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Abstract
Consider the random polytope that is given by the convex hull of a Poisson point pro-
cess on a smooth convex body inRd . We prove central limit theorems for continuous
motion invariant valuations including the Wills functional and the intrinsic volumes
of this random polytope. Additionally we derive a central limit theorem for the oracle
estimator that is an unbiased and minimal variance estimator for the volume of a con-
vex set. Finally we obtain a multivariate limit theorem for the intrinsic volumes and
the components of the f-vector of the random polytope.

Keywords Central limit theorem · Multivariate limit theorem · Intrinsic volumes ·
f-vector · Random polytope · Random convex hull · Stochastic geometry · Poisson
point process · Oracle estimator · Volume estimation
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1 Introduction

We denote by K d , d ≥ 2, the collection of all compact convex sets in the Euclidean
space Rd and by K d

sm the set of all smooth convex bodies in K d , which are all
K ∈ K d that have nonempty interior, boundary of differentiability class C 2, and
positive Gaussian curvature everywhere. Let ηt be a Poisson point process on Rd

with intensity measure μ = t�d , where t > 0 and �d denotes the d-dimensional
Lebesgue measure on Rd , see, e.g., [18] for more details on Poisson point processes.
We fix K ∈ K d

sm and investigate the random polytope Kt ⊂ K defined as the convex
hull of all points in ηt ∩ K ,

Kt := conv {x : x ∈ ηt ∩ K } .
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The investigation of randomconvex hulls is one of the classical problems in stochas-
tic geometry, see, for instance, the survey article [12] and the introduction to stochastic
geometry [13]. Functionals like the intrinsic volumes Vj (Kt ) and the components
f j (Kt ) of the f-vector, see Sect. 3, of the random polytope Kt have been studied
prominently, see [6,7,25] and the references therein as well as the remarks and refer-
ences in [15, Theorem 5.5] for more details.

Central limit theorems for Vj (Kt ) were proven in the special case that K is the
d-dimensional Euclidean unit ball, see [6,28]. Short proofs for the binomial case Kn ,
where n i.i.d. uniformly distributed points in K are considered instead of a Poisson
point process, were derived in [30]. Recently [15] embedded the problem for both
cases, the binomial and the Poisson case, in the theory of stabilizing functionals deriv-
ing central limit theorems for smooth convex bodies removing the logarithmic factors
in the error of approximation improving the rate of convergence.

We extend the results of [30] on the intrinsic volumes to the more general case of
continuous and motion invariant valuations. This includes the total intrinsic volume
functional (Wills functional) W (Kt ) and a central limit theorem for the intrinsic vol-
umes in the Poisson case similar to [30, Theorem 1.1]. We also obtain a univariate
central limit theorem for the oracle estimator ϑ̂oracle that was derived in the remarkable
work of [1] on the estimation of the volume of a convex body. Finally we investigate
the components of the f-vector f j (Kt ), j ∈ {0, . . . , d − 1}, defined as the number
of j-dimensional faces of Kt and derive a multivariate limit theorem on the random
vector composed of the intrinsic volumes and the f-vector.

For a continuous and motion invariant valuation ϕ : K d → R, we define the
random variable ϕ(Kt ) and the corresponding standardization

ϕ̃(Kt ) := ϕ(Kt ) − E [ϕ(Kt )]√
V [ϕ(Kt )]

. (1)

The remarkable theorem of Hadwiger, see 6 and [8,10,14] for more details and
different proofs, states that every continuous motion invariant valuation can be decom-
posed into a linear combination of intrinsic volumes, i.e., for all L ∈ K d it holds,
that ϕ(L) = ∑d

i=0 ci Vi (L) where Vi denotes the i th intrinsic volume and ci ∈ R are
constants depending only on ϕ.

We prove a central limit theorem for t → ∞ under some additional assumptions on
the coefficients ci in this linear decomposition, allowing us to assume that our valuation
functional does not lose variance compared to the intrinsic volume functionals Vj (Kt ).

We denote by dW (X ,Y ) := suph∈Lip(1) |E [h(X)] − E [h(Y )]| the Wasserstein
distance between the laws of X and Y where Lip (1) denotes the class of all 1-Lipschitz
functions h : R → R, see (9) in Sect. 2.1 for the precise definition.

Theorem 1 (Univariate Limit Theorem) Assume that ϕ is a continuous and motion
invariant valuation, with linear decomposition given by Hadwiger (13), such that
ci c j ≥ 0 for all i, j ∈ {0, . . . , d} and suppose that at least one index k ∈ {1, . . . , d}
exists, such that ck 	= 0. Then
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dW (ϕ̃(Kt ), Z) = O
(
t−

1
2+ 1

d+1 log(t)3+
2

d+1

)
, (2)

where Z
d∼ N (0, 1).

For j ∈ {1, . . . , d}we can directly obtain the central limit theorem for the standardized
j th intrinsic volume in the Poisson model by setting ϕ(Kt ) = Vj (Kt ). Further we can
directly obtain a central limit theorem with rate of convergence for the total intrinsic
volume, also known as the Wills functional, see [11,19,32], setting the coefficients
c j = 1, j ∈ {0, . . . , d} in Theorem 1.

Corollary 1 (Wills functional) Let W (Kt ) denote the Wills functional, defined by
W (Kt ) = ∑d

j=0 Vj (Kt ) and denote by W̃ (Kt ) the corresponding standardization.
Then

dW (W̃ (Kt ), Z) = O
(
t−

1
2+ 1

d+1 log(t)3+
2

d+1

)
, (3)

where Z
d∼ N (0, 1).

In the remarkable work [1] on the estimation of the volume of a convex body Vd(K )

given that the intensity t > 0 is known, the oracle estimator

ϑ̂oracle(Kt ) = Vd(Kt ) + f0(Kt )

t
,

is derived. This estimator is unbiased,

E
[
ϑ̂oracle(Kt )

]
= Vd(K ),

andofminimal variance among all unbiased estimators (UMVU), see [1, eq. (3.2), The-
orem 3.2]. Additionally the variance can be obtained by combining [1, Theorem 3.2]
with [23, Lemma 1] yielding

V
[
ϑ̂oracle(Kt )

]
= 1

t
E [Vd(K \ Kt )] = γd�(K )(1 + o(1))t−1− 2

d+1 , (4)

for t → ∞, where the constant γd only depends on the dimension and is known
explicitly and �(K ) denotes the affine surface area of K . This enables us to prove the
following univariate limit theorem for the oracle estimator:

Theorem 2 (Oracle estimator) Let ϑ̂oracle be the oracle estimator for a smooth convex
body K ∈ K d

sm and denote by ϑ̃oracle the corresponding standardization. Then

dW (ϑ̃oracle(Kt ), Z) = O
(
t−

1
2+ 1

d+1 log(t)3d+ 2
d+1

)
, (5)

where Z
d∼ N (0, 1).
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Finally we provide a multivariate limit theorem for the intrinsic volumes and the
components of the f-vector of the random polytope Kt that were considered in [15,
Theorem 5.5] in the univariate case. We note that this result suggests that it should
be possible to remove the logarithmic factors in the speed of convergence of the
multivariate limit theorem, since these factors are due to the floating-body approach.
Unfortunately, up to our knowledge, there is no multivariate version of the method
provided in [15] available at the moment. Thus we decided to restrict to the floating-
body approach on all results.

