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Abstract
The basic aim of this paper is to provide a fundamental tool, the resolvent decom-
position theorem, in the construction theory of denumerable Markov processes. We
present a detailed analytic proof of this extremely useful tool and explain its clear
probabilistic interpretation. We then apply this tool to investigate the basic problems
of existence and uniqueness criteria for denumerable Markov processes with instan-
taneous states to which few results have been obtained even until now. Although the
complete answers regarding these existence and uniqueness criteria will be given in a
subsequent paper, we shall, in this paper, present part solutions of these very important
problems that are closely linked with the subtle Williams S and N conditions.
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1 Introduction

The basic aim of this paper is to provide a fundamental tool, the resolvent decomposi-
tion theorem, in the construction theory of continuous time Markov chains (CTMC).
This extremely useful theorem has a very clear probabilistic interpretation. It is just
the Laplace transform version of first-entrance–last-exit decomposition law.

Let {Xt ; t ≥ 0} be a homogeneous continuous time Markov chain defined on the
countable state space E = {e1, e2, e3, . . .} and let P(t) = {pi j (t); i, j ∈ E, t ≥ 0} be
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its transition function. Then, in matrix form, this family of real matrix functions P(t)
satisfies

P(t) ≥ 0 (t ≥ 0) (1.1)

P(t)1 ≤ 1 (t ≥ 0) (1.2)

P(t + s) = P(t)P(s) (t ≥ 0, s ≥ 0) (1.3)

and
lim
t→0+ P(t) = P(0) = I (1.4)

where I denotes the identity matrix on E × E and 1 denotes the column vector on E
whose components are all 1. In the following, 1 will always denote the column vector
with an appropriate dimension (either finite or infinite) whose components are all 1.
If the equality holds in (1.2) for all t ≥ 0, then the transition function P(t) is called
honest.

One of the fundamental results in the theory of CTMC is that if P(t) satisfies
(1.1)–(1.4), then the following limit exists

lim
t→0+

P(t) − I
t

= Q (1.5)

where the matrix Q = {qi j ; i, j ∈ E} satisfies

0 ≤ qi j < +∞ (i �= j) (1.6)

−∞ ≤ qii ≤ 0 (∀ i ∈ E) (1.7)

and ∑

i �= j

qi j ≤ − qii (∀ i ∈ E). (1.8)

In the following, we shall always denote qi = −qii (i ∈ E). Note that in (1.7), qii
may not be finite. If qi = −qii < +∞, then the state i ∈ E is called stable, while
if qi = +∞ then the state i ∈ E is called instantaneous or unstable. If all states are
stable, then the matrix Q is called stable, otherwise the Q is called unstable.

The limiting matrix Q given in (1.5) is usually called the intensity matrix of the
transition function P(t). However, from now on we shall follow Anderson’s [1] con-
venient usage by using another term. In particular, the limiting matrix Q in (1.5) will
be called a q-matrix and a transition function P(t) will be called a q-function. We
shall also follow Anderson’s convention by calling a transition function P(t) as a Q-
function if the q-matrix Q is specified. Furthermore, if a matrix Q on E × E satisfies
(1.6)–(1.8), then this Q will be called a pre-q-matrix. Hence the above basic result
could be simply referred to as “a q-matrix must be a pre-q-matrix.” However, the
converse may not be always true. In fact, the basic question in the construction theory
of CTMC is to investigate the reverse problems. More specifically, the basic questions
in the construction theory of CTMC are as follows:
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Question 1 (Existence) Under what conditions will a given pre-q-matrix become
a q-matrix, i.e., under what conditions does there exist a Q-function for a given
pre-q-matrix?
Question 2 (Uniqueness) If the given Q is a q-matrix, then under what conditions
will there exist only one corresponding Q-function?
Question 3 (Construction) How do we construct all the Q-functions for a given
q-matrix Q?
Question 4 (Property) How do we study properties of the Q-function P(t) and
the corresponding CTMC {Xt ; t ≥ 0} in terms of the given q-matrix Q?

No doubt, answering the above questions is of great significance. This is particularly
important due to the fact that in most of theoretic and practical problems only the pre-
q-matrix Q is known.

In order to answer these important questions, in many cases it will be more conve-
nient to study the so-called resolvents rather than transition functions. For this purpose,
define

ri j (λ) =
∫ ∞

0
e−λt pi j (t)dt (i, j ∈ E, λ > 0)

and denote R(λ) = {ri j (λ); i, j ∈ E, λ > 0}, and then this R(λ) is usually called a
resolvent function, or simply a resolvent.

The follow conclusion shows that it is important to introduce the concept of resol-
vent in the construction theory of CTMC.

