)

]
(1.3)

is just the expectation of g(X�), where X� ∼ N (0, �). Here, we identify as usual
the function g with the tempered distribution S(Rn) → C, ϕ �→ ∫

g(x)ϕ(x) dx .
The main goal of this note is to show for each g ∈ S ′(Rn) that the function �g

is smooth, and to derive an explicit formula for its partial derivatives. Thus, at least
in the case of Equation (1.3), our goal is to calculate the partial derivatives of the
expectation of a nonlinear function g of a Gaussian random vector X� ∼ N (0, �),
as a function of the covariance matrix � of the vector X� .

In order to achieve a convenient statement of this result, we first introduce a bit
more notation: Write n := {1, . . . , n}, and let

I := {
(i, j) ∈ n × n : i ≤ j

}
, I� := {

(i, i) : i ∈ n
}
,

I< := {
(i, j) ∈ n × n : i < j

}
, (1.4)

so that I = I� � I<. Since for n > 1, the sets Symn and Sym+
n have empty interior in

R
n×n (because they only consist of symmetric matrices), it does not make sense to talk

about partial derivatives of a function � : Sym+
n → C, unless one interprets Sym+

n as
an open subset of the vector space Symn , rather than of R

n×n . As a means of fixing a
coordinate system on Symn , we therefore parameterize the set of symmetric matrices
by their “upper half”; precisely, we consider the following isomorphism between R

I

and Symn :


 : RI → Symn,
(

Ai, j
)
1≤i≤ j≤n �→

∑

i≤ j

Ai, j Ei, j +
∑

i> j

A j,i Ei, j . (1.5)

Here, we denote by (Ei, j )i, j∈n the standard basis of Rn×n , meaning that (Ei, j )k,� =
δi,k · δ j,� with the usual Dirac delta δi,k . Below, instead of calculating the partial
derivatives of�g , wewill consider the function�g◦
|U , whereU := 
−1

(
Sym+

n

) ⊂
R

I is open.
In order to achieve a concise formulation of our version of Price’s theorem, we need

two non-standard notions regarding multiindices β = (
β(i, j)

)
(i, j)∈I ∈ N

I
0. Namely,

we define the flattened version of β as

β :=
∑

(i, j)∈I

β(i, j) (ei + e j ) ∈ N
n
0 with the standard basis (e1, . . . , en) of Rn,

(1.6)
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and in addition to |β| = ∑
(i, j)∈I β(i, j), we will also use

|β|� :=
∑

(i, j)∈I�

β(i, j) =
∑

i∈n

β(i, i). (1.7)

With this notation, our main result reads as follows:

Theorem 1 (Generalized version of Price’s theorem) Let g ∈ S ′(Rn) be arbitrary.
Then the function �g ◦ 
|U : U → C is smooth and its partial derivatives are given
by

∂β
(
�g ◦ 


)
(A) = (1/2)|β|� ·〈∂β g , φ
(A)

〉
S ′,S ∀A ∈ U = 
−1(Sym+

n )∀β ∈ N
I
0.

(1.8)
Here ∂β g denotes the usual distributional derivative of g.

Remark 1 Note that even if one is in the setting of Equation (1.3) where g : Rn → C

is of moderate growth, so that �g(�) = E [g(X�)] is a “classical” expectation, it
need not be the case that the derivative ∂β g is given by a function, let alone one of
moderate growth. Therefore, it really is useful to consider the formalism of (tempered)
distributions.

1.2 Relevance of Price’s Theorem

An important application of Price’s theorem is as follows: For certain values of
the covariance matrix �, it is usually easy to precisely calculate the expectation
E [g(X�)]—for example if � is a diagonal matrix, in which case the entries of X�

are independent. As a complement to such special cases where explicit calculations
are possible, Price’s theorem can be used to obtain (bounds for) the partial derivatives
of the map � �→ E [g(X�)]. In combination with standard results from multivariable
calculus, one can then obtain bounds forE [g(X�)] for general covariancematrices�.
Thus, Price’s theorem is a tool for estimating the expectation of a nonlinear function
g(X�) of a Gaussian random vector X� , even if the entries of X� are correlated.