We denote by d3(X ,Y ) := suph∈Hm
|E [h(X)] − E [h(Y )]| themultivariate proba-

bility distribution distance, whereHm denotes the class of allC 3-functions h : Rm →
R such that all absolute values of the second and third partial derivatives are bounded
by one. See (10) in Sect. 2.2 for the precise definition.

Theorem 3 (Multivariate Limit Theorem) Let

F(Kt ) :=
(
Ṽ1(Kt ), . . . , Ṽd(Kt ), f̃0(Kt ), . . . , f̃d−1(Kt )

)
∈ R2d (6)

be the vector of the standardized intrinsic volumes Ṽ j and standardized number of
k-dimensional faces f̃k(Kt ), i.e.,

Ṽ j (Kt ) := Vj (Kt ) − E
[
Vj (Kt )

]

√
V
[
Vj (Kt )

] and f̃k(Kt ) := fk(Kt ) − E [ fk(Kt )]√
V [ fk(Kt )]

. (7)

We denote by Fi := Fi (Kt ), i = 1, . . . , 2d, the i th component of the multivariate
functional F(Kt ). Define �(t) = (σi j (t))i, j∈{1,...,2d} as the covariance matrix of
F(Kt ), i.e., σi j (t) := Cov

[
Fi , Fj

]
and σi i (t) = 1 for all i ∈ {1, . . . , 2d} and all

t > 0. Then

d3(F(Kt ), N�(t)) = O
(
t−

1
2+ 1

d+1 log(t)3d+ 2
d+1

)
(8)

where N�(t)
d∼ N (0, �(t)).

Note that N�(t) still depends on the intensity t . This gives rise to the following ques-
tions:

Open Problems The limit of the variances and covariances is still unknown; thus, we
cannot set σi j to be the limit of the correlations (rescaled covariances) σi j (t). These
limits would give rise to a limit theorem providing a fixed multivariate Gaussian
distributionN (0, �)with fixed covariance matrix�. In this case, the rate of the limit
theorem will also contain the rate of the correlations on the right-hand side of the
bound; thus, it would be beneficial to obtain the limit σi j of σi j (t) including an upper
bound for

∣
∣σi j (t) − σi j

∣
∣, since the convergence of the correlations could be slower

than the rate given in Theorem 3, slowing down the overall convergence. We should
mention that Calka, Schreiber and Yukich were able to derive limits for the variance in
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the case that K is the Euclidean unit ball using the paraboloid growth process, see [6],
but up to our knowledge there are no results on the limit of the variance in a general
(smooth) convex body and also no results on the covariances of F(Kt ).

The Euler–Poincaré equations and more general the Dehn–Sommerville equations,
see [33, Chapter 8], imply linear dependencies on the components of the f-vector.
Thus the covariance matrix �(t) is singular and therefore rank (�(t)) < 2d, which
gives rise to the question what rank (�(t)) actually is and if this also applies to the
limiting covariance matrix �?

Remark 1 Note that the univariate results can be derived for the d3-distance using the
multivariate result. Since the additional work that is needed to prove the univariate
results alongside the multivariate limit theorem is small, we decided to directly prove
the univariate results in the Wasserstein distance.

The paper is organized as follows: For the convenience of the reader, we repeat
the relevant material on the Malliavin–Stein method for normal approximation of
Poisson functionals in Sect. 2. In Sect. 3 we introduce some background material on
convex geometry and corresponding estimations using floating bodies without proofs,
to keep our presentation reasonably self-contained. The proofs of our main results are
presented in Sect. 4, starting with the central limit theorem for valuations, Theorem 1,
in Sect. 4.1 handling the intrinsic volumes. In Sect. 4.2 we prove the multivariate
limit theorem, Theorem 3, by extending our proof to the components of the f-vector.
Finally we can combine the results derived in the proofs before to obtain the central
limit theorem for the oracle estimator, Theorem 2.

2 Stochastic Preliminaries

Let η be a Poisson point process over the Euclidean space (Rd ,Bd) with intensity
measure μ. One can think of η as a random element in the space Nσ of all σ -finite
counting measures χ on Rd , i.e., χ(B) ∈ N ∪ {∞} for all B ∈ X , where the space
Nσ is equipped with the σ -fieldNσ generated by the mappings χ → χ(B), B ∈ Bd .
To simplify our notation, we will often handle η as a random set of points given by

x ∈ η ⇔ x ∈
{
y ∈ Rd : η({y}) > 0

}
.

We call a random variable F a Poisson functional if there exists a measurable map
f : Nσ → R such that F = f (η) almost surely. Themap f is called the representative
of F . We define the difference operator or so-called add-one-cost operator:

Definition 1 Let F be a Poisson functional and f its corresponding representative,
then the first-order difference operator is given by

Dx F := f (η + δx ) − f (η), x ∈ Rd ,

where δx denotes the Dirac measure with mass concentrated at x . We say that F
belongs to the domain of the difference operator, i.e., F ∈ dom (D), if E

[
F2
]

< ∞
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and

∫

Rd

E
[
(Dx F)2

]
μ(dx) < ∞.

The second-order difference operator is obtained by iterating the definition:

D2
x1,x2F := Dx1(Dx2F)

= f (η + δx1 + δx2) − f (η + δx1) − f (η + δx2) + f (η), x1, x2 ∈ Rd .

For a deeper discussion of the underlying theory of Poisson point processes, Malli-
avin calculus, Wiener-Itô-Chaos expansion and Malliavin–Stein method, see [18,20].

2.1 Malliavin–Stein Method for the Univariate Case

We denote by Lip (1) the class of Lipschitz functions h : R → R with Lipschitz
constant less or equal to one.Given twoR-valued randomvariables X ,Y , withE |X | <

∞ and E |Y | < ∞, the Wasserstein distance between the laws of X and Y , written as
dW (X ,Y ), is defined as

dW (X ,Y ) := sup
h∈Lip(1)

|E [h(X)] − E [h(Y )]| . (9)

If a sequence (Xn) of random variables satisfies limn→∞ dW (Xn,Y ) = 0, then it
holds that Xn converges to Y in distribution, see [18, p. 219 and Proposition B.9].
Especially if Y has standard Gaussian distribution, we obtain a central limit theorem
by showing dW (Xn, Y ) → 0, which we will achieve by rephrasing the bound given by
[17, Theorem 1.1] which is an extension of [21, Theorem 3.1], see also [18, Chapter
21.1, 21.2] for a slightly different form and proofs.

Theorem 4 Define

τ1 :=
∫

K 3

(
E
[
(D2

x1,x3F)4
]
E
[
(D2

x2,x3F)4
]

× E
[
(Dx1F)4

]
E
[
(Dx2F)4

]) 1
4
μ3(d(x1, x2, x3))

τ2 :=
∫

K 3

(
E
[
(D2

x1,x3F)4
]
E
[
(D2

x2,x3F)4
]) 1

2
μ3(d(x1, x2, x3))

τ3 :=
∫

K

E |Dx F |3 μ(dx).
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Let F ∈ dom (D) be a Poisson functional such that E [F] = 0 and V [F] = 1, and
let Z be a standard Gaussian random variable. Then

dW (F, Z) ≤ 2
√

τ1 + √
τ2 + τ3.