Proposition 1.1 A family of real functions R(λ) = {ri j (λ); i, j ∈ E, λ > 0} is a
resolvent function of a transition function P(t) if and only if the following conditions
hold

R(λ) ≥ 0, λR(λ)1 ≤ 1 (λ > 0) (1.9)

R(λ) − R(μ) = (μ − λ)R(λ)R(μ) (λ, μ > 0) (1.10)

lim
λ→∞ λR(λ) = I (1.11)

and P(t) is honest, i.e., P(t)1 = 1 if and only if

λR(λ)1 = 1 (1.12)

holds. Moreover, (1.5) is true if and only if

lim
λ→∞ λ

(
λR(λ) − I

) = Q. (1.13)

Similar as transition functions, we shall use Q-resolvent and q-resolvent, respectively,
to denote the resolvent function when the q-matrix is specified or not, respectively.

From the view point of construction theory of CTMC, the resolvent is more conve-
nient than the transient function and therefore in the following we shall concentrate on
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discussing resolvent functions. In particular, the above-mentioned four basic questions
may apply to Q-resolvent for a given q-matrix Q.

If the givenq-matrix Q is stable, then the above questionswere firstly systematically
studied by J.L. Doob andW. Feller in the 1940s and then continuously investigated by
many world-leading probabilitists including D.G. Kendall, G.E.H. Reuter, D. Willi-
mas, J.F.C. Kingman, Samuel Karlin andK.L. Chung. In particular, Feller [14] showed
that a stable pre-q-matrix must be a q-matrix and constructed a Q-resolvent (Q-
function) for any given stable q-matrix Q, which has a minimal property and bears his
name today. The uniqueness problem for stable chains was firstly considered by Doob
[13] and then resolved by Reuter [27–29,31] and Hou [16], respectively. Since then,
the construction theory of stable CTMC has been flourished to a very high level. Until
the publishing of Chung [12]’s foundation book, the theory of total stable q-processes
was viewed, by and large, as completed, though many other important topics such
as reversibility, ergodicity, quasi-stationary distributions, monotonicity, duality, cou-
pling, large deviation, and spectral theory have emerged and flourished since then and
lasted even until now. For more details, see Chen [11].

However, it may be surprised to know that few results have been obtained even
until now if the pre-q-matrix is not stable, although great effort has been taken and
could be traced back as early as in about 70 years ago. In fact, Kolmogorov [22] first
posed an example with a single instantaneous state and asked for the existence of the
corresponding process. This example was later firstly answered by Kendall and Reuter
[20] and then deeply analyzed and generalized by Williams [35]. Later, Reuter [30]
slightly generalized the Kolmogorov’s example.

On the other hand, the case when all states are instantaneous has also been receiving
attention for a long time. For example, Blackwell [2] considered a very special example
when all off-diagonal elements of the pre-q-matrix Q are all zero. See also Kendall
[19]. Later, Williams [35] obtained an excellent result by giving a surprisingly simple
criterion for the existence of totally instantaneous chains. Freedman’s book [15] seems
the only book concentrating on discussing the unstable chains. See also Rogers and
Williams [32,33].

It may be hard to believe that the above results are essentially the only results
obtained for unstable chains. In particular, it is really very hard to believe, though
definitely true, that even until now the topic regarding mixing pre-q-matrix with more
than one single instantaneous state remains totally blank. This reflects the fact that we
are still lack of suitable tools and methods to tackle the unstable case.

The basic aim of this paper is just to fill this gap by providing an extremely useful
tool, the so-called resolvent decomposition theorem.Aswe are aware, the idea of using
such decomposition in the construction theory of continuous timeMarkov chains could
be traced back at least to early seventies of last century when the paper of Lamb [23]
was published in 1971. Also, a special case of this theorem was already provided in
Chen and Renshaw [3,4] and they have used this theorem to successfully tackle the
unstable chain with a single instantaneous state. See, also, Chen and Renshaw [6,8]
and Chen et al. [10]. In some sense, the main aim of this paper is to generalize their
result to the multi-state case and then use it to tackle the Markov chain with finitely
many instantaneous states.
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It should be noticed that to tackle unstable chains is not only of significance in the
aspect of theory, but also important in the applications of continuous time Markov
chains. In fact, Markov chains with instantaneous states have been revealed helpful in
modeling many natural phenomena, even in social science. For example, in modern
finance, it is usually the case that when financial crisis happens, some kind of “outside
force” may strongly intervenes in order to “rescues” the economy from “depression.”
Such “intervention” may be well modeled by the instantaneous chains since the action
will be taken immediately when the “crisis” reaches some fixed “dangerous” level.

This paper concentrates on discussing a basic tool, the resolvent decomposition
theorem, referred to as RDT in the following. The structure of this paper is as follows.
In Sect. 2, the resolvent decomposition theorems will be stated and explained. But the
detailed proof is postponed to the final section of the paper. In Sect. 3, we use this
fundamental resolvent