
Journal of Theoretical Probability (2021) 34:1426–1454
https://doi.org/10.1007/s10959-020-01006-z

General Bernstein-Like Inequality for Additive Functionals
of Markov Chains

Michał Lemańczyk1
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Abstract
Using the renewal approach,we proveBernstein-like inequalities for additive function-
als of geometrically ergodicMarkov chains, thus obtaining counterparts of inequalities
for sums of independent random variables. The coefficient in the sub-Gaussian part
of our estimate is the asymptotic variance of the additive functional, i.e., the vari-
ance of the limiting Gaussian variable in the central limit theorem for Markov chains.
This refines earlier results by Adamczak and Bednorz, obtained under the additional
assumption of strong aperiodicity of the chain.
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1 Introduction

Throughout this paper, we assume that ϒ = (ϒn)n∈N is a Markov chain defined on
a probability space (�,F , P), taking values in a measurable (countably generated)
space (X ,B), with a transition function P : X × B → [0, 1]. Moreover, we assume
that ϒ is ψ-irreducible and aperiodic and admits a unique invariant probability
measure π . As usual for any initial distribution μ on X , we will write Pμ (ϒ ∈ ·) for
the distribution of the chain with ϒ0 distributed according to the measure μ. We will
denote by δx the Dirac’s mass at x , and to shorten the notation, we will use Px instead
of Pδx .
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We say that ϒ is geometrically ergodic if there exists a positive number ρ < 1
and a real function G : X → R such that for every starting point x ∈ X and n ∈ N,

∥
∥Pn(x, ·) − π(·)∥∥T V ≤ G(x)ρn, (1.1)

where ‖ · ‖T V denotes the total variation norm of a measure and Pn(·, ·) is the n-step
transition function of the chain. For equivalent conditions, we refer to Chapter 15 of
[22].

We will be interested in tail inequalities for sums of random variables of the form

Px
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where f : X → R is a measurable real function and x ∈ X is a starting point.
Although our main results, stated in Sect. 4, do not require f to be bounded, we give
here a version in the bounded case for the sake of simplicity. This version will be
easier to compare to the Bernstein inequality for bounded random variables stated in
Sect. 2 (cf. Theorem 2.1). Below for convenience, we set log(·) = ln(· ∨ e), where
ln(·) is the natural logarithm.

Theorem 1.1 (Bernstein-like inequality for Markov chains) Let ϒ be a geometrically
ergodicMarkov chainwith state spaceX , and letπ be its unique stationary probability
measure. Moreover, let f : X → R be a bounded measurable function such that
Eπ f = 0. Furthermore, let x ∈ X . Then, we can find constants K , τ > 0 depending
only on x and the transition probability P(·, ·) such that for all t > 0,

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ K exp

(

− t2

32nσ 2
Mrv + τ t‖ f ‖∞ log n

)

,

where

σ 2
Mrv = Varπ ( f (ϒ0)) + 2

∞
∑

i=1

Covπ ( f (ϒ0), f (ϒi )) (1.2)

denotes the asymptotic variance of the process ( f (ϒi ))i .

Remark 1.2 We refer to Theorem 4.3 for a more general counterpart of Theorem 1.1
and to Theorem 4.4 for explicit formulas for K and τ .

Let us comment briefly on the method of proof. We rely on the by now classical
regeneration technique of Athreya–Ney and Nummelin (see [3,22,23]), which allows
to split the sum in question into a random number of 1-dependent blocks of random
lengths. In the context of tail inequalities, this approach has been successfully used,
e.g., in [1,2,6,7,10,12] and provides Bernstein inequalities of optimal type under an
additional assumption of strong aperiodicity of the chain (corresponding to m = 1
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in (3.1)), which ensures that the blocks are independent and allow for a reduction to
inequalities for sums of i.i.d. randomvariables. However, in the general case the imple-
mentation of this method available in the literature leads to loss of correlation structure
and as a consequence to suboptimal sub-Gaussian coefficient in Bernstein’s inequality
(in place of σ 2

Mrv). Our main technical contribution is to propose a regeneration-based
approach which allows to preserve the correlation structure and recover the correct
asymptotic behavior, corresponding to the CLT for Markov chains.

The organization of the article is as follows. After a brief discussion of our results
(Sect. 2), we introduce the notation and provide a short description of the regeneration
method (Sect. 3). Next, we state ourmain theorems at their full strength (Sect. 4). At the
end, we present their proofs (Sect. 7). Along the way, we develop auxiliary theorems
for 1-dependent random variables (Sect. 5) and bounds on number of regenerations
(Sect. 6). Some technical lemmas concerning exponential Orlicz norms are deferred
to Appendix.

2 Discussion of theMain Result

Let us start by recalling the Bernstein inequality in the i.i.d. bounded case.

Theorem 2.1 (Classical Bernstein inequality) If (ξi )i is a sequence of i.i.d. centered
random variables such that supi ‖ξi‖∞ ≤ M, then for σ 2 = Eξ2i and any t > 0,

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

ξi

∣
∣
∣
∣
∣
≥ t

)

≤ 2 exp

(

− t2

2nσ 2 + 2
3Mt

)

.

Let us recall that the CLT for Markov chains (see, e.g., [9,22,23]) guarantees that
under assumptions and notation of Theorem 1.1, the sums 1√

n

∑n−1
i=0 f (ϒi ) converge

in distribution to the normal distribution N (0, σ 2
Mrv). Thus, the inequality obtained

in Theorem 1.1 reflects (up to constants) the asymptotic normal behavior of the sums
1√
n

∑
f (ϒi ) similarly as the classical Bernstein inequality in the i.i.d. context. Fur-

thermore, the term log n which appears in our inequality is necessary. More precisely,
one can show that if the following inequality holds for all t > 0:
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)

≤ const · exp
(

− t2

const · nσ 2 + const(x) · ant‖ f ‖∞

)

(2.1)

for some an = o(n) and σ ∈ R (const’s stand for some absolute constants, whereas
const(x) depends only on x and the Markov chain), then one must have σ 2 ≥ const ·
σ 2
Mrv . Moreover, it is known that for some geometrically ergodic chains an must grow

at least logarithmically with n (see [1], Section 3.3).
Concentration inequalities for Markov chains and processes have been thoroughly

studied in the literature, the (non-comprehensive) list of works concerning this topic
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includes [1,2,6,7,10–13,15–17,19,20,24,25,27]. Some results are devoted to concen-
tration for general functions of the chain (they are usually obtained under various
Lipschitz or bounded difference type conditions); others specialize to additive func-
tionals, which are the object of study in our case. Tail inequalities for additive
functionals are usually counterparts ofHoeffding or Bernstein inequalities. The former
ones do not take into account the variance of the additive functional and are expressed
in terms of ‖ f ‖∞ only. They can be often obtained as special cases of concentra-
tion inequalities for general function (see, e.g., [11,24,25]). Bernstein-type estimates
of the form (2.1) are considered, e.g., in [1,2,6,7,10,12,13,16,17,19,20,24,27] and
use various variance proxies σ 2, which do not necessarily coincide with the limiting
variance σ 2

Mrv . In the continuous time case, inequalities of Bernstein type for the nat-
ural counterpart of the additive functional, involving asymptotic variance, have been
obtained under certain spectral gap or Lyapunov-type conditions in [13,16]. For dis-
crete time Markov chains, inequalities obtained in [1,2,7,10,12] by the regeneration
method give (2.1) (under various types of ergodicity assumptions and with various
parameters an) with σ 2, which coincides with σ 2

Mrv only under additional assump-
tion of strong aperiodicity of the chain. On the other hand, the articles [19,20,25,27]
provide more general results, available for non-necessarily Markovian sequences of
random variables, satisfying various types of mixing conditions. The variance proxies
σ 2 that are used in these references are close to the asymptotic variance and how-
ever in general do not coincide with it. For instance, the inequality obtained in [19],
which is valid in particular for geometrically ergodic chains, uses (in our notation)
σ 2 = Varπ ( f (ϒ0))+ 2

∑∞
i=1 |Covπ ( f (ϒ0), f (ϒi ))|. Comparing with (1.2), one can

see thatσ 2
Mrv ≤ σ 2. In fact, one can construct exampleswhen the ratio between the two

quantities is arbitrarily large or even σ 2
Mrv = 0 and σ 2 > 0. Reference [27] provides an

inequality for uniformly geometrically ergodic processes, involving a certain implic-
itly defined variance proxy σ 2

n , which may be bounded from above by σ 2 from [19] or
byVarπ ( f (ϒ0))+C‖ f ‖∞Eπ | f (ϒ0)|, whereC is a constant depending on themixing
properties of the process. For a fixed process, in the non-degenerate situation, when the
asymptotic variance is nonzero, it can be substituted for σ 2

n at the cost of introducing
additional multiplicative constants, depending on the chain and the function f .