2.2 Malliavin–Stein Method for theMultivariate Case

We denote by Hm the class of all C 3-functions h : Rm → R such that all absolute
values of the second and third partial derivatives are bounded by one, i.e.,

max
1≤i1≤i2≤m

sup
x∈Rd

∣
∣
∣
∣

∂2

∂xi1∂xi2
h(x)

∣
∣
∣
∣ ≤ 1

and

max
1≤i1≤i2≤i3≤m

sup
x∈Rd

∣
∣
∣
∣

∂3

∂xi1∂xi2∂xi3
h(x)

∣
∣
∣
∣ ≤ 1.

Given twoRm-valued random vectors X ,Y withE ‖X‖2 < ∞ andE ‖Y‖2 < ∞, the
distance d3 between the laws of X and Y , written as d3(X ,Y ), is defined as

d3(X ,Y ) := sup
h∈Hm

|E [h(X)] − E [h(Y )]| . (10)

If a sequence (Xn) of random vectors satisfies limn→∞ d3(Xn,Y ) = 0, then it
holds that Xn converges to Y in distribution, see [22, Remark 2.16]. Especially if Y
is a m-dimensional centered Gaussian vector with covariance matrix � ∈ Rm×m ,
we obtain a multivariate limit theorem by showing d3(Xn,Y ) → 0. We will achieve
this, similar to the univariate central limit theorem, by rephrasing the bound given
by [29, Theorem 1.1] which extends [22], to provide the multivariate analogue to the
univariate result derived in [17], that was stated here as Theorem 4.

Theorem 5 Let F = (F1, . . . , Fm) with m ≥ 2 be a vector of Poisson functionals
F1, . . . , Fm ∈ dom (D) with E [Fi ] = 0, i ∈ {1, . . . ,m}. Define

γ1 :=
m∑

i, j=1

∫

K 3

(
E
[
(D2

x1,x3Fi )
4
]
E
[
(D2

x2,x3Fi )
4
]

× E
[
(Dx1Fj )

4
]
E
[
(Dx2Fj )

4
]) 1

4
μ3(d(x1, x2, x3))

γ2 :=
m∑

i, j=1

∫

K 3

(
E
[
(D2

x1,x3Fi )
4
]
E
[
(D2

x2,x3Fi )
4
]

× E
[
(D2

x1,x3Fj )
4
]
E
[
(D2

x2,x3Fj )
4
]) 1

4
μ3(d(x1, x2, x3))
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γ3 :=
m∑

i=1

∫

K

E |Dx Fi |3 μ(dx)

and let � = (σi j )i, j∈{1,...,m} ∈ Rm×m be positive semi-definite, then

d3(F, N�) ≤ m

2

m∑

i, j=1

∣
∣σi j − Cov

[
Fi , Fj

]∣
∣+ m

√
γ1 + m

2
√

γ2 + m2

4
γ3.

3 Geometric Preliminaries

Fix j ∈ {1, . . . , d} and letG(d, j)denote theGrassmannianof all j-dimensional linear
subspaces ofRd equipped with the uniquely determined Haar probability measure ν j ,
see [26, Section 4.4]. For k ∈ N, the k-dimensional volume of the k-dimensional unit
ball Bk is denoted by κk := π

k
2 �
(
1 + k

2

)−1
.

For a convex body K ∈ K d , the j-dimensional Lebesgue measure of the orthog-
onal projection of K onto the linear subspace L ∈ G(d, j) is denoted by � j (K |L).

For j ∈ {1, . . . , d}, the j th intrinsic volume of K is given by Kubota’s formula,
see [27, p. 222]:

Vj (K ) =
(
d

j

)
κd

κ jκd− j

∫

G(d, j)

� j (K |L)ν j (dL) (11)

and for j = 0 the 0th intrinsic volume of K , V0(K ), is the Euler characteristics of K ,
and therefore we have V0(K ) = 1 {K 	= ∅}. It is worth mentioning that V1(K ) and
Vd−1(K ) are the mean with and the surface area, respectively, up to multiplicative
constants and Vd(K ) equals the d-dimensional Lebesgue volume of K . The intrinsic
volumes are crucial examples of continuous, motion invariant valuations:

Definition 2 A real function on the space of convex bodies, ϕ : K d → R , is called
a valuation, if and only if

ϕ(K ) + ϕ(L) = ϕ(K ∪ L) + ϕ(K ∩ L) (12)

holds, whenever K , L, K ∪ L ∈ K d . It is called continuous if it is continuous accord-
ing to the Hausdorff metric onK d , and it is called invariant under rigid motions if it
is invariant under translations and rotations on Rd .

The theorem of Hadwiger [8,10,14] states that every continuous and motion invari-
ant valuation ϕ : K d → R can be decomposed into a linear combination of intrinsic
volumes:

Theorem 6 (Hadwiger) Let ϕ be a continuous and motion invariant valuation. Then
there exist coefficients ci ∈ R, i ∈ {0, . . . , d}, such that for all convex sets L ∈ K d ,
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it holds that

ϕ(L) =
d∑

i=0

ci Vi (L), (13)

where Vi denotes the i th intrinsic volume.

For further information on Hadwiger’s theorem, convex geometry and integral
geometry, we refer the reader to [9,26,27].

Let P ∈ K d be a polytope and i ∈ {0, . . . , d}. We denote by Fi (P) the set of all
i-dimensional faces, i-faces for short, of P and byFVis

i (P, x) the restriction to those
i-faces that can be seen from x , where we consider a face F of P to be seen by x if all
points z ∈ F can be connected by a straight line [z, x] to x such that the intersection
of this line with P only contains the starting point z, i.e.,

FVis
i (P, x) := {F ∈ Fi (P) : ∀z ∈ F : [x, z] ∩ P = {z}} .

The sets of all faces resp. all visible faces are denoted byF (P) :=⋃d
i=0 Fi (P) resp.

FVis(P, x) :=⋃d
i=0 F

Vis
i (P, x).

For a vertex v ∈ F0(P), the link of v in P is the set of all faces of P that do not
contain v but are contained in a (higher dimensional) face that contains v, i.e.,

link(P, v) := {F ∈ F (P) : v /∈ F and ∃G ∈ F (P) : F ⊂ G � v} ,

see [33, Chapter 8.1] for a recent account of the theory.
The number of i-dimensional faces of P will be denoted by fi (P), i.e.,

fi (P) = |Fi (P)| .

Note that the vector ( f−1(P), f0(P), . . . , fd(P)) with f−1(P) := V0(P) is the f-
vector of P , see [33, Definition 8.16, p. 245] for more details.

3.1 Geometric Estimations

We introduce the notion of the ε-floating body, following [25, Section 2.2.3]. For a
fixed K ∈ K d and a closed halfspace H , we call the intersection C = H ∩ K a cap
of K . If C has volume Vd(C) = ε, we call C an ε-cap of K . We define the function
v : K → R by

v(z) = min {Vd(K ∩ H) : H is a halfspace with z ∈ H} ,

and the floating body with parameter ε, ε-floating body for short, as the level set

K (v ≥ ε) = {z ∈ K : v(z) ≥ ε} ,
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which is convex, since it is the intersection of halfspaces. The wet part of K is defined
as K (v ≤ ε), where the name comes from the three-dimensional picture when K is a
box containing ε units of water. Note that the ε-floating body is (up to its boundary)
the remaining set of K , if all ε-caps are removed from K and the wet part is the union
of these caps. For the convenience of the reader, we will only use the notation for the
floating body K (v ≥ ε) to prevent confusion with the wet part denoted by K (v ≤ ε).
From now on, we will assume that the parameter ε > 0 is sufficiently small. Thus we
can use the following lemmas from [31, Lemma 6.1-6.3]:

Lemma 1 Let C be an ε-cap of K , then there are two constants c1, c2 ∈ (0,∞) such
that the diameter of C, diam(C) = supx,y∈C ‖x − y‖, is bounded by

c1ε
1

d+1 ≤ diam(C) ≤ c2ε
1

d+1 .