An example for this type of reasoning will be given in Sect. 3. There, we apply our
version of Price’s theorem to show that if f (x) = fτ (x) “clips” x ∈ R to the interval
[−τ, τ ] and if (Xα, Yα) ∼ N (0, �α) for �α = (

1 α
α 1

)
, then the map Fτ : [0, 1] →

R, α �→ E[ fτ (Xα) fτ (Yα)] is convex and satisfies Fτ (0) = 0. Thus, Fτ (α) ≤ α·Fτ (1),
where Fτ (1) is easy to bound since X1 = Y1 almost surely. These facts constitute
important ingredients in [4]; see Theorem A.4 and the proof of Lemma A.3 in that
paper.

2 Comparison with the Classical Results

The original form of Price’s theorem as stated in [8] only concerns the case when the
nonlinearity g(x) = g1(x1) · · · gn(xn) has a tensor-product structure. In this special

123



1478 Journal of Theoretical Probability (2021) 34:1474–1485

case, the formula derived in [8] is identical to the one given by Theorem 1, up to
notational differences.

This tensor-product structure assumption concerning g was removed by McMahon
[6] and Papoulis [7] in the case of Gaussian random vectors of dimension n = 2
with covariance matrix of the form � = �α = (

1 α
α 1

)
with α ∈ (−1, 1). Precisely, if

Xα ∼ N (0, �α), then [6] states for g : R2 → C that

�g : (−1, 1)→C, α �→E [g(Xα)] is smooth with �(n)
g (α)=E

[
∂2ng

∂xn
1 ∂xn

2
(Xα)

]
.

(2.1)
Based on the work by Papoulis, Brown [1] showed that Price’s theorem holds

for Gaussian random vectors X of general dimensionality and unit variance �i,i =
E[(X�)2i ] = 1, if one takes derivatives with respect to the covariances �i, j =
E[(X�)i (X�) j ] where i �= j . In this setting, Brown also showed that Price’s the-
orem characterizes the normal distribution; more precisely, if (X�)� is a (sufficiently
nice) family of random vectors with Cov(X�) = � which satisfies the conclusion of
Price’s theorem, then X� ∼ N (0, �) is necessarily normally distributed. This extends
and corrects the original work of Price [8], where a similar claim was made.

Finally,wemention the article [9] inwhich a quantum-mechanical version of Price’s
theorem is established. In Sect. 2 of that paper, the author reviews the “classical” case
of Price’s theorem, and essentially derives the same formulas as in Theorem 1.

Despite their great utility, the existing versions of Price’s theorem have some
shortcomings—at least from a mathematical perspective:

• In [1,6,8], the assumptions regarding the functions g1, . . . , gn or g are never made
explicit. In particular, it is assumed in [6,8] without justification that g1, . . . , gn or
g can be represented as the sum of certain Laplace transforms. Likewise, Papoulis
[7] assumes that g satisfies the decay condition |g(x, y)| � e|(x,y)|β for some
β < 2, but does not impose any restrictions on the regularity of g. Finally, [1] is
mainly concerned with showing that Price’s theorem only holds for normally dis-
tributed random vectors, and simply refers to [7] for the proof that Price’s theorem
does indeed hold for normal random vectors.

None of the papers [1,6–8], explains the nature of the derivative of g (classical,
distributional, etc.) which appears in the derived formula.

• In contrast, for calculating the k-th order derivatives of � �→ E[g(X�)], it is
assumed in [9] that the nonlinearity g is C2k , with a certain decay condition
concerning the derivatives. This classical smoothness of g, however, does not
hold in many applications; see Sect. 3.