To the best of our knowledge, Theorem 1.1 is therefore the first tail inequality
available for general geometrically ergodic Markov chains (not necessarily strongly
aperiodic), which (up to universal constants) reflects the correct limiting Gaussian
behavior of additive functionals. The problem of obtaining an inequality of this type
was posed in [2]. Let us remark that quantitative investigation of problems related to the
central limit theorems for general aperiodic Markov chains seems to be substantially
more difficult than for chainswhich are strongly aperiodic. For instance, optimal strong
approximation results are still known only in the latter case [21].

3 Notation and Basic Properties

For any k, l ∈ Z, k ≤ l, we define integer intervals of consecutive integers

[k, l]={k, k+1, . . . , l} , [k, l)={k, k+1, . . . , l−1} , [k,∞)={k, k+1, . . .} .
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For any process X = (Xi )i∈N and S ⊂ N, we put

XS = (Xi )i∈S , FX =
(

FX
i

)

i∈N , FX
i = σ

(

X[0,i]
)

.

Moreover, for k ∈ N we define the corresponding vectorized process

X(k) =
(

X (k)
i

)

i∈N , X (k)
i = X[ik,(i+1)k).

Definition 3.1 (Stationarity) We say that a process (Xn)n∈N is stationary if for any
k ∈ N the shifted process (Xn+k)n∈N has the same distribution as (Xn)n∈N.

Definition 3.2 (m-dependence) Fix m ∈ N. We say that (Xn)n∈N is m-dependent if
for any k ∈ N the process (Xn)n≤k is independent of the process (Xn)n≥m+1+k .

Remark 3.3 Let us note that a process (Xn)n∈N is 0-dependent iff the variables (Xn)n∈N
are independent. Finally, let us give a natural example of a 1-dependent process
(Xn)n∈N. Fix an independent process (ξn)n∈N and a Borel, real function h : R

2 → R.
Then, (h(ξn, ξn+1))n∈N is 1-dependent. Such processes are called two-block factors.
It is worth noting that there are 1-dependent processes which are not two-block factors
(see [8]).

Remark 3.4 Assume that a process (Xn)n∈N is m-dependent. Then for any n0 ∈ N,
the process (Xn0+k(m+1))k∈N is independent. Moreover, if the process (Xn)n∈N is
stationary, then for any n0 ∈ N, (Xn0+k(m+1))k∈N is a collection of i.i.d. random
variables.

3.1 Split Chain

As already mentioned in the Introduction, our proofs will be based on the regeneration
technique which was invented independently by Nummelin and Athreya–Ney (see [3]
and [23]) and was popularized by Meyn and Tweedie [22]. We will introduce the
split chain and then regeneration times of the split chain. The construction of the split
chain is well known, and as references, we recommend [22] (Chaps. 5,17) and [23].
We briefly recall this technique below. Let us stress that although this construction
is based on the one presented in [22], our notation is slightly different. Firstly, let us
recall the minorization condition for Markov chains which plays a main role in the
splitting technique.

Definition 3.5 We say that a Markov chain ϒ satisfies the minorization condition if
there exists a set C ∈ B(X ) (called a small set), a probability measure ν onX (a small
measure), a constant δ > 0 and a positive integer m ∈ N such that π(C) > 0 and

Pm(x, B) ≥ δν(B) (3.1)

holds for all x ∈ C and B ∈ B(X ).
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Remark 3.6 One can assume that ν(C) = 1 (possibly at the cost of increasing m).

Remark 3.7 One can check that under assumptions of our theorem, the minorization
condition (3.1) holds for some C , ν, δ and m. We refer to [22], Section 5.2 for the
proof of this fact.

Fix C , m, ν and δ > 0 as in (3.1). The minorization condition allows us to redefine
the chain ϒ together with an auxiliary regeneration structure. More precisely, we start
with a splitting of the space X into two identical copies on level 0 and 1, namely we
considerX = X ×{0, 1}. Now, we splitϒ in the followingway.We consider a process
� = (ϒ,�) = (ϒi ,�i )i≥0 (usually called the split chain) defined onX . (We slightly
abuse the notation by denoting the first coordinate of the split chain with the same
letter as for the initial Markov chain, but it will turn out that the first coordinate of the
split chain has the same distribution as the starting Markov chain, so this notation is
justified.) The random variables �k take values in {0, 1}. (They indicate the level on
which �k is.) For a fixed x ∈ C , let

r(x, y) = δν(dy)

Pm(x, dy)
(3.2)

and note that the above Radon–Nikodym derivative is well defined thanks to (3.1).
Moreover, r(x, y) ≤ 1. Now, for any A1, . . . , Am ∈ B(X ), k ∈ N and i ∈ {0, 1} set

P

(

�km = i, ϒ[km+1,(k+1)m] ∈ A1 × · · · × Am | Fϒ
km,F�

km−m, ϒkm = x
)

= P
(

�0 = i, ϒ[1,m] ∈ A1 × · · · × Am | ϒ0 = x
)

=
∫

A1

· · ·
∫

Am

r(x, xm, i)P(xm−1, dxm)P(xm−2, dxm−1) . . . P(x, dx1),

(3.3)

where

r(x, y, i) =
{

1x∈C r(x, xm), if i = 1,
1 − 1x∈C r(x, xm), if i = 0.

(3.4)

Moreover, for any k, i ∈ N such that km < i < (k + 1)m we set

�i = �km . (3.5)

Remark 3.8 (Initial distribution for the split chain) In order to be able to set initial
distribution for the split chain for arbitrary probability measure μ onX , we define the
split measure μ∗ on X by:

μ∗(A × {i}) =
{

(1 − δ)μ(C ∩ A) + μ(A ∩ Cc), if i = 0,
δμ(C ∩ A), if i = 1.

(3.6)
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Such definition ensures that (ϒ0,�0) ∼ μ∗ as soon asϒ0 ∼ μ. For convenience sake,
for any x ∈ X , we will write

Px∗(·) = Pδ∗
x
(·). (3.7)

Remark 3.9 (Markov-like properties of the split chain) In order to give some intuition
behind the definition of the split chain, note that the distribution of the first coordinate
of the split chain � with initial distribution μ∗ coincides with that of the original
Markov chainϒ which starts fromμ. From now on,ϒ always corresponds to this first
coordinate of the split chain. One can easily generalize (3.3) to show the following
Markov-like property of the split chain: For any k ∈ N and product measurable
bounded function F , we have

E

(

F
(

ϒ[km+1,∞), �[km,∞)

) | Fϒ
km,F�

km−m

)

=E
(

F
(

ϒ[km+1,∞), �[km,∞)

) | ϒkm
)

.

(3.8)

This, in turn, leads to the fact that the vectorized split chain �(m) is a Markov chain.
Even more, for any product measurable bounded function F and k ∈ N we have

E

(

F
(

�
(m)
[k,∞)

)

| �
(m)
[0,k)

)

= E

(

F
(

�
(m)
[k,∞)

)

| �
(m)
k−1

)

= E

(

F
(

�
(m)
[k,∞)

)

| ϒmk−m, ϒmk−1,�mk−m

)

.

Now, we can introduce the aforementioned regeneration structure for �. Firstly, we
define certain stopping times. For convenience, we put τ−1 = −m, and then, for i ≥ 0
we define τi to be the i th time when the second coordinate (level coordinate) hits 1,
namely

τi = min{k > τi−1
∣
∣ �k = 1, m|k}. (3.9)

Now, we are ready to introduce the random blocks and the random block process


i = ϒ[τi−1+m,τi+m), � = (
i )i≥0 , (3.10)

where we consider
i as a random variable with values in the disjoint union
⊔

j≥0 X j .
For clarity of this presentation, here and later on, we omit the measurability details.