Lemma 2 Let x be a point on the boundary ∂K of K and D(x, ε) the set of all points
on the boundary which are of distance at most ε to x. Then the convex hull of D(x, ε)
has volume at most c3εd+1, where c3 ∈ (0,∞) is some constant not depending on ε.

Lemma 3 Let C be an ε-cap of K . The union of all ε-caps intersecting C has volume
at most c4ε, where c4 ∈ (0,∞) is some constant not depending on ε.

4 Proofs of theMain Results

To shorten our notation, we write K x
t resp. K y

t for the convex hull of (ηt + δx ) ∩ K
resp. (ηt + δy)∩ K and K xy

t for the convex hull of (ηt + δx + δy)∩ K . Further we will
useC ∈ (0,∞) to denote a constant that can depend on the dimension and the convex
set K , but is independent of the intensity of our Poisson point process t . For sake of
brevity, we will not mention these properties of C in the following, and additionally
the value of C may also differ from line to line. We will use g(t) � f (t) to indicate
that g(t) is of order at most f (t), i.e.,

g(t) � f (t) :⇔ g(t) = O ( f (t))

⇔ ∃c > 0, t0 > 0 : ∀t > t0 : g(t) ≤ c f (t),

where c and t0 are constants not depending on t . We will use g(t) = �( f (t)) to
indicate that g(t) is of the same order of f (t), i.e.,

g(t) = �( f (t)) :⇔ f (t) = O (g(t)) and g(t) = O ( f (t)) .

For sufficiently large t > 0, we define εt := c log(t)t with c > 0 and denote by
K (v ≥ εt ) the εt -floating body of K . Let A(εt , t) := {K (v ≥ εt ) ⊆ Kt } be the event
that the εt -floating body is contained in the random polytope Kt . Recall the well-
known lemma from [3,31] and [25, Lemma 2.2] in a slightly modified version for the
Poisson case:
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Lemma 4 For anyβ ∈ (0,∞) there exists a constant c(β, d) ∈ (0,∞) only depending
onβ and the space dimension d, such that the event A(εt , t), that the εt -floating body is
contained in the random polytope Kt occurs with high probability. More precisely, the
probability of the complementary event Ac(εt , t) has polynomial decay with exponent
−β for t → ∞, i.e.,

P
(
Ac(εt , t)

)
< Ct−β,

whenever t is sufficiently large.

Note that the parameter β can be freely chosen in (0,∞), thus for β = 16d + 1,
which is sufficiently large for all our purposes, we get c(β, d), and therefore we can
define εt such that K (v ≥ εt ) ⊆ Kt with high probability according to Lemma 4.

We will use the following estimation of subsets of G(d, j) from [4, Lemma 1] to
handle the projections arising from Kubota’s formula in our proof of Theorem 1:

Lemma 5 For z ∈ S
d−1 andL ∈ G(d, j), we define the angle�(z,L) as the minimum

of all angles �(z, x), x ∈ L. For sufficiently small α > 0, one has that

ν j ({L ∈ G(d, j) : �(z,L) ≤ α}) = �
(
αd− j

)
.

4.1 Proof of Theorem 1: Valuation Functional

We first recall that the valuation functional ϕ(Kt ) can be decomposed with Hadwiger
(13) into the linear combination of intrinsic volumes, and thus the varianceV [ϕ(Kt )]
can be rewritten as

V [ϕ(Kt )] =
d∑

i=0

c2i V [Vi (Kt )] + 2
d∑

i=0

d∑

j=i+1

ci c jCov
[
Vi (Kt ), Vj (Kt )

]
.

For Vi , i ∈ {1, . . . , d}, we will use the variance bound from [15, eq. 5.20, eq. 5.22,
eq. 5.23], see also [6, Corollary 7.1] and [23]:

t−1− 2
d+1 � V [Vi (Kt )] � t−1− 2

d+1 . (14)

Since V0(Kt ) is the Euler characteristics of Kt , we have V0(Kt ) = 1 {Kt 	= ∅} and
therefore V0(Kt ) is a Bernoulli distributed random variable with success probability
P (V0(Kt ) = 1) = 1 − e−t�d (K ). The expectation is given by E [V0(Kt )] = 1 −
e−t�d (K ) and the variance by V [V0(Kt )] = (1 − e−t�d (K ))e−t�d (K ), which can be
bounded by

0 ≤ V [V0(Kt )] � e−t�d (K ) � t−1− 2
d+1 . (15)
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Lemma 6 For all i, j ∈ {0, . . . , d} the intrinsic volumes of Kt are non negatively cor-
related and their covariances are bounded from above by the same order of magnitude
as the variance, i.e.,

0 ≤ Cov
[
Vi (Kt ), Vj (Kt )

]� t−1− 2
d+1 . (16)

Proof Since DxVj (Kt ) ≥ 0 for all x ∈ Rd , it follows from the Harris-FKG inequality
for Poisson processes, see [16, Theorem 11], that

E
[
Vi (Kt )Vj (Kt )

] ≥ E [Vi (Kt )]E
[
Vj (Kt )

]
,

which directly implies the lower bound on the covariances. The Cauchy–Schwarz
inequality implies

Cov
[
Vi (Kt ), Vj (Kt )

] ≤
√
V [Vi (Kt )]V

[
Vj (Kt )

];

thus, using (14) and (15), the upper bound on the covariances is obtained. ��
We are now in a position to bound the variance of our valuation functional with the

following lemma:

Lemma 7 Under the assumptions of Theorem 1, the variance of the valuation func-
tional is bounded by

t−1− 2
d+1 � V [ϕ(Kt )] � t−1− 2

d+1 . (17)

Proof We assumed ci c j ≥ 0 for all i, j and that there exist at least one index k ∈
{1, . . . , d} such that ck 	= 0. Thus Lemma 6 implies

V [ϕ(Kt )] ≥ c2kV [Vk(Kt )] � t−1− 2
d+1 ,

and

V [ϕ(Kt )] � (d + 1)t−1− 2
d+1 + (d + 1)d

√(
t−1− 2

d+1

) (
t−1− 2

d+1

)
� t−1− 2

d+1 ,

which completes the proof. ��
The crucial part in the proof of Theorem 1 is the application of the general bound

given by Theorem 4, and thus we need to investigate the moments occurring in τ1,
τ2 and τ3. In the first step, we adapt and slightly extend the proof from [30] for the
binomial case, to work in the Poisson case, yielding upper bounds on the moments
of the first- and second-order difference operators applied to the intrinsic volumes
Vj (Kt ) which will be used in the second step to derive the bounds for the valuation
functional.
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First-Order Difference Operator Fix x ∈ K and j ∈ {1, . . . , d}, then conditioned on
the event A(εt , t), it follows that

DxVj (Kt ) = 1 {x ∈ K \ Kt } DxVj (Kt ) = 1 {x ∈ K \ K (v ≥ εt )} DxVj (Kt ),

(18)

thus we can restrict the following to the case x ∈ K \ K (v ≥ εt ).
For x ∈ K \ K (v ≥ εt ), we define z to be the closest point to x on the boundary

∂K . Since K is smooth, z is uniquely determined, if εt is sufficiently small.
The visible region of z is defined as the set of all points that can be connected to z

by a straight line in K avoiding K (v ≥ εt ), i.e.,

Visz(t) := {y ∈ K \ K (v ≥ εt ) : [y, z] ∩ K (v ≥ εt ) = ∅} . (19)

Note that given the sandwiching K (v ≥ εt ) ⊂ Kt ⊂ K , a random point x can
influence the random polytope only in the visibility region.