Differently from [1,6–9], our version of Price’s theorem imposes precise, rather
mild assumptions concerning the nonlinearity g (namely g ∈ S ′(Rn)) and precisely
explains the nature of the derivative ∂β g that appears in the theorem statement: this
is just a distributional derivative.

Furthermore, maybe as a consequence of the preceding points, it seems that Price’s
theorem is not as well-known in the mathematical community as it deserves to be. It
is my hope that the present paper may promote this result.
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Before closing this section, we prove that—assuming g to be a tempered
distribution—the result of [6,7] is indeed a special case of Theorem 1. With simi-
lar arguments, one can show that the forms of Price’s theorem considered in [1,8,9]
are covered by Theorem 1 as well.

Corollary 1 Let g ∈ S ′(R2). For α ∈ (−1, 1), let �α := (
1 α
α 1

)
. Let

�g : (−1, 1) → C, α �→ 〈g, φ�α 〉S ′,S ,

where φ�α : R
2 → (0,∞) denotes the probability density function of Xα ∼

N (0, �α).

Then �g is smooth with n-th derivative �
(n)
g (α) =

〈
∂2n g

∂xn
1 ∂xn

2
, φ�α

〉

S ′,S for α ∈
(−1, 1).

Remark 2 In particular, if both g and the (distributional) derivative ∂2n g
∂xn

1 ∂xn
2
are given

by functions of moderate growth, then Equation (2.1) holds, i.e.,

dn

dαn
E
[

g(Xα)
] = E

[
∂2ng

∂xn
1 ∂xn

2
(Xα)

]
.

Proof of Corollary 1 In the notation of Theorem 1, we have

�g(α) = (
�g ◦ 


) (
A(α)

)
with A(α)

i, j =
{
1, if i = j,

α, if i �= j

for (i, j) ∈ I = {(1, 1), (1, 2), (2, 2)}.

Since 

(

A(α)
) = �α is easily seen to be positive definite, we have A(α) ∈ U . Now,

setting β := n · e(1,2) ∈ N
I
0 (with the standard basis e(1,1), e(1,2), e(2,2) of RI ), the

flattened version β of β satisfies β = ne1 + ne2 = (n, n). Thus, Theorem 1 and the
chain-rule show that �g is smooth, with

�(n)
g (α) = dn

dαn

[
(�g ◦ 
)

(
A(α)

)] = [
∂β(�g ◦ 
)

] (
A(α)

)

= 〈
∂β g , φ
(A(α))

〉
S ′,S =

〈
∂2ng

∂xn
1 ∂xn

2
, φ�α

〉

S ′,S
.

��

3 An Example of an Application of Price’s Theorem

In this section, we derive bounds for the expectation E[ fτ (Xα) fτ (Yα)], where Xα, Yα

follow a joint normal distribution with covariance matrix
(
1 α
α 1

)
, and where the non-

linearity fτ is just a truncation (or clipping) to the interval [−τ, τ ]. We remark that this
example has already been considered by Price [8] himself, but that his arguments are
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not completely mathematically rigorous, as explained in Sect. 2. Precisely, we obtain
the following result:

Lemma 1 Let τ > 0 be arbitrary, and define

fτ : R → R, x �→

⎧
⎪⎨

⎪⎩

τ, if x ≥ τ,

x, if x ∈ [−τ, τ ],
−τ, if x ≤ −τ.

For α ∈ [−1, 1], set �α := (
1 α
α 1

)
, and let (Xα, Yα) ∼ N (0, �α). Finally, define

Fτ : [−1, 1] → R
2, α �→ E

[
fτ (Xα) · fτ (Yα)

]
.