Remark 3.10 Let us now briefly discuss the behavior of these random blocks. Firstly,
by the strong Markov property of the vectorized split chain it is not hard to see that
� is a Markov chain. On a closer look, one can see that for any product measurable
function F

E
(

F
(


[i,∞)

) | 
[0,i)
) = E

(

F
(


[i,∞)

) | 
i−1
) = E

(

F
(


[i,∞)

) | prm (
i−1)
)

,

(3.11)
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where prm : ⊔ j≥m X j → Xm is a projection on m-last coordinates,

prm
(

x0, . . . , x j
) = (

x j−m+1, . . . , x j
)

. (3.12)

Apart from being Markovian, the sequence (
i )i≥0 is 1-dependent, whereas (
i )i≥1
is stationary (see [9], Corollary 2.4). The stationarity follows from the fact that for
m|k, we have

L (ϒk+m | �k = 1) = ν, (3.13)

that is, every time k (which is a multiple ofm) the split chain is on level 1 (note that this
impliesϒk ∈ C) and the split chain regenerates and starts anew from ν. Furthermore,
the lengths of 
i :

|
i | = τi − τi−1, (3.14)

are independent random variables for i ≥ 0 and form a stationary process for i ≥ 1.
Let us add that if m = 1, one can show that 
i ’s are independent. This fact makes
a crucial difference between strongly aperiodic and not strongly aperiodic Markov
chains (see [5, Section 6]).

At last, let us introduce the excursions and the excursion process

χi = χi ( f ) =
τi+1+m−1

∑

j=τi+m

f (ϒ j ), χ = (χi )i≥0 , (3.15)

which will play a crucial role in our future considerations. By properties of the random
blocks, one concludes that χ is 1-dependent and satisfies

E
(

χi | 
[0,i]
) = E (χi | 
i ) . (3.16)

Moreover, (χi )i≥1 is stationary. Due to the Pitman occupation measure formula (see,
[22], Theorem 17.3.1, page 428) which says that for any measurable real function G,

Eν

τ0/m∑

i=0

G(ϒmi ,�mi ) = δ−1π(C)−1
EπG(ϒ0,�0), (3.17)

and observation that Pμ-distribution of excursion χi ( f ) (i ≥ 1) is equal to the Pν

-distribution of χ0, we get that for any initial distribution μ and any i ≥ 1,

Eμχi = Eνχ0 = δ−1π(C)−1m
∫

f dπ. (3.18)
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As a consequence, Eπ f (ϒi ) = 0 implies that for every i ≥ 1, Eμχi ( f ) = 0. Now,
we are ready to decompose our sums into random blocks. If m|n, then

n−1
∑

i=0

f (ϒi ) =
⎛

⎝

τ0/m∑

i=0

�i1N>0 + 1N=0

n/m−1
∑

i=0

�i

⎞

⎠ +
(

N
∑

i=1

χi−1( f )

)

−
(

1N>0

τN+m−1
∑

k=n

f (ϒk)

)

, (3.19)

where

�k = �k( f ) =
m−1
∑

i=0

f (ϒkm+i ), N = inf{i ≥ 0 | τi + m − 1 ≥ n − 1}.

(3.20)

This decomposition will be of utmost importance in our proof.

3.2 Asymptotic Variances

During the upcoming proofs, we will meet two types of asymptotic variances: σ 2
Mrv

associatedwith the process ( f (ϒi ))i≥0 andσ 2∞ associatedwithχ . The first one defined
as

σ 2
Mrv = lim

n→∞
1

n
Var ( f (ϒ0) + · · · + f (ϒn−1))

= Varπ ( f (ϒ0)) + 2
∑

i≥1

Covπ ( f (ϒi ), f (ϒ0)) (3.21)

is exactly the variance of the limiting normal distribution of the sequence 1√
n

∑n
i=1

f (ϒi ). The second one:

σ 2∞ = lim
n→∞

1

n
Var (χ1 + · · · + χn) = Eχ2

1 + 2Eχ1χ2,

is the variance of the limiting normal distribution of the sequence 1√
n

∑n
i=1 χi . Both

asymptotic variances are very closely linked via the formula

σ 2∞ = σ 2
MrvE(τ1 − τ0) = σ 2

Mrvmδ−1π(C)−1. (3.22)

For the proof of this formula, we refer to [22] (see (17.32), page 434).
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4 Main Results

In order to state our results in the general form, we need to recall the definition of the
exponential Orlicz norm. For any random variable X and α > 0, we define

‖X‖ψα = inf
{

c > 0 | E exp

( |X |α
cα

)

≤ 2
}

. (4.1)

Ifα < 1, then‖·‖ψα is just a quasi-norm. (For basic properties of these quasi-norms,we
refer to Appendix A.) In what follows, we will deal with various underlying measures
on the state spaceX . In order to stress the dependence of the Orlicz norm on the initial
distribution μ of the chain �, we will sometimes write ‖ · ‖ψα,μ instead of ‖ · ‖ψα .

Before we formulate our main result, let us introduce and explain the role of the
following parameters:

a =
∥
∥
∥
∥
∥
∥

τ0/m∑

k=0

|�k |
∥
∥
∥
∥
∥
∥

ψα,Px∗

, b =
∥
∥
∥
∥
∥
∥

τ0/m∑

k=0

|�k |
∥
∥
∥
∥
∥
∥

ψα,Pπ∗

,

c = ‖χi ( f )‖ψα
, d = ‖τ1 − τ0‖ψ1 , (4.2)

where �k = ∑m−1
i=0 f (ϒkm+i ) (cf. (3.19)). The parameter a (resp. b) will allow us to

estimate the first (third) term on the right-hand side of (3.19), whereas the parameters
c and d will be used to control the middle term. We note that d quantifies geometric
ergodicity of ϒ and is finite as soon as ϒ is geometrically ergodic. Let us mention
that all these parameters can be bounded, for example, by means of drift conditions
widely used in the theory of Markov chains (see Remark 4.2). Finally, let us remind
that σ 2

Mrv = Varπ ( f (ϒ0)) + 2
∑∞

i=1 Covπ ( f (ϒ0), f (ϒi )) denotes the asymptotic
variance of normalized partial sums of the process ( f (ϒi ))i .

We are now ready to formulate the first of our main results. (Recall the definitions
of the small set C and the minorization condition (3.1).)

Theorem 4.1 Let ϒ be a geometrically ergodic Markov chain and π be its unique
stationary probability measure. Let f : X → R be a measurable function such that
Eπ f = 0 and let α ∈ (0, 1]. Moreover, assume for simplicity that m|n. Then for all
x ∈ X and t > 0,

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ 2 exp

(

− tα

(23a)α

)

+ 2 [δπ(C)]−1 exp

(

− tα

(23b)α

)

+ 6 exp(8) exp

(

− tα

16
α

(27c)α

)

+ 6 exp

(

− t2

30nσ 2
Mrv + 8tM

)

+ exp(1) exp

(

− nm

67δπ(C)d2

)

,

(4.3)
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where σ 2
Mrv denotes the asymptotic variance for the process ( f (ϒi ))i given by (3.21),

the parameters a, b, c, d are defined by (4.2) and M = c(24α−3 log n)
1
α .

Remark 4.2 For the conditions under which a,b, c are finite, we refer to [2], where the
authors give bounds on a,b, c under classical drift conditions. If f is bounded, then
one easily shows that

max (a,b) ≤ 2D‖ f ‖∞, c ≤ D‖ f ‖∞, (4.4)

where D = max
(

d, ‖τ0‖ψ1, Px∗ , ‖τ0‖ψ1, Pπ∗
)

. For computable bounds on D, we refer
to [4].

Let us note that in Theorem 4.1, the right-hand side of the inequality does not converge
to 0 when t tends to infinity. (One of the terms depends on n but not on t .) Usually,
in applications t is of order at most n and the other terms dominate on the right-hand
side of the inequality, so this does not pose a problem. Nevertheless, one can obtain
another version of Theorem 4.1, namely

Theorem 4.3 Under the assumptions and notation of Theorem 4.1, we have

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ 2 exp

(

− tα

(54a)α

)

+ 2 [δπ(C)]−1 exp

(

− tα

(54b)α

)

+ 4 exp(8) exp

(

− tα

16
α

(27c)α

)

+ 6 exp

(

− t2

37(1 + p)nσ 2
Mrv + 18Md

√

Kpt

)

,

(4.5)

where K p = L p + 16/L p and L p = 16
p + 20.