We construct a full-dimensional spherical cap C such that K x
t \ Kt ⊆ C . The

definition of the visible region, whichwas first used in [5,31], is crucial in the following
steps:

Let y1, y2 ∈ Visz(t), then there exist two εt -caps C1 and C2 such that the straight
line [y1, z] resp. [y2, z] is contained in C1 resp. C2, thus

‖y1 − y2‖ ≤ ‖y1 − z‖ + ‖y2 − z‖ ≤ diam(C1) + diam(C2).

Since the diameter of any εt -cap C of K can be bounded by Cε
1

d+1
t , see Lemma 1,

it follows directly that the diameter of the visibility region can be bounded by

ρ := diam (Visz(t)) �
(
log(t)

t

) 1
d+1

.

Let D(z, ρ) be the set of all points on the boundary ∂K which are of distance at most
ρ to z, i.e.,

D(z, ρ) = {y ∈ ∂K : ‖y − z‖ < ρ}

and denote the cap that is given by the convex hull of D(z, ρ) by C , i.e.,

C := conv {D(z, ρ)} . (20)

By construction, we have K x
t \ Kt ⊆ Visz(t) ⊆ C . It follows from Lemma 2 that

the volume of C is of order at most log(t)
t .

Fix a linear subspace L ∈ G(d, j), then one has that the set difference of the
projection of K x

t and Kt onto the subspace L is contained in the projection of C onto
L

(K x
t |L) \ (Kt |L) ⊆ C |L.
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The j-dimensional volume of the projected cap C |L can be bounded in its order of
magnitude by

� j (C |L) �
(
log(t)

t

) j+1
d+1

. (21)

Depending on the angle between z and L, �(z,L), the part K x
t \ Kt is not visible

for the orthogonal projection on L since it is hidden behind K (v ≥ εt ), i.e.,

(K x
t \ Kt )|L ⊆ K (v ≥ εt )|L,

for sufficiently large t . To obtain a bound on the maximal angle �(z,L) where the
projection does not vanish, we approximate K by a ball Bd(zc, r) with center zc and
radius r such that Bd(zc, r) ⊆ K and Bd(zc, r) ∩ ∂K = {z}. Indeed we approximate
the boundary ∂K of K from the inside of K by a ball, which is possible, since K is
sufficiently smooth.

We repeat the construction of the cap C for Bd(zc, r) with the corresponding εt -
floating bodyBd(v ≥ εt ) of the ball to obtain the capCB and define α to be the central
angle of CB in Bd(zc, r). It follows from Lemma 2 that the volume of CB is of order

at most log(t)
t , since ρB �

(
log(t)

t

) 1
d+1

, which yields

α �
(
log(t)

t

) 1
d+1

. (22)

Thus it follows from Bd(v ≥ εt ) ⊆ K (v ≥ εt ) ⊆ Kt ⊆ K x
t that K x

t |L = Kt |L if
�(z,L) is of larger order than α, and therefore we have

� j
(
(K x

t |L) \ (Kt |L)
) 	= 0, only if �(z,L) � α.

Using (22) and (21), it follows that

� j
(
(K x

t |L) \ (Kt |L)
) ≤ 1

{

�(z,L) �
(
log(t)

t

) 1
d+1
}

� j (C |L)

≤ 1

{

�(z,L) �
(
log(t)

t

) 1
d+1
}(

log(t)
t

) j+1
d+1

.

Finally we use Kubota’s formula (11) together with (18) and Lemma 5 to obtain

DxVj (Kt ) = 1 {x ∈ K \ K (v ≥ εt )} c(d, j)
∫

G(d, j)

� j
(
(K x

t |L) \ (Kt |L)
)
ν j (dL)

� 1 {x ∈ K \ K (v ≥ εt )}
∫

G(d, j)

1

{

�(z,L) �
(
log(t)

t

) 1
d+1
}(

log(t)
t

) j+1
d+1

ν j (dL)
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� 1 {x ∈ K \ K (v ≥ εt )}
(
log(t)

t

) j+1
d+1

ν j

({

L : �(z,L) �
(
log(t)

t

) 1
d+1
})

� 1 {x ∈ K \ K (v ≥ εt )}
(
log(t)

t

) j+1
d+1
(
log(t)

t

) d− j
d+1

= 1 {x ∈ K \ K (v ≥ εt )} log(t)
t .

where c(d, j) = (d
j

)
κd

κ jκd− j
can be omitted since we are bounding DxVj (Kt ) in its

order of magnitude with respect to t .

Second-Order Difference Operator Fix x, y ∈ K and j ∈ {1, . . . , d}, similar to (18)
and conditioned on the event A(εt , t), we have that

D2
x,yVj (Kt ) = 1 {x, y ∈ K \ K (v ≥ εt )} D2

x,yVj (Kt ).

To further restrict x, y ∈ K \ K (v ≥ εt ), we show the following lemma:

Lemma 8 Fix two convex bodies P, K ∈ K d with P ⊂ K and two points x, y ∈
K \P. Denote by Pxy, Px and Py the convex hulls of P∪{x, y}, P∪{x} resp. P∪{y}.
We define the visibility region of x with respect to P by

Vx (P) := {z ∈ K \ P : [z, x] ∩ P = ∅} .

If Vx (P) ∩ Vy(P) = ∅, then

Px ∩ Py = P, (23)

Px ∪ Py = Pxy, (24)

and further it follows for all valuationsψ : K d → R that the second-order difference
operator of ψ(P) vanishes, i.e.,

D2
x,yψ(P) = 0. (25)

Proof Using Px ⊆ Vx (P) ∪ P and Py ⊆ Vy(P) ∪ P , it follows directly from
Vx (P) ∩ Vy(P) = ∅ that Px ∩ Py ⊆ (Vx (P) ∩ Vy(P)) ∪ P = P . Additionally the
inclusion P ⊆ Px ∩ Py , which follows directly from the definition of the convex hull,
gives (23).

Again, it is immediate that Px ⊆ Pxy and Py ⊆ Pxy , and thus it remains to prove
that Pxy ⊆ Px ∪ Py . Assume z ∈ Pxy \ (Px ∪ Py), then there exist λ1, λ2 ∈ [0, 1]
and u ∈ Px , v ∈ Py such that

z = λ1u + (1 − λ1)y = λ2v + (1 − λ2)x,

wherewe can safely assume that u and v are chosen such that λ1 and λ2 aremaximized.
Note that u ∈ Py implies z ∈ Py resp. v ∈ Px implies z ∈ Px , a contradiction, which
leads to the remaining case u ∈ Px \ Py and v ∈ Py \ Px . By construction it now
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follows that [x, z]∩P = ∅ and [y, z]∩P = ∅, which yields z ∈ Vx (P) and z ∈ Vy(P)

contrary to Vx (P) ∩ Vy(P) = ∅ which gives (24).
The second-order difference operator of ψ(P) is given by

D2
x,yψ(P) = ψ(Pxy) − ψ(Px ) − ψ(Py) + ψ(P).