Then Fτ is continuous and Fτ |[0,1] is convex with Fτ (0) = 0. In particular, Fτ (α) ≤
α · Fτ (1) for all α ∈ [0, 1].
Proof It is easy to see that fτ is bounded and Lipschitz continuous, so that fτ ∈
W 1,∞(R) with weak derivative f ′

τ = 1(−τ,τ ). Therefore, using the notation (g ⊗
h)(x, y) = g(x) h(y), we see that gτ := fτ ⊗ fτ ∈ W 1,∞(R2) ⊂ S ′(R2), with weak

derivative ∂2gτ

∂x1∂x2
= 1(−τ,τ ) ⊗ 1(−τ,τ ) = 1(−τ,τ )2 . Directly from the definition of the

weak derivative, in combination with Fubini’s theorem and the fundamental theorem
of calculus, we thus see for each φ ∈ S(R2) that

〈
∂4 gτ

∂x21∂x22
, φ

〉

S ′,S
=
〈

∂2 gτ

∂x1∂x2
,

∂2φ

∂x1∂x2

〉

S ′,S
=
∫ τ

−τ

∫ τ

−τ

( ∂2φ

∂x1∂x2

)
(t1, t2) dt1 dt2

=
∫ τ

−τ

( ∂φ

∂x2

)
(τ, t2) −

( ∂φ

∂x2

)
(−τ, t2) dt2

= φ(τ, τ ) − φ(−τ, τ ) − φ(τ,−τ) + φ(−τ,−τ).

Now, Corollary 1 shows that Fτ |(−1,1) = �gτ is smooth with

F ′′
τ (α) =

〈
∂4gτ

∂x21∂x22
, φ�α

〉

S ′,S
= φ�α(τ, τ ) − φ�α(−τ, τ ) − φ�α(τ,−τ) + φ�α(−τ,−τ)

for α ∈ (−1, 1). We want to show F ′′
τ (α) ≥ 0 for α ∈ [0, 1). Since φ�α is symmetric,

it suffices to show φ�α(τ, τ ) − φ�α(−τ, τ ) ≥ 0, which is easily seen to be equivalent
to

exp

(
− 1

2(1 − α2)
(2τ 2 − 2ατ 2)

) !≥ exp

(
− 1

2(1 − α2)
(2τ 2 + 2ατ 2)

)

⇐⇒ 2τ 2 + 2ατ 2
!≥ 2τ 2 − 2ατ 2 ⇐⇒ 4ατ 2

!≥ 0,
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which clearly holds for α ∈ [0, 1).
To finish the proof, we only need to show that Fτ is continuous with Fτ (0) = 0.

To see this, let (X , Z) ∼ N (0, I2), with the 2-dimensional identity matrix I2. For
α ∈ [−1, 1], it is then not hard to see that Yα := αX +√

1 − α2Z satisfies (X , Yα) ∼
N (0, �α). Therefore, we see for α, β ∈ [−1, 1] that

|Fτ (α) − Fτ (β)| = ∣∣E [gτ (X , Yα)] − E
[
gτ (X , Yβ)

] ∣∣

= ∣∣E
[

fτ (X) · ( fτ (Yα) − fτ (Yβ)
)]∣∣

(since | fτ (X)|≤τ) ≤ τ · E ∣∣ fτ (Yα) − fτ (Yβ)
∣∣

(since fτ is 1-Lipschitz) ≤ τ · E ∣∣Yα − Yβ

∣∣

≤ τ · |α − β| · E|X | + τ ·
∣∣∣∣
√
1 − α2 −

√
1 − β2

∣∣∣∣ · E|Z | −−−→
β→α

0,

which shows that Fτ is indeed continuous. Furthermore, we see by independence of
X , Z that

Fτ (0) = E[ fτ (X) · fτ (Z)] = E[ fτ (X)] · E[ fτ (Z)] = 0,

since E[ fτ (X)] = −E[ fτ (−X)] = −E[ fτ (X)], because of X ∼ −X and fτ (x) =
− fτ (−x) for x ∈ R. ��

4 The Proof of Theorem 1

The main idea of the proof is to use Fourier analysis, since the Fourier transformFφ�

of the density function φ� will turn out to be much easier to handle than φ� itself.
This is similar to the approach in [1,7] but slightly different from the approach in [6,8],
where the Laplace transform is used instead.