It is well known that for geometrically ergodic chains ‖τ0‖ψ1, Px∗ , ‖τ0‖ψ1, Pπ∗ ,
‖τ1−τ0‖ψ1 < ∞ (see [4] for constructive estimates). Therefore, (4.4) andTheorem4.1
lead to

Theorem 4.4 Let ϒ be a geometrically ergodic Markov chain and π be its unique
stationary, probability measure. Let f : X → R be a bounded, measurable function
such that Eπ f = 0. Fix x ∈ X . Moreover, assume that ‖τ0‖ψ1,δ∗

x
, ‖τ0‖ψ1,π∗ , ‖τ1 −

τ0‖ψ1 ≤ D. Then for all t > 0,

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ K exp

(

− t2

32nσ 2
Mrv + 433tδπ(C)‖ f ‖∞D2 log n

)

,

(4.6)

where σ 2
Mrv is the asymptotic variance of ( f (ϒi ))i and K = exp(10)+2δ−1π(C)−1.

Remark 4.5 Theorem 4.4 implies our main Theorem 1.1 from Introduction with con-
stants K = (

exp(10) + 2δ−1π(C)−1
)

and τ = 433δπ(C)D2.
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5 Bernstein Inequalities for 1-Dependent Sequences

In this section, we will show two versions (for suprema and randomly stopped sums)
of Bernstein inequality for 1-dependent random variables. They will be later used
in the proofs of our main theorems. In what follows for a 1-dependent sequence of
random variables (Xi )i≥0, σ 2∞ denotes the asymptotic variance of normalized partial
sums, i.e.,

σ 2∞ = EX2
1 + 2EX1X2.

Lemma 5.1 (Bernstein inequality for suprema of partial sums) Let (Xi )i≥0 be a 1-
dependent sequence of centered random variables such that E exp(c−α|Xi |α) ≤ 2 for
some α ∈ (0, 1] and c > 0. Assume that there exists a filtration (Fi )i≥0 such that for
Zi = Xi + E (Xi+1|Fi ) − E (Xi |Fi−1) we have the following:

(0) Xi is Fi measurable,
(1) (Zi )i≥1 is stationary,
(2) (Zi )i≥1 is m-dependent with m = 1 or m = 2,
(3) (E (Xi |Fi−1))i≥1 is stationary,
(4) E(Xi |Fi−1) is independent of Xi+1 for any i ≥ 1.

Then,

EZ2
i = σ 2∞, ‖Zi‖ψα ≤ c(8/α)

1
α . (5.1)

Moreover, for any t > 0 and n ∈ N,

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ Km exp

(

− tα

umcα

)

+ Lm exp

(

− t2

vn,mσ 2∞ + wn,mt

)

(5.2)

where um = 16·8α(m+1)α

α
, vn,m = 5(m + 1)(n + m + 1), wn,m = 2(m +

1)(24α−3 log n)
1
α c, Km = 2(m + 1) exp(8) and Lm = 2(m + 1).

Proof Firstly, we will show that if Xi ’s are centered, independent random variables
with commonvarianceσ 2∞ andE exp(c−α|Xi |α) ≤ 2, then (5.2) holdswith u0 = 2·6α ,

vn,0 = 72
25n,wn,0 = 8

5c
(

3α−2 log n
) 1

α , K0 = exp(8) and L0 = 2 (allowing for a slight
abuse of precision we consider this the m = 0 case of the lemma). Indeed, by Lemma
4.1 in [2] for λ = (21/αc)−1,

E exp

(

λα
n−1
∑

i=0

(|Ui |α + (E|Ui |)α
)

)

≤ exp(8), (5.3)

where Ui = Xi1|Xi |>M0 stands for the “unbounded” part of Xi and M0 =
c
(

3α−2 log n
) 1

α . Define the “bounded” part of Xi , Bi = Xi1|Xi |≤M0 and notice that
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Xi = Bi + Ui , where Bi = Bi − EBi and Ui = Ui − EUi . Using the union bound,
we get for p = 1/6

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Ui

∣
∣
∣
∣
∣
> tp

)

+P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Bi

∣
∣
∣
∣
∣
> t(1 − p)

)

.

Consider first the unbounded part. Using the subadditivity of x → xα , Markov’s
inequality and then (5.3), we get

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Ui

∣
∣
∣
∣
∣
> tp

)

≤ P

(

exp

(

λα
n
∑

i=1

|Ui |α
)

> exp (λpt)α
)

≤ exp (8) exp

(

− tα pα

2cα

)

= exp (8) exp

(

− tα

2(6c)α

)

.

As for the “bounded” part, notice that EBi
2 ≤ EB2

i ≤ EX2
i = σ 2∞. Therefore, using

the classical Bernstein inequality we get

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Bi

∣
∣
∣
∣
∣
> t(1 − p)

)

≤ 2 exp

(

− t2(1 − p)2

2nσ 2∞ + 4
3 t(1 − p)M0

)

.

Combining the three last estimates and substituting p = 1/6 allow to finish the proof
for independent random variables.

Wewill nowuse the independent case to prove the tail estimate (5.2), assuming (5.1),
the proof of whichwe postpone. Note that (5.2) is trivial unless t ≥ wm log (2(m + 1))
(as the right-hand side exceeds 1). Therefore, from now on we will consider only t

satisfying this lower bound. In particular, setting p = 1/5, we have t ≥ 2
p (2/α)

1
α c and

t ≥ 4
1
α
2c
p log(n)

1
α . Using the union bound and the assumption 3), we get (denoting

for brevity Ei (·) = E (· | Fi ))

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Zi

∣
∣
∣
∣
∣
> t(1 − p)

)

+P

(

sup
1≤i≤n

|Ei Xi+1 − E0X1| > tp

)

≤ P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Zi

∣
∣
∣
∣
∣
> t(1 − p)

)

+2P

(

sup
1≤i≤n

|Ei−1Xi | >
tp

2

)

. (5.4)
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Byanother application of the union bound togetherwithLemmaA.5 and stationarity
of (Ei−1Xi )i , we obtain

2P

(

sup
1≤i≤n

|Ei−1Xi | >
tp

2

)

≤ 2nP

(

|E0X1| >
tp

2

)

≤ 12n exp

(

− pαtα

2(2c)α

)

.

Notice that

12n exp

(

− pαtα

2(2c)α

)

= 12

[

n exp

(

− pαtα

4(2c)α

)]

exp

(

− pαtα

4(2c)α

)

≤ 12 exp

(

− pαtα

4(2c)α

)

,

where the inequality is a consequence of the estimate t ≥ 4
1
α
2c
p log(n)

1
α . It follows

that

2P

(

sup
1≤i≤n

|Ei−1Xi | >
pt

2

)

≤ 12 exp

(

− pαtα

4(2c)α

)

= 12 exp

(

− tα

4(10c)α

)

.

(5.5)

In order to deal with P
(∣
∣
∑n

i=1 Zi
∣
∣ > t(1 − p)

)

, we start with splitting this sum into
m + 1 parts and using the union bound, namely

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Zi

∣
∣
∣
∣
∣
> t(1 − p)

)

≤
m
∑

j=0

P

⎛

⎝ sup
1≤k≤n

∣
∣
∣
∣
∣
∣

∑

1≤i≤k,m+1|i− j

Zi

∣
∣
∣
∣
∣
∣

>
t(1 − p)

m + 1

⎞

⎠ .

Now, to each summand on the right-hand side of the above inequality we will apply
the estimate for the independent case obtained at the beginning of this proof. Setting

M = (24α−3 log n)
1
α c and taking into account (5.1), we obtain

1

m + 1
P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Zi

∣
∣
∣
∣
∣
> t(1 − p)

)

≤ 1

m + 1

m
∑

j=0

P

⎛

⎝ sup
1≤k≤n

∣
∣
∣
∣
∣
∣

∑

1≤i≤k,m+1|i− j

Zi

∣
∣
∣
∣
∣
∣

>
t(1 − p)

m + 1

⎞

⎠

≤ exp(8) exp

(

− tα

16
α

(8(m + 1)c)α

)

+2 exp

(

− (1 − p)2t2

72
25 (m + 1)

[

(n + m + 1) σ 2∞ + 8
5 (1 − p)tM

]

)
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≤ exp(8) exp

(

− tα

16
α

(8(m + 1)c)α

)

+2 exp

(

− t2

(m + 1)
[

5 (n + m + 1) σ 2∞ + 2tM
]

)

. (5.6)

Finally, using (5.4), (5.5) and (5.6) we get

P

(

sup
1≤k≤n

∣
∣
∣
∣
∣

k
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ 12 exp

(

− tα

4(10c)α

)

+ (m + 1) exp(8) exp

(

− tα

16
α

(8(m + 1)c)α

)

+ 2(m + 1) exp

(

− t2

5(m + 1) (n + m + 1) σ 2∞ + 2(m + 1)tM

)

.