Using (23) and (24), we can rewrite the first term according to the valuation property
(12) to

ψ(Pxy) = ψ(Px ) + ψ(Py) − ψ(Px ∩ Py) = ψ(Px ) + ψ(Py) − ψ(P),

which gives (25) when substituted in the representation of D2
x,yψ(P). ��

Since Visx (t) ∩ Visy(t) = ∅ implies the conditions of Lemma 8 for P = Kt ⊇
K (v ≥ εt ), it follows that

D2
x,yVj (Kt ) = 1 {x, y ∈ K \ K (v ≥ εt )}1

{
Visx (t) ∩ Visy(t) 	= ∅} D2

x,yVj (Kt ).

Taking D2
x,yVj (Kt ) = Dx (DyVj (Kt )), we obtain

∣
∣
∣D2

x,yVj (Kt )

∣
∣
∣ ≤ DxVj (K

y
t ) +

DxVj (Kt )where we immediately see that the second term DxVj (Kt ) is the first-order
difference operator that we have bounded before. Using K (v ≥ εt ) ⊆ Kt ⊆ K y

t , we
can substitute Kt with K y

t in the proof for the first-order difference operator to obtain

D2
x,yVj (Kt )

= 1 {x, y ∈ K \ K (v ≥ εt )}1
{
Visx (t) ∩ Visy(t) 	= ∅} (DxVj (K

y
t ) + DxVj (Kt )

)

� 1 {x, y ∈ K \ K (v ≥ εt )}1
{
Visx (t) ∩ Visy(t) 	= ∅}

(
log(t)

t + log(t)
t

)

� 1 {x, y ∈ K \ K (v ≥ εt )}1
{
Visx (t) ∩ Visy(t) 	= ∅} log(t)

t .

The results of the prior discussion can be summarized in the following lemma
bounding the order of magnitude of the pth absolute moment of the first- and second-
order difference operator of the intrinsic volumes Vj (Kt ).

Lemma 9 Let p ∈ {1, . . . , 8}, j ∈ {0, . . . , d} and x, y ∈ K, then

E
∣
∣(DxVj (Kt ))

p
∣
∣� 1 {x ∈ K \ K (v ≥ εt )}

(
log(t)

t

)p
, (26)

E

∣
∣
∣(D2

x,yVj (Kt ))
p
∣
∣
∣� 1 {x, y ∈ K \ K (v ≥ εt )}

× 1
{
Visx (t) ∩ Visy(t) 	= ∅}

(
log(t)

t

)p
, (27)

Proof Let j 	= 0. On the event A(εt , t), we use the bounds derived before and on
the complementary event Ac(εt , t), it is sufficient to use the estimations DxVj (Kt ) ≤
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Vj (K ) resp.
∣
∣
∣D2

x,yVj (Kt )

∣
∣
∣ ≤ 2Vj (K ), thus

E
∣
∣(DxVj (Kt ))

p
∣
∣ = E

[
(DxVj (Kt ))

p1A(εt ,t)
]+ E

[
(DxVj (Kt ))

p1Ac(εt ,t)
]

� 1 {x ∈ K \ K (v ≥ εt )}
(
log(t)

t

)p
P (A(εt , t))

+ Vj (K )pP
(
Ac(εt , t)

)

and

E

∣
∣
∣(D2

x,yVj (Kt ))
p
∣
∣
∣

≤ E

∣
∣
∣(D2

x,yVj (Kt ))
p1A(εt ,t)

∣
∣
∣+ E

∣
∣
∣(D2

x,yVj (Kt ))
p1Ac(εt ,t)

∣
∣
∣

� 1 {x, y ∈ K \ K (v ≥ εt )}1
{
Visx (t) ∩ Visy(t) 	= ∅}

(
log(t)

t

)p
P (A(εt , t))

+ (2Vj (K ))pP
(
Ac(εt , t)

)
.

SinceP (A(εt , t)) ≤ 1 andP (Ac(εt , t)) ≤ t−β , withβ = 16d+1 > p, see Lemma 4,
our claim follows for j ∈ {1, . . . , d}.

Let j = 0. We use V0(Kt ) = 1 {Kt 	= ∅} to derive

E
∣
∣(DxVj (Kt ))

p
∣
∣ = 1 {x ∈ K \ K (v ≥ εt )}P (Kt = ∅)

and

E

∣
∣
∣(D2

x,yV0(Kt ))
p
∣
∣
∣

= 1 {x ∈ K \ K (v ≥ εt )}1
{
Visx (t) ∩ Visy(t) 	= ∅}P (Kt = ∅) ,

thus using P (Kt = ∅) = e−t�d (K ) the claim follows by bounding the exponential
decay with (

log(t)
t )p. ��

Our next objective is to prove corresponding bounds on the moments of the first-
and second-order difference operator of the valuation functional we wish to study.

Lemma 10 Let p ∈ {1, . . . , 8} and x, y ∈ K, then

E
∣
∣(Dxϕ(Kt ))

p
∣
∣� 1 {x ∈ K \ K (v ≥ εt )}

(
log(t)

t

)p
, (28)

E

∣
∣
∣(D2

x,yϕ(Kt ))
p
∣
∣
∣� 1 {x, y ∈ K \ K (v ≥ εt )}

× 1
{
Visx (t) ∩ Visy(t) 	= ∅}

(
log(t)

t

)p
. (29)

Proof Since Dx is linear, we obtain

E
∣
∣(Dxϕ(Kt ))

p
∣
∣ ≤

d∑

j1,..., jp=0

( p∏

k=1

c jk

)

E

∣
∣
∣
∣
∣

p∏

k=1

DxVjk (Kt )

∣
∣
∣
∣
∣
.
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and the generalized Hölder inequality yields

E
∣
∣(Dxϕ(Kt ))

p
∣
∣ ≤

d∑

j1,..., jp=0

( p∏

k=1

c jk

)( p∏

k=1

E
∣
∣DxVjk (Kt )

∣
∣p
) 1

p

.

Therefore we can use (26) to bound all moments on the right-hand side yielding
(28). The proof of (29) is similar using (27) instead of (26). ��

Before we apply the previous lemma to the error bounds τ1, τ2 and τ3, we introduce
two estimations for the domain of integration. From [2, Theorem6.3] it follows directly
that

�d(K \ K (v ≥ εt )) �
(
log(t)

t

) 2
d+1

. (30)

Denote by C(x) resp. C(z) the caps constructed according to (20) for points x, z ∈
K \ K (v ≥ εt ), then for every fixed x ∈ K \ K (v ≥ εt ) we have

{
y ∈ K \ K (v ≥ εt ) : Visx (t) ∩ Visy(t) 	= ∅} ⊆

⋃

z∈Visx (t)
Visz(t) ⊆

⋃

z∈C(x)

C(z).

Recall that the volumes of C(x) and C(z) are of order at most log(t)
t ; thus Lemma 3

yields

�d
({
y ∈ K \ K (v ≥ εt ) : Visx (t) ∩ Visy(t) 	= ∅})� log(t)

t , (31)

for all x ∈ K \ K (v ≥ εt ).
Applying the previous results to the error bound τ1 yields

τ1 � V [ϕ(Kt )]
−2
(
log(t)

t

)4
t3
∫

K

1 {x3 ∈ K \ K (v ≥ εt )}

×
⎛

⎝
∫

K

1
{
Visx1(t) ∩ Visx3(t) 	= ∅} dx1

⎞

⎠

×
⎛

⎝
∫

K

1
{
Visx2(t) ∩ Visx3(t) 	= ∅} dx2

⎞

⎠ dx3

�
(
t−1− 2

d+1

)−2 ( log(t)
t

)4
t3
(
log(t)

t

) 2
d+1
(
log(t)

t

)2

� t−1+ 2
d+1 log(t)6+

2
d+1 .
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In the same manner, we can see that

τ2 � t−1+ 2
d+1 log(t)6+

2
d+1 ,

τ3 � t−
1
2+ 1

d+1 log(t)3+
2

d+1 .