For the Fourier transform, we will use the normalization

Fϕ(ξ) := ϕ̂ (ξ) :=
∫

R
n
ϕ(x) · e−i〈x,ξ〉 dx for ξ ∈ R

n and ϕ ∈ L1(Rn).

It is well-known that the restriction F : S(Rn) → S(Rn) of F is a well-defined
homeomorphism, with inverse F−1 : S(Rn) → S(Rn), where F−1ϕ(x) = (2π)−n ·
Fϕ(−x). By duality, the Fourier transform also extends to a bijection F : S ′(Rn) →
S ′(Rn) defined 1 by 〈Fg, ϕ〉S ′,S := 〈g, Fϕ〉S ′,S for g ∈ S ′(Rn) and ϕ ∈ S(Rn).
Further, it is well-known for the distributional derivatives ∂αg of g ∈ S ′(Rn) defined
by 〈∂αg, ϕ〉S ′,S = (−1)|α| · 〈g, ∂αϕ〉S ′,S that if we set

Xα · ϕ : Rn → C, x �→ xα · ϕ(x) and 〈Xα · g, ϕ〉S ′,S = 〈g, Xα · ϕ〉S ′,S

1 This definition is motivated by the identity
∫

f̂ (x) · g(x)dx = ∫ ∫
f (ξ)e−i〈x,ξ 〉g(x)dξdx =∫

f (ξ)ĝ(ξ)dξ which is valid for f , g ∈ L1 (
R

n) thanks to Fubini’s theorem.
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for g ∈ S ′(Rn) and ϕ ∈ S(Rn), then we have

F [
∂αg

] = i |α| · Xα · Fg ∀ g ∈ S ′(Rn), α ∈ N
n
0 . (4.1)

These results can be found e.g., in [2, Chapter 14], or (with a slightly different nor-
malization of the Fourier transform) in [3, Sections 8.3 and 9.2].

Finally, we will use the formula

(2π)n · F−1φ�(ξ) =
∫

R
n
ei〈x,ξ〉 φ�(x) dx = E

[
ei〈ξ,X�〉]

= e− 1
2 〈ξ,�ξ 〉 =: ψ�(ξ) for ξ ∈ R

n, (4.2)

which is proved in [5,Chapter 5,Theorem4.1]; in probabilistic terms, this is a statement
about the characteristic function of the random vector X� ∼ N (0, �).

Next, by the assumption of Theorem 1, we have g ∈ S ′(Rn) and hence Fg ∈
S ′(Rn). Thus, by the structure theorem for tempered distributions (see for instance [2,
Theorem 17.10]), there are L ∈ N, certain α1, . . . , αL ∈ N

n
0 and certain polynomially

bounded, continuous functions f1, . . . , fL : Rn → C satisfying Fg = ∑L
�=1 ∂α� f�,

i.e., g = ∑L
�=1 F−1(∂α� f�). Since both sides of the target identity (1.8) are linear

with respect to g, we can thus assume without loss of generality that g = F−1(∂α f )

for some α ∈ N
n
0 and some continuous f : Rn → C which is polynomially bounded,

say | f (ξ)| ≤ C · (1+ |ξ |)N for all ξ ∈ R
n and certain C > 0, N ∈ N0. We thus have

�g(�) = 〈g, φ�〉S ′,S =
〈
g, FF−1φ�

〉

S ′,S =
〈
Fg, F−1φ�

〉

S ′,S
(Eq. (4.2)) = (2π)−n · 〈∂α f , ψ�

〉
S ′,S

= (−1)|α| · (2π)−n · 〈 f , ∂αψ�

〉
S ′,S

= (−1)|α| · (2π)−n ·
∫

R
n

f (ξ) · (∂αψ�

)
(ξ) dξ for all � ∈ Sym+

n .

(4.3)
Our first goal in the remainder of the proof is to show that one can justify “differen-
tiation under the integral” with respect to Ai, j with � = 
(A) in the last integral in
Equation (4.3).