To conclude (5.2), it is now enough to note that the second summand on the right-hand
side above dominates the first one.

To finish the proof of the lemma, it remains to show (5.1). Firstly, we address the
variance of Zi , which can be easily calculated by using the properties of conditional
expectation. We have (recall the notation Ei (·) = E (· | Fi ))

EZ2
i = E

[

X2
i + E

2
i Xi+1 + E

2
i−1Xi − 2Ei Xi+1Ei−1Xi − 2XiEi−1Xi + 2XiEi Xi+1

]

.

Since EXiEi−1Xi = EE
2
i−1Xi , EEi Xi+1Ei−1Xi = EXi+1Ei−1Xi and XiEi Xi+1 =

Ei (Xi Xi+1), we obtain

EZ2
i = E

(

X2
i + E

2
i Xi+1 − E

2
i−1Xi − 2Xi+1Ei−1Xi + 2Xi Xi+1

)

= E

(

X2
i + 2Xi Xi+1

)

− 2E (Xi+1Ei−1Xi ) + E

(

E
2
i Xi+1 − E

2
i−1Xi

)

.

The variance formula in (5.1) follows by observing that due to 3), E
(

E
2
i Xi+1−

E
2
i−1Xi

) = 0, whereas by 4), E (Xi+1Ei−1Xi ) = 0.
Now, we will demonstrate the upper bound on ‖Zi‖ψα in (5.1). Using the triangle

inequality (cf. Lemma A.1) twice and then Lemma A.3, we obtain

‖Zi‖ψα ≤ 2
1
α

−1‖Xi‖ψα + 2
1
α

−1‖Ei Xi+1 − E0X1‖ψα ≤ 2
1
α ‖Xi‖ψα + 2

2
α

−1‖E0X1‖ψα

≤ 2
1
α ‖Xi‖ψα + 2

2
α

−1(2/α)
1
α ‖X1‖ψα ≤ ‖X1‖ψα

(

2
1
α + 1

2
(8/α)

1
α

)

≤ c(8/α)
1
α .
(5.7)

This concludes the proof of the lemma. ��
Remark 5.2 If (X)i≥0 is a 1-dependent, centered and stationaryMarkov chain such that
‖Xi‖∞ ≤ M < ∞, then the assumptions of the above lemma are satisfied withm = 2
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and Fi = σ
{

X j | j ≤ i
}

. If (ξi )i≥0 are i.i.d. random variables and f : R
2 → R is

a bounded, Borel function such that Xi = f (ξi , ξi+1) are centered, then we can take
Fi = σ {ξ j | j ≤ i + 1} and notice that the assumptions of the above lemma are
satisfied with m = 1.

Remark 5.3 It is worth noticing that σ 2∞ may be equal to 0 in case of 1-dependent
processes (Xi )i∈N. Take for example Xi = ξi+1 − ξi where (ξi )i∈N are i.i.d. random
variables. It turns out (cf. [14]) that the reverse is true, that is, if for a 1-dependent,
bounded stationary process (Xi )i∈N we have σ 2∞ = 0, then there exists an i.i.d. process
(ξi )i∈N such that Xi = ξi+1 − ξi .

Lemma 5.4 (Bernstein inequality for random sums) Let (Xi )i≥0 be a 1-dependent
sequence of centered random variables such that E exp(c−α|Xi |α) ≤ 2 for some
α ∈ (0, 1] and c ≥ 1. Moreover, let N ≤ n ∈ N be an N-valued bounded random
variable. Assume that we can find a filtration F = (Fi )i≥0 such that for Zi = Xi +
E (Xi+1|Fi ) − E (Xi |Fi−1) we have the following:

(0) Xi is Fi measurable,
(1) N is a stopping time with respect to F ,
(2) (Zi )i≥1 is stationary,
(3) For each j ∈ N process, (Zi )i≥ j+3 is independent of F j ,
(4) (E (Xi |Fi−1))i≥1 is stationary,
(5) E(Xi |Fi−1) is independent of Xi+1 for all i ≥ 1.

Then for any t > 0 and a > 0,

P

(∣
∣
∣
∣
∣

N
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ 4 exp(8) exp

(

− tα

ucα

)

+ 9 exp

(

− t2

vσ 2∞ + wt

)

, (5.8)

where u = 16·26α

α
, v = 102a, w = 14M max

(

2,
√‖ (�N/3� − a + 1)+ ‖ψ1

)

and

M = c(24α−3 log n)
1
α .

Proof Observe that 0) and 3) imply 2-dependence of the process (Zi )i≥1. Therefore,
the filtration F satisfies all the assumptions of Lemma 5.1 and thus (5.1) holds. Note
also that without loss of generality, we may assume that t ≥ w log 9. (Otherwise, the
right-hand side of (5.8) is at least one.) Fix s = (8

√
2 log 9)−1. Using the union bound,

we get (Ei (·) = E (· | Fi ))

P

(∣
∣
∣
∣
∣

N
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ P

(∣
∣
∣
∣
∣

N
∑

i=1

Zi

∣
∣
∣
∣
∣
> t(1 − s)

)

+ 2P

(

sup
1≤i≤n

|Ei−1Xi | >
ts

2

)

.

(5.9)

Now using Lemma A.5, ts/2 ≥ c
( 2

α

) 1
α , t ≥ w log 9 and n exp

(

− (st)α

4(2c)α

)

≤ 1, we

obtain

2P

(

sup
1≤i≤n

|Ei−1Xi | >
st

2

)

≤ 2nP

(

|E0X1| >
st

2

)

≤ 12 exp

(

− (st)α

4(2c)α

)

. (5.10)
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Next, we take care of the other term on the right-hand side of (5.9). Firstly, we split
the sum

P

(∣
∣
∣
∣
∣

N
∑

i=1

Zi

∣
∣
∣
∣
∣
> t(1 − s)

)

≤
2

∑

j=0

P

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

1≤i≤N , 3|(i+ j)

Zi

∣
∣
∣
∣
∣
∣

>
t(1 − s)

3

⎞

⎠ . (5.11)

Now, we will consider the j th summand of the above sum. Let us take r = 3
8
√
2 log(9)

and notice that there is function f j : N → N such that for any n ∈ N,
⌊ n
3

⌋ ≤ f j (n) ≤
⌈ n
3

⌉

and

P

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

1≤i≤N , 3|i+ j

Zi

∣
∣
∣
∣
∣
∣

> t(1 − s)/3

⎞

⎠ = P

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣
∣

∑

1≤i≤ f j (N )

Z3i− j

∣
∣
∣
∣
∣
∣
∣

> t(1 − s)/3

⎞

⎟
⎠

≤ P

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

1≤i≤�N/3�+1

Z3i− j

∣
∣
∣
∣
∣
∣

> t(1 − r)(1 − s)/3

⎞

⎠ + P

(

2 sup
k≤n+6

|Zk | > tr(1 − s)/3

)

.

(5.12)

Due to ‖Zi‖ψα ≤ c(8/α)
1
α (cf. (5.1)) and Lemma A.4 along with t ≥ w log(9), n ≥ 2

(for n = 1, the result of the lemma is trivial), we get

P

(

2 sup
k≤n+6

|Zk | >
tr(1 − s)

3

)

≤ (n + 6)P

(

|Zk | >
tr(1 − s)

3

)

≤ 2(n + 6) exp

(

−α(tr(1 − s))α

8(3c)α

)

≤ 2 exp

(

−α(tr(1 − s))α

16(3c)α

)

.

(5.13)

To handle the first summand on the right-hand side of (5.12), let us fix j and denote
γi := Z3i+3− j , Gi := F3i− j , T := �N/3 + 1� ≤ �n/3� + 1. Using the assumptions
on the filtrationF and (5.1), it is straightforward to check that the following properties
hold:

1. γi are independent,

2. Eγi = 0, Eγ 2
i = σ 2∞, ‖γi‖ψα ≤ c(8/α)

1
α ,

3. γi−1 is Gi measurable,
4. γi is independent of Gi ,
5. T is a stopping time with respect to the filtration Gi .

This is precisely the setting of Proposition 4.4. ii) from [2] which applied with ε := 1,

p :=
√
2√

2−1
and q := √

2 gives that for any a > 0,
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P

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

1≤i≤�N/3�+1

Z3i− j

∣
∣
∣
∣
∣
∣

> t(1 − r)(1 − s)/3

⎞

⎠

≤ exp(8) exp

(

− (t(1 − r)(1 − s))α

2(3(2 + √
2)ĉ)α

)

+ 3 exp

(

− (t(1 − r)(1 − s))2

72aσ 2∞ + 6
√
2μ(1 − r)(1 − s)t

)

,

(5.14)

where

μ = max

(
8M

3
, 2σ∞

√‖ (�N/3� − a + 1)+ ‖ψ1

)

, ĉ = c

(
8

α

) 1
α

.

Using (5.1), Lemma A.2 with Y = αZα

8cα and β = 2
α
, together with the gamma

function estimate �(x) ≤ ( x
2

)x−1 for x ≥ 2 (see Theorem 1 in [18]), we get

σ 2∞ = EZ2
1 ≤ 2c2

(
8

α

) 2
α

�

(
2

α
+ 1

)

≤ 4

α
c2

(
8

α

) 2
α

�

(
2

α

)

≤ 4c2
(

8

α2

) 2
α

,

which implies that σ∞ ≤ 2
3M and as a consequence,

μ ≤ 4

3
Mb, b = max

(

2,
√‖ (�N/3� − a + 1)+ ‖ψ1

)

.

Therefore, (5.14) reduces to

P

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

1≤i≤�N/3�+1

Z3i− j

∣
∣
∣
∣
∣
∣

> t(1 − r)(1 − s)/3

⎞

⎠

≤ exp(8) exp

(

− (t(1 − r)(1 − s))α

2(3(2 + √
2)ĉ)α

)

+ 3 exp

(

− (t(1 − r)(1 − s))2

72aσ 2∞ + 8
√
2Mb(1 − r)(1 − s)t

)

.

Combining the above inequality with (5.9)–(5.13), we obtain

P

(∣
∣
∣
∣
∣

N
∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ 12 exp

(

− (st)α

4(2c)α

)

+ 6 exp

(

−α(tr(1 − s))α

16(3c)α

)

+ 3 exp(8) exp

(

− (t(1 − r)(1 − s))α

2(3(2 + √
2)ĉ)α

)

+ 9 exp

(

− (t(1 − r)(1 − s))2

72aσ 2∞ + 8
√
2Mb(1 − r)(1 − s)t

)

.
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To conclude, it is now enough to recall that r = 3(8
√
2 log(9))−1, s = (8

√
2 log 9)−1

and do some elementary calculations. ��

6 Bounds on the Number of Regenerations

We will now obtain a bound on the stopping time N , introduced in (3.20). To this
end, we will use the ψ1 version of Bernstein inequality, which follows easily from
the classical moment version of this inequality (see, e.g., Lemma 2.2.11 in [26]), by
observing that for k ≥ 2, E|ξ |k ≤ k!‖ξ‖kψ1

= k!Mk−2v/2, where M = ‖ξ‖ψ1 ,

v = 2‖ξ‖2ψ1
.

Lemma 6.1 (ψ1 Bernstein’s inequality.) If (ξi )i is a sequence of independent centered
random variables such that supi ‖ξi‖ψ1 ≤ τ , then

P

(
n
∑

i=1

ξi ≥ t

)

≤ exp

(

− t2

4nτ 2 + 2τ t

)

.

Lemma 6.2 If ‖τ1 − τ0‖ψ1 ≤ d, then for any p > 0,

P

(

N >
⌈

(1 + p)n [E(τ1 − τ0)]
−1

⌉)

≤ exp(1) exp

(

− pnE(τ1 − τ0)

Kpd2

)

, (6.1)

where K p = L p + 16/L p and L p = 16
p + 20. Moreover, the function p → Kp is

decreasing on R+ (in particular, K p ≥ K∞ = 104
5 ) and if p = 2/3, then 1

p K p ≤ 67 .

Proof For convenience, let Ti = τi − τi−1 for i ≥ 1. Firstly, notice that without loss
of generality, we may assume that np ≥ L pET1. Indeed, otherwise, using ET1 ≤ d
we obtain

exp(1) exp

(

− pnET1
Kpd2

)

≥ exp(1) exp

(

− L pE
2T1

Kpd2

)

≥ exp

(

1 − L p

K p

)

≥ 1.

Thus, fromnowonwe consider n such that np ≥ L pET1. For A = (1+ p)n [ET1]−1 ≥
1, we get

P(N > �A�) ≤ P(τ�A� − τ0 ≤ n) ≤ P

⎛

⎝

�A�−1
∑

i=0

Ti+1 − ETi+1 ≤ n − AET1

⎞

⎠

= P

⎛

⎝

�A�−1
∑

i=0

Ti+1 − ETi+1 ≤ n − (1 + p)n

⎞

⎠

= P

⎛

⎝

�A�−1
∑

i=0

Ti+1 − ETi+1 ≤ −np

⎞

⎠ .

(6.2)
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Now, we have ‖Ti+1 − ETi+1‖ψ1 ≤ 2d, so using Lemma 6.1, ET1 ≤ d and np ≥
L pET1, we get

P

(

N >
⌈

(1 + p)n [ET1]
−1

⌉)

≤ exp

(

− p2n2

4(A + 1)4d2 + 4dnp

)

= exp

(

− p2n2

16d2
[

(1 + p)n [ET1]−1 + 1
] + 4dnp

)

= exp

⎛

⎝− pnET1

16d2
(
1+p
p + ET1

pn

)

+ 4dET1

⎞

⎠

≤ exp

⎛

⎝− pnET1

16d2
(
1+p
p + 1

L p

)

+ 4d2

⎞

⎠ = exp

(

− pnET1
Kpd2

)

≤ exp

(

1 − pnET1
Kpd2

)

,

which finishes the proof of (6.1). The properties of Kp follow from easy computations.
��

The following lemma is a standard consequence of the tail estimates given in
Lemma 6.2. Its proof, based on integration by parts, is analogous to that of Lemma
5.4 in [2] and is therefore omitted.

Lemma 6.3 Suppose that ‖τ1 − τ0‖ψ1 ≤ d for some d > 0. Then for any p > 0,

∥
∥(N − a)+

∥
∥

ψ1
≤ 4Kpd2

[E(τ1 − τ0)]2
≤ 4Kpd2

m2 ,

where a = (1 + p)n [E(τ1 − τ0)]−1, K p = L p + 16
L p

and L p = 16
p + 20. Moreover,

d2Kp

[E(τ1 − τ0)]2
≥ Kp ≥ K∞.

7 Proofs of Theorems 4.1, 4.3 and 4.4

In this section, we will prove our main results. The structure of proofs of Theorems 4.1
and 4.3 is similar, and they contain a common part, which we will present first in
Sects. 7.1 and 7.2. The proof of Theorem 4.1 will be concluded in Sect. 7.3 and the
proof of Theorem 4.3 in Sect. 7.4. Theorem 4.4 will be obtained as a corollary to
Theorem 4.1 in Sect. 7.5.

Let us thus pass to the proofs of Theorems 4.1 and 4.3. Assume that m|n. The
argument will be based on the approach of [1] and [2] (see also [10] and [12]) and will
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rely on the decomposition

∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
≤ Hn + Mn + Tn, (7.1)

where

Hn =
∣
∣
∣
∣
∣
∣

τ0/m∑

i=0

�i1N>0 + 1N=0

n/m−1
∑

i=0

�i

∣
∣
∣
∣
∣
∣

, Mn =
∣
∣
∣
∣
∣

N
∑

i=1

χi−1( f )

∣
∣
∣
∣
∣
,

Tn =
∣
∣
∣
∣
∣
1N>0

τN+m−1
∑

k=n

f (ϒk)

∣
∣
∣
∣
∣
, N = inf{i ≥ 0 | τi + m − 1 ≥ n − 1}.

(7.2)

The proof will be divided into three main steps. In the first two (common for both
theorems), we will get easy bounds on tails of Hn and Tn . The main, third step will be
devoted to obtaining two different estimates on the tail of Mn . To this end, we will use
Lemmas 5.1, 6.2 (for the proof of Theorem 4.1) and Lemmas 5.4, 6.3 (for Theorem
4.3).

7.1 Estimate on Hn

Using {N = 0} ⊂ {τ0 ≥ n − m}, the definition of a (see (4.2)) and Lemma A.4, we
get

Px∗(Hn > t) ≤ Px∗

⎛

⎝1N>0

τ0/m∑

i=0

|�i | + 1N=0

n/m−1
∑

i=0

|�i | > t

⎞

⎠

≤ Px∗

⎛

⎝

τ0/m∑

i=0

|�i | > t

⎞

⎠

≤ 2 exp

(

− tα

aα

)

.

(7.3)

7.2 Estimate on Tn

By repeating verbatim the easy argument presented in the proof of Theorem 5.1 in [2],
we obtain

P (|Tn| > t) ≤ 2 [δπ(C)]−1 exp

(

− tα

bα

)

. (7.4)

We skip the details.
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7.3 Proof of Theorem 4.1

Recall that M = c(24α−3 log n)
1
α and note that without loss of generality, we can

assume that t ≥ 8M log 6. Otherwise, (4.3) is trivial as the right- hand side is greater
than or equal to 1. Fix p = 2/3. We have (A := ⌈

(p + 1)n(E(τ1 − τ0))
−1

⌉

)

P (Mn ≥ t) = P (Mn ≥ t, N ≤ A) + P (Mn ≥ t, N > A)

≤ P

(

sup
1≤k≤A

∣
∣
∣
∣
∣

k
∑

i=1

χi−1

∣
∣
∣
∣
∣
≥ t

)

+ P (N > A) .
(7.5)

To control the first summand on the right-hand side of the above inequality, we will
apply Lemma 5.1 with m = 2, Xi := χi = F(
i+1) (cf. (3.16)), c := c and n := A.
Assuming that the assumptions of the lemma are satisfied (we will verify them later
on), we obtain (in the first line, we use stationarity of (
i )i≥1):

P := P

(

sup
1≤k≤A

∣
∣
∣
∣
∣

k
∑

i=1

χi−1

∣
∣
∣
∣
∣
≥ t

)

= P

(

sup
1≤k≤A

∣
∣
∣
∣
∣

k
∑

i=1

F(
i+1)

∣
∣
∣
∣
∣
≥ t

)

≤ 6 exp(8) exp

(

− tα

16
α

(24c)α

)

+ 6 exp

(

− t2

15
(⌈

(p + 1)n(E(τ1 − τ0))−1
⌉ + 3

)

σ 2∞ + 6tM

)

≤ 6 exp(8) exp

(

− tα

16
α

(24c)α

)

+ 6 exp

(

− t2

15
(

(p + 1)n(E(τ1 − τ0))−1 + 4
)

σ 2∞ + 6tM

)

(7.6)

Recall that by (3.22), σ 2∞ = σ 2
MrvE(τ1 − τ0). We will now obtain a comparison

between σ 2∞ and tM , which will allow us to reduce the above estimate to one in which
the sub-Gaussian coefficient is expressed only in terms of σ 2

Mrv . Thanks to Lemma
A.2 applied with � := (χ1/c)α and β := 2/α, we have

σ 2∞ ≤ 3Eχ2
1 ≤ 3c2�(2/α + 1) ≤ 3c2(2/α)

2
α
+1,

where the last inequality is a consequence of equation 4 in [18]. Moreover, recalling
the definition of M and using the assumption t ≥ 8 log(6)M , we obtain

tM≥8 log(6)M2=8 log(6)c2(24α−3 log(n))
2
α ≥16 · 8 log(6)c2(2/α)

2
α
+1 ≥ 76σ 2∞.
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The last inequality in combination with (7.6) yields

P ≤ 6 exp(8) exp

(

− tα

16
α

(24c)α

)

+ 6 exp

(

− t2

15(p + 1)nσ 2
Mrv + 7tM

)

≤ 6 exp(8) exp

(

− tα

16
α

(24c)α

)

+ 6 exp

(

− t2

25nσ 2
Mrv + 7tM

)

.

(7.7)

In order to justify the above inequality, it remains to verify the assumptions of
Lemma 5.1. To this end, take

Fi = σ {
 j | j ≤ i + 1}, Zi = χi + E(χi+1|Fi ) − E(χi |Fi−1).

We will now strongly rely on the properties of the stationary sequence of 1-dependent
blocks (
i )i≥1 stated in Remark 3.10 together with (3.15) and (3.16). Since χi =
F(
i+1), the assumption0) ofLemma5.1 is trivially satisfied.Toprove2), observe that
E(χi+1|Fi ) = E(χi+1|
i+1) = G(
i+1) for somemeasurable functionG, and so the
sequence (Zi )i≥1 = (F(
i+1) + G(
i+1) − G(
i ))i≥1 is stationary (as a function
of the stationary sequence (
i )i≥1). The sequence (
i ))i≥1 is 1-dependent, which
clearly implies that (Zi )i≥1 is 2-dependent, i.e., the assumption 2) of the lemma. The
assumption 3), i.e., the stationarity of the sequence (E(χi |Fi−1))i≥1 = (G(
i ))i≥1,
follows again by stationarity of (
i )i≥1. Finally, using once more the fact that (
i )i≥0
is 1-dependent, we obtain that for any i ≥ 1, the randomvariableE(χi |Fi−1) = G(
i )

is independent of χi+1 = F(
i+2), which ends the verification of the assumptions of
Lemma 5.1 and proves (7.7).

Thus, in order to get a bound on P(Mn > t) it suffices to estimate the second term
on the right-hand side of (7.5). To this aim, we use Lemma 6.2 with p = 2/3 and
d = d obtaining

P

(

N >
⌈

(1 + p)n(E(τ1 − τ0))
−1

⌉)

≤ exp(1) exp

(

−nE(τ1 − τ0)

67d2

)

.

In combination with (7.5) and (7.7), this gives

P (Mn ≥ t) ≤ 6 exp(8) exp

(

− tα

16
α

(24c)α

)

+ 6 exp

(

− t2

25nσ 2
Mrv + 7tM

)

+ exp(1) exp

(

−nE(τ1 − τ0)

67d2

)

.

Combining the above inequality with (7.3) and (7.4), we get

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ P

(

Hn ≥ 1 − √
5/6

2
t

)

+ P

(

Mn ≥ √

5/6t
)
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+ P

(

Tn ≥ 1 − √
5/6

2
t

)

≤ 2 exp

(

− tα

(23a)α

)

+ 2 [δπ(C)]−1 exp

(

− tα

(23b)α

)

+ exp(1) exp

(

−nE(τ1 − τ)

67d2

)

+ 6 exp(8) exp

(

− tα

16
α

(27c)α

)

+ 6 exp

(

− t2

30nσ 2
Mrv + 8tM

)

.

In order to finish the proof of Theorem 4.1, it is enough to substitute E(τ1 − τ0) =
δ−1π(C)−1m.

7.4 Proof of Theorem 4.3

Recall that M = c(24α−3 log n)
1
α , and let p > 0 be a parameter which will be fixed

later on. We are going to apply Lemma 5.4 with Xi := χi = F(
i+1), c := c,
Fi := σ {
 j | 0 ≤ j ≤ i + 1}. Clearly, N is a stopping time with respect to F . The
remaining assumptions of Lemma 5.1 can be verified in the same manner as in the
proof of Theorem 4.1. Let a = (1 + p) n3 [E(τ1 − τ0)]−1. By Lemma 6.3, we get

∥
∥(�N/3� − a + 1)+

∥
∥

ψ1
≤ 1

3

∥
∥
∥
∥

(

N − (1 + p)n(E(τ1 − τ0))
−1

)

+

∥
∥
∥
∥

ψ1

+ 2

log 2

≤ 4

3
d2Kp + 2

log 2
≤

(
4

3
+ 7

50

)

d2Kp,

where the last inequality follows from (recall the definition of K∞ from Lemma 6.2)

7

50
Kp ≥ 7

50
K∞ = 7

50
· 104

5
≥ 2

log 2
.

Therefore, max
(

2,
√‖ (�N/3� − a + 1)+ ‖ψ1

) ≤ √
4/3 + 7/50

√

Kp · d and we get
that for arbitrary p > 0,

P

(∣
∣
∣
∣
∣

N
∑

i=1

χi−1

∣
∣
∣
∣
∣
> t

)

≤ 4 exp(8) exp

(

− tα

16
α

(26c)α

)

+9 exp

(

− t2

34(1 + p)σ 2
Mrv + 17Mdt

√

Kp

)

.

Using the above inequality together with (7.3) and (7.4), we obtain

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ P

(

Hn ≥ t

54

)

+ P

(

Mn ≥ 26t

27

)

+ P

(

Tn ≥ t

54

)
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≤ 2 exp

(

− tα

(54a)α

)

+ 2 [δπ(C)]−1 exp

(

− tα

(54b)α

)

+ 4 exp(8) exp

(

− tα

16
α

(27c)α

)

+ 9 exp

(

− t2

37(1 + p)σ 2
Mrv + 18Mdt

√

Kp

)

,

which concludes the proof of Theorem 4.3.

7.5 Proof of Theorem 4.4.

Denote M = ‖ f ‖∞ and notice that for t > nM , the left-hand side of (4.6) vanishes,
so we may assume that t ≤ nM . Using (4.4), one can easily see that if m|n, then
Theorem 4.1 applied with α = 1 implies that

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤
(

2 + 2 [δπ(C)]−1
)

exp

(

− t

46DM

)

+ 6 exp(8) exp

(

− t

432DM

)

+ 6 exp

(

− t2

30nσ 2
Mrv + 192t DM

)

+ exp(1) exp

(

− nm

67δπ(C)D2

)

.

(7.8)

The assumption t ≤ nM yields

exp

(

− nm

67δπ(C)D2

)

≤ exp

(

− tm

67δπ(C)MD2

)

,

which plugged into (7.8) gives after some elementary calculations that (recall K =
exp(10) + 2 [δπ(C)]−1)

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ K exp

(

− t2

30nσ 2
Mrv + 432t D2Mδπ(C) log n

)

, (7.9)

proving the theorem in the special case m|n.
Now, we consider the case m � n. Define �n�m to be the smallest integer greater

or equal to n, which is divisible by m. Notice that without loss of generality, we
can assume that t > 4330D2Mδπ(C). (Otherwise, the assertion of the theorem is
trivial as the right-hand side of (4.6) exceeds one.) Since D2δπ(C) > m (recall
E(τ1 − τ0) = δ−1π(C)−1m), this implies that t ≥ 4330Mm. Moreover, as t ≤ nM ,
we also obtain that n ≥ 4330m.
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Thus, for p = 1/4330we have
∣
∣
∣

∑�n�m
i=n f (ϒi )

∣
∣
∣ ≤ Mm ≤ pt , and as a consequence,

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ Px

⎛

⎝

∣
∣
∣
∣
∣
∣

�n�m−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
∣

> (1 − p)t

⎞

⎠ . (7.10)

Now using (7.9) and the inequality n > 4330m, we get

Px

(∣
∣
∣
∣
∣

n−1
∑

i=0

f (ϒi )

∣
∣
∣
∣
∣
> t

)

≤ K exp

(

− t2

31�n�mσ 2
Mrv + 433t D2Mδπ(C) log n

)

≤ K exp

(

− t2

31(n + m)σ 2
Mrv + 433t D2Mδπ(C) log n

)

≤ K exp

(

− t2

32nσ 2
Mrv + 433t D2Mδπ(C) log n

)

.

This concludes the proof of Theorem 4.4.
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A Orlicz Exponential Norm

At the beginning, recall the definition of the exponential Orlicz quasi-norm (4.1) and
note that if α ≥ 1, then ‖ · ‖ψα is a norm, whereas for 0 < α < 1, ‖ · ‖ψα is only a
quasi-norm. More precisely, we have the following version of the triangle inequality
(see Lemma 3.7 in [2]).

Lemma A.1 (Triangle inequality for α ≤ 1) Fix 0 < α ≤ 1. Then, for any random
variables X, Y we have

‖X + Y‖ψα ≤
(

‖X‖α
ψα

+ ‖Y‖α
ψα

)1/α ≤ 21/α−1 (‖X‖ψα + ‖Y‖ψα

)

.

Now, we present a moment estimation for random variables with bounded exponential
moment.
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Lemma A.2 If Y is nonnegative random variable such thatE exp(Y ) ≤ 2, then for any
β > 0, we have

EY β ≤ 2�(β + 1).

Furthermore, if β ∈ N, then one can replace the constant 2 with 1.

Proof If β is a natural number, then the claim follows from Taylor’s expansion of
exp(x). The general case is obtained by Markov’s inequality, namely

EY β =
∫ ∞

0
P
(

Y β ≥ t
)

dt =
∫ ∞

0
P

(

exp(Y ) ≥ exp
(

t
1
β

))

dt

≤
∫ ∞

0

2

exp
(

t
1
β

)dt =
∫ ∞

0
exp(−s)2βsβ−1ds = 2β�(β).

(A.1)

��
The next lemma allows to pass from the ψα-norm of a random variable to the norm
of its conditional expectation.

Lemma A.3 (Orlicz’s norm of conditional mean value) Let 0 < α ≤ 1. Assume that a
random variable X satisfies ‖X‖ψα < ∞. Moreover, letF be some sigma field. Then,

‖E(X |F)‖ψα ≤
(

1 + log
(

α exp
( 1−α

α

))

log(2)

) 1
α

‖X‖ψα ≤
(
2

α

) 1
α ‖X‖ψα .

Proof Set φα(x) = exp(xα) for x ≥ 0 and notice that φα is concave on (0, xα) and

convex on (xα,∞), where xα = ( 1−α
α

)1/α
. Define�α to be a smallest convex function

bigger or equal to φα which is equal to φα on (xα,∞), that is,

�α(x) =
{

α exp
( 1−α

α

)

(xxα−1
α + 1), if 0 ≤ x ≤ xα,

φα(x), if x ≥ xα.

Clearly, �α is a convex function on R+ and it is easy to see that φα ≤ �α ≤
α exp

( 1−α
α

)

φα . Using these properties, Jensen’s inequality and the definition of the
Orlicz norm, we get

Eφα

( |E (X |F)|
‖X‖ψα

)

≤ E�α

( |E (X |F)|
‖X‖ψα

)

≤ E�α

( |X |
‖X‖ψα

)

≤ 2α exp

(
1 − α

α

)

.

Put cα =
(

1 + log
(

α exp
(
1−α
α

))

log(2)

) 1
α

≥ 1 and note that due to Jensen’s inequality,

Eφα

( |E (X |F)|
cα‖X‖ψα

)

≤
(

Eφα

( |E (X |F)|
‖X‖ψα

)) 1
cαα ≤ 2,
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which completes the proof. ��
Now, we give two concentration inequalities which are valid for random variables with
finite Orlicz norm. The first one is an easy consequence of the Markov inequality;
therefore, we omit the proof.

Lemma A.4 For any random variable X with ‖X‖ψα < ∞ and t > 0, we have

P (|X | ≥ t) ≤ 2 exp

(

− tα

‖X‖α
ψα

)

.

Lemma A.5 (Tail inequality for conditional mean value) Let 0 < α ≤ 1. Assume that
a random variable X satisfies ‖X‖ψα < ∞. Moreover, let F be some sigma field.

Then for any t ≥ ( 2
α

)1/α ‖X‖ψα , we have

P (|E(X |F)| > t) ≤ 6 exp

(

− tα

2‖X‖α
ψα

)

.

Proof Fix c > ‖X‖ψα and t ≥ ( 2
α

)1/α
c. Then in particular, we have α

( t
c

)α ≥ 2.
Using the Markov and Jensen inequalities along with �(x) ≤ xx/ex−1 ( [18], Thm.
1) and Lemma A.2 with Y = (|X |/c)α , β = tα/cα , we get

P (|E(X |F)| > t) ≤ P

(

|E(X |F)|α tα
cα > tα

tα
cα
)

≤ t−α( t
c )

α

E |E(X |F)|α( t
c )

α

≤ t−α( t
c )

α

E |X |α( t
c )

α

= (t/c)−α( t
c )

α

E |X/c|α( t
c )

α ≤ 2e (t/c)α exp
(− (t/c)α

)

≤ 2e exp
(−(1/2) (t/c)α

)

,

where in the last inequality we used the estimate xe−x ≤ e− x
2 which is valid for all

x ∈ R. Now, it is enough to take limit c → ‖X‖ψα and notice that 2e ≤ 6. ��
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