Combining these three bounds with Theorem 4 leads to

dW (ϕ̃(Kt ), Z) ≤ 2
√

τ1 + √
τ2 + τ3 � t−

1
2+ 1

d+1 log(t)3+
2

d+1 ,

for Z
d∼ N (0, 1), completing the proof of Theorem 1.

4.2 Proof of Theorem 3: Multivariate Functional

We start to investigate the moments of the first- and second-order difference operators
applied to the components of the f-vector by combining combinatorial results from
[24] with the floating body and economic cap covering approach from [25,30].

First-OrderDifferenceOperator Fix x ∈ K and j ∈ {0, . . . , d − 1}, then conditioned
on the event A(εt , t), it follows similar to (18) that

Dx f j (Kt ) = 1 {x ∈ K \ K (v ≥ εt )} Dx f j (Kt ),

thus we can restrict the following to the case x ∈ K \ K (v ≥ εt ).
Let Kt be fixed and assume x /∈ Kt . Since the polytope Kt is simplicial and all

vertices are in general position almost surely, analysis similar to that in [24, Section
4] allows us to decompose Dx f j (Kt ) into the number of j-faces gained, denoted by
f +
j , and the number of j-faces lost, denoted by f −

j :

∣
∣Dx f j (Kt )

∣
∣ =

∣
∣
∣ f +

j − f −
j

∣
∣
∣ ≤ f +

j + f −
j .

Every j-face gained in K x
t is the convex hull of x and a ( j − 1)-face in link(K x

t , x).
Additionally every ( j − 1)-face in link(K x

t , x) is also contained inFVis
j−1(Kt , x), thus

f +
j ≤ f j−1

(
link(K x

t , x)
) ≤

∣
∣
∣FVis

j−1(Kt , x)
∣
∣
∣ .

On the other hand, the j-faces inF j (Kt ) that are lost have to be visible from x , thus

f −
j ≤

∣
∣
∣FVis

j (Kt , x)
∣
∣
∣ .

Note that not all visible j-faces are removed; to gain the exact amount of lost j-faces,
one has to calculate the number of j-faces that are visible and not contained in the link
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of x in the new polytope K x
t , i.e.,

∣
∣
∣FVis

j (Kt , x) \ link(K x
t , x)

∣
∣
∣, as we will see later for

the second-order difference operator.
Let z be the closest point to x on the boundary of ∂K , then it follows immediately

that every visible i-face F ∈ FVis
i (Kt , x) has to be a subset of Visz(t). Since (i + 1)

pairwise distinct points are needed to form an i-face, the number of visible i-faces can
be bound by the number of points in Visz(t), i.e.,

∣
∣
∣FVis

i (Kt , x)
∣
∣
∣ ≤

(
η (Visz(t))

i + 1

)

for all i ∈ {0, . . . , d − 1}. Combining these steps, we obtain

∣
∣Dx f j (Kt )

∣
∣ ≤

(
η (Visz(t))

j

)

+
(

η (Visz(t))

j + 1

)

=
(

η (Visz(t)) + 1

j + 1

)

≤ (η (Visz(t)) + 1) j+1

and further for p ∈ {1, . . . , 8},

E
∣
∣Dx f j (Kt )1A(εt ,t)

∣
∣p ≤ E

[
(η (Visz(t)) + 1)p( j+1)

]
.

Thebinomial theoremand the fact thatη (Visz(t)) is Poissondistributedwith parameter
μ(Visz(t)) yield

E
∣
∣Dx f j (Kt )1A(εt ,t)

∣
∣p ≤

p( j+1)∑

i=0

(
p( j + 1)

i

)

E
[
η (Visz(t))

i
]

≤
p( j+1)∑

i=0

(
p( j + 1)

i

) i∑

k=0

{
i

k

}

μ(Visz(t))
k

where
{i
k

}
denotes the Stirling numbers of the second kind. Recall that

μ(Visz(t)) = t�d(Visz(t)) � t log(t)t = log(t)

and j ∈ {0, . . . , d − 1}, thus

E
∣
∣Dx f j (Kt )1A(εt ,t)

∣
∣p � log(t)pd .

Conditioned on the complementary event Ac(εt , t), we need to slightly modify
the proof, replacing η(Visz(t)) by η(K ), the number of all points in K , and using
the Cauchy–Schwarz inequality to separate the expectation of the indicator, from the
moments of η(K ):
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E
∣
∣Dx f j (Kt )1Ac(εt ,t)

∣
∣p ≤

p( j+1)∑

i=0

(
p( j + 1)

i

)(
E
[
1Ac(εt ,t)

]
E
[
η(K )2i

]) 1
2

≤ √P (Ac(εt , t))
p( j+1)∑

i=0

(
p( j + 1)

i

)( 2i∑

k=0

{
2i

k

}

μ(K )k

) 1
2

� t−
β
2 t pd � 1,

since β = 16d + 1 ≥ 2pd.

Second-Order Difference Operator Fix x, y ∈ K and j ∈ {0, . . . , d − 1}, similar to
the intrinsic volumes handled before we have

D2
x,y f j (Kt ) = 1 {x, y ∈ K \ K (v ≥ εt )} D2

x,yVj (Kt ).

We show the following lemma, to obtain a restriction on x, y for the components of
the f-vector similar to that derived from Lemma 8 for the intrinsic volumes:

Lemma 11 Fix a d-dimensional polytope P ⊂ K contained in a convex body K ∈ K d

and two points x, y ∈ K \ P. Let Vx (P) and Vy(P) denote the visibility regions of x
and y with respect to P be defined as in Lemma 8. If Vx (P) ∩ Vy(P) = ∅, then

D2
x,y f j (P) = 0,

for all j ∈ {0, . . . , d − 1}.
Proof Denote by Pxy , Px and Py the convex hulls of P∪{x, y}, P∪{x} resp. P∪{y},
then we can decompose the number of j-faces of Pxy into the number of j-faces of
Px and the gained and lost j-faces obtained from adding y, i.e.,

f j (P
xy) = f j (P

x ) + f j−1(link(P
xy, y)) −

∣
∣
∣FVis

j (Px , y) \ link(Pxy, y)
∣
∣
∣

Since the visible regions are disjoint, we have FVis(Px , y) = FVis(P, y) and addi-
tionally link(Pxy, y) = link(Py, y), thus

D2
x,y f j (P) = f j (P

xy) − f j (P
x ) − f j (P

y) + f j (P)

= f j−1(link(P
y, y)) −

∣
∣
∣FVis

j (P, y) \ link(Py, y)
∣
∣
∣− f j (P

y) + f j (P).