It is easy to see that A �→ ψ
(A)(ξ) is smooth, with partial derivative

∂Ai, j ψ
(A)(ξ) = e− 1
2 〈ξ,
(A)ξ 〉 · ∂Ai, j

(
− 1

2
·

n∑

k,�=1

[

(A)

]
k,�

· ξkξ�

)

=
{

− 1
2 · ξi ξ j · ψ
(A)(ξ), if i = j,

−ξi ξ j · ψ
(A)(ξ), if i < j

for all ξ ∈ R
n and arbitrary (i, j) ∈ I and A ∈ U . Given β ∈ N

I
0, let us write ∂

β
A

for the partial derivative of order β with respect to A ∈ R
I . Then, a straightforward
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induction using the preceding identity shows (with |β|� and β as in (1.7) and (1.6))
that

∂
β
A ψ
(A)(ξ) = (−1)|β| ·

(
1

2

)|β|�
· ξβ · ψ
(A)(ξ) ∀ β ∈ N

I
0, ξ ∈ R

n, A ∈ U .

(4.4)
Next, we show for arbitrary γ ∈ N

n
0 that there is a polynomial pα,γ = pα,γ (�, B)

in the variables � ∈ R
n and B ∈ R

n×n that satisfies

∂α
ξ

[
ξγ · ψ�(ξ)

] = pα,γ (ξ,�) · ψ�(ξ) ∀ � ∈ Sym+
n , ξ ∈ R

n . (4.5)

To see this, we first note that a direct computation using the identity ∂ξi (ξk ξ�) =
δi,k ξ� + δi,� ξk and the symmetry of � shows that ∂ξi ψ�(ξ) = −(� ξ)i · ψ�(ξ). By
induction, and since (� ξ)i is a polynomial in ξ,�, we therefore see that for each
β ∈ N

n
0 there is a polynomial pβ = pβ(�, B) in the variables � ∈ R

n and B ∈ R
n×n

satisfying ∂
β
ξ ψ�(ξ) = ψ�(ξ) · pβ(ξ,�). Therefore, the Leibniz rule shows

∂α
ξ

[
ξγ ψ�(ξ)

] =
∑

β∈N
n
0 with β≤α

(
α

β

)
∂βψ�(ξ) · ∂α−βξγ

= ψ�(ξ)
∑

β∈N
n
0 with β≤α

(
α

β

)
pβ(ξ,�) ∂α−βξγ ,

which proves Equation (4.5).
Now we are ready to justify differentiation under the integral (as in [3, Theo-

rem 2.27]) for the last integral appearing in Equation (4.3), with � = 
(A), that is,
for the function

U → C, A �→
∫

R
n

f (ξ) · (∂αψ
(A)

)
(ξ) dξ.

Indeed, let A0 ∈ U be arbitrary. Since U is open, there is some ε > 0 satisfying
Bε(A0) ⊂ U , for the closed ball Bε(A0) = {

A ∈ R
I : |A − A0| ≤ ε

}
, with the

Euclidean norm | · | on R
I . The open ball Bε(A0) is defined similarly.

Now, with

σmin(A) := inf
x∈R

n

|x |=1

〈x, Ax〉 for A ∈ R
n×n

we have for A, B ∈ R
n×n and arbitrary x ∈ R

n with |x | = 1 that

σmin(A) ≤ 〈x, Ax〉 = 〈x, Bx〉 + 〈x, (A − B)x〉 ≤ 〈x, Bx〉 + ‖A − B‖ .

Since this holds for all |x | = 1, we get σmin(A) ≤ σmin(B) + ‖A − B‖, and by
symmetry |σmin(A) − σmin(B)| ≤ ‖A − B‖ . Therefore, the continuous function
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A �→ σmin
(

(A)

)
has a positive(!) minimum on the compact set Bε(A0), so that

〈ξ,
(A)ξ 〉 ≥ c · |ξ |2 for all ξ ∈ R
n and A ∈ Bε(A0), for a positive c > 0. Further-

more, there is some K = K (A0) > 0 with ‖
(A)‖ ≤ K for all A ∈ Bε(A0).
Now, since the map U × R

n � (A, ξ) �→ ψ
(A)(ξ) ∈ C is smooth, we have (in
view of Equations (4.4) and (4.5)) for arbitrary β ∈ N

I
0, A ∈ U and ξ ∈ R

n that

∂
β
A

[
f (ξ) · (∂αψ
(A)

)
(ξ)
] = f (ξ) · ∂α

ξ

[
∂

β
A ψ
(A)(ξ)

]

(Eq. (4.4)) = f (ξ) · (−1)|β| ·
(
1

2

)|β|�
· ∂α

ξ

[
ξβ · ψ
(A)(ξ)

]

(Eq. (4.5)) = f (ξ) · (−1)|β| ·
(
1

2

)|β|�
· pα,β (ξ,
(A)) · ψ
(A)(ξ).

(4.6)
Using the polynomial growth restriction concerning f , we thus see that there is a

constant Cα,β > 0 and some Mα,β ∈ N with

∣∣∣∂β
A

[
f (ξ) · (∂αψ
(A)

)
(ξ)
]∣∣∣ =

∣∣∣∣∣
f (ξ) ·

(
1

2

)|β|�
· pα,β (ξ,
(A)) · ψ
(A)(ξ)

∣∣∣∣∣

≤ C · (1+|ξ |)N · Cα,β · (1 + |ξ | + ‖
(A)‖)Mα,β ·
e− 1

2 〈ξ,
(A)ξ 〉

≤ Cα,βC · (1 + |ξ |)N · (1 + |ξ | + K )Mα,β · e− c
2 |ξ |2

=: hα,β,A0, f (ξ),

for all ξ ∈ R
n and all A ∈ Bε(A0). Since hα,β,A0, f is independent of A ∈ Bε(A0)

and since we clearly have hα,β,A0, f ∈ L1(Rn), [3, Theorem 2.27] and Equation (4.3)
show that the function

Bε(A0) → C, A �→ (−1)|α| · (2π)n · �g(
(A)) =
∫

R
n

f (ξ) · (∂αψ
(A)

)
(ξ) dξ

is smooth, with partial derivative of order β ∈ N
I
0 given by

∂
β
A

[
(−1)|α| · (2π)n · �g(
(A))

]
=
∫

R
n
∂

β
A

[
f (ξ) (∂α

ξ ψ
(A))(ξ)
]

dξ

(Eq. (4.6)) = (−1)|β| ·
(
1

2

)|β|�
·
∫

R
n

f (ξ) · ∂α
ξ

(
ξβ · ψ
(A)(ξ)

)
dξ

= (−1)|β| ·
(
1

2

)|β|�
· 〈 f , ∂α

[
Xβ · ψ
(A)

]〉
S ′,S

(Eq. (4.2)) = (−1)|β|+|α| ·
(
1

2

)|β|�
· (2π)n ·

〈
Xβ · ∂α f , F−1φ
(A)

〉

S ′,S
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(
g=F−1(∂α f ), Eq. (4.1), and (−1)|β|= i |β|)

=
(
1

2

)|β|�
· (2π)n · (−1)|α| ·

〈
F[∂β g], F−1φ
(A)

〉

S ′,S .

In combination, this shows that �g ◦ 
 is smooth on Bε(A0), with partial derivatives
given by

∂β
[
�g ◦ 


]
(A) =

(
1

2

)|β|�
·
〈
F[∂β g

]
, F−1φ
(A)

〉

S ′,S

=
(
1

2

)|β|�
· 〈∂β g, φ
(A)

〉
S ′,S ,

as claimed. Since A0 ∈ U was arbitrary, the proof is complete. ��
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