Similar to f j (Pxy) we can decompose f j (P) by counting the j-faces in Py and
subtracting the difference that arises from the addition of y to P:

f j (P) = f j (P
y) − f j−1(link(P

y, y)) +
∣
∣
∣FVis

j (P, y) \ link(Py, y)
∣
∣
∣ ,
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yielding

D2
x,y f j (P) = f j−1(link(P

y, y)) −
∣
∣
∣FVis

j (P, y) \ link(Py, y)
∣
∣
∣− f j (P

y)

+ f j (P
y) − f j−1(link(P

y, y)) +
∣
∣
∣FVis

j (P, y) \ link(Py, y)
∣
∣
∣

= 0,

which is the desired conclusion.

Since Visx (t) ∩ Visy(t) = ∅ implies the conditions of Lemma 11 for P = Kt ⊇
K (v ≥ εt ), it follows that

D2
x,y f j (Kt ) = 1 {x, y ∈ K \ K (v ≥ εt )}1

{
Visx (t) ∩ Visy(t) 	= ∅} D2

x,y f j (Kt ),

and similar to D2
x,yVj (Kt ) we derive

D2
x,y(Kt ) � 1 {x, y ∈ K \ K (v ≥ εt )}1

{
Visx (t) ∩ Visy(t) 	= ∅} log(t)pd .

Having disposed of these preliminary steps, we can now summarize the results
in the following lemma bounding the order of magnitude of the pth moment of the
difference operator of the f-vector components f j (Kt ).

Lemma 12 Let p ∈ {1, . . . , 8}, j ∈ {0, . . . , d − 1} and x, y ∈ K, then

E
∣
∣(Dx f j (Kt ))

p
∣
∣� 1 {x ∈ K \ K (v ≥ εt )} log(t)dp,

E

∣
∣
∣(D2

x,y f j (Kt ))
p
∣
∣
∣� 1 {x, y ∈ K \ K (v ≥ εt )}

× 1
{
Visx (t) ∩ Visy(t) 	= ∅} log(t)dp.

Proof The proof is similar to the one of Lemma 9. ��

Weare leftwith the task of applying our estimations on the bound γ1, γ2 and γ3 given
by Theorem 5. Since we consider the multivariate functional given by (6), we have to
distinguish the following three cases depending on the combination of functionals Fi
and Fj using the corresponding bounds for the variance given by (14) for the intrinsic
volumes and by

t1−
2

d+1 � V [ fk(Kt )] � t1−
2

d+1 , (32)

for the components of the f-vector, see [23].We denote by γ1(i, j), γ2(i, j) resp. γ3(i)
the integral in γ1, γ2 resp. γ3, then it follows from Lemma 9, 12 and the estimations
on the domain of integration (30) and (31) that
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γ1(i, j)

γ2(i, j) � t−1+ 2
d+1 ×

⎧
⎪⎪⎨

⎪⎪⎩

log(t)6+
2

d+1 , i, j ∈ {1, . . . , d} ,

log(t)4+2d+ 2
d+1 , i ∈ {1, . . . , d} , j ∈ {d + 1, . . . , 2d} ,

log(t)2+4d+ 2
d+1 , i, j ∈ {d + 1, . . . , 2d} .

and

γ3(i) � t−
1
2+ 1

d+1 ×
{
log(t)3+

2
d+1 , i ∈ {1, . . . , d} ,

log(t)3d+ 2
d+1 , i ∈ {d + 1, . . . , 2d} .

It can easily be seen that the speed of convergence is dominated by the case
i, j ∈ {d + 1, . . . , 2d}; thus we can rewrite the bound in Theorem 5 using σi j (t) =
Cov

[
Fi , Fj

]
to

d3(F, N�(t)) � d
2d∑

i, j=1

∣
∣σi j (t) − Cov

[
Fi , Fj

]∣
∣

+ 2d · t− 1
2+ 1

d+1 log(t)1+2d+ 1
d+1 + d · t− 1

2+ 1
d+1 log(t)1+2d+ 1

d+1

+ d2 · t− 1
2+ 1

d+1 log(t)3d+ 2
d+1

� t−
1
2+ 1

d+1 log(t)3d+ 2
d+1 ,

which completes the proof.

4.3 Proof of Theorem 2: Oracle Functional

Recall that the oracle estimator is given by ϑ̂oracle(Kt ) = Vd(Kt ) + t−1 f0(Kt ), and
its variance asymptotics is given by (4)

V
[
ϑ̂oracle(Kt )

]
= γd�(K )(1 + o(1))t−1− 2

d+1 = �
(
t−1− 2

d+1

)
,

for t → ∞, where the constant γd only depends on the dimension and is known
explicitly and �(K ) denotes the affine surface area of K . Rescaling of ϑ̂oracle(Kt )

yields

ϑ̂oracle(Kt )
√

V
[
ϑ̂oracle(Kt )

] = �
(
t
1
2+ 1

d+1 Vd(Kt ) + t−
1
2+ 1

d+1 f0(Kt )
)

,

where the scaling t
1
2+ 1

d+1 resp. t−
1
2+ 1

d+1 corresponds with the asymptotic variance of
Vd(Kt ) resp. f0(Kt ), see (14) and (32). Therefore we can use the previous results to
deduce bounds on the moments of the first- and second-order difference operator of
the standardized oracle estimator ϑ̃oracle(Kt ).
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Lemma 13 Let p ∈ {1, . . . , 4} and x, y ∈ K, then

E

∣
∣
∣(Dx ϑ̃oracle(Kt ))

p
∣
∣
∣� 1 {x ∈ K \ K (v ≥ εt )} t−

p
2 + p

d+1 log(t)dp,

E

∣
∣
∣(D2

x,y ϑ̃oracle(Kt ))
p
∣
∣
∣� 1 {x, y ∈ K \ K (v ≥ εt )}

× 1
{
Visx (t) ∩ Visy(t) 	= ∅} t− p

2 + p
d+1 log(t)dp.

Proof Using the binomial theorem and the Cauchy–Schwarz inequality, it follows
directly with Lemmas 9 and 12 that

E

∣
∣
∣t

1
2+ 1

d+1 DxVd(Kt ) + t−
1
2+ 1

d+1 Dx f0(Kt )

∣
∣
∣
p

≤
p∑

j=0

(
p

j

)(

E

∣
∣
∣t

1
2+ 1

d+1 DxVd(Kt )

∣
∣
∣
2 j

E

∣
∣
∣t−

1
2+ 1

d+1 Dx f0(Kt )

∣
∣
∣
2(p− j)

) 1
2

� 1 {x ∈ K \ K (v ≥ εt )}
p∑

j=0

(
p

j

)(
t
1
2+ 1

d+1 log(t)
t

) 2 j
2
(
t−

1
2+ 1

d+1 log(t)d
) 2(p− j)

2

= 1 {x ∈ K \ K (v ≥ εt )} t−
p
2 + p

d+1

p∑

j=0

(
p

j

)

log(t) j+d(p− j).

Since j + d(p − j) ≤ dp, the desired conclusion follows. The proof for the second-
order difference operator is similar. ��

Applying these estimations to the bound τ1, τ2 and τ3 in Theorem 4 yields

τ1 � t−1+ 2
d+1 log(t)2+4d+ 2

d+1 ,

τ2 � t−1+ 2
d+1 log(t)2+4d+ 2

d+1 ,

τ3 � t−
1
2+ 1

d+1 log(t)3d+ 2
d+1 ,

thus

dW (ϑ̃(Kt ), Z) ≤ 2
√

τ1 + √
τ2 + τ3 � t−

1
2+ 1

d+1 log(t)3d+ 2
d+1 ,

for Z
d∼ N (0, 1), completing the proof of Theorem 2.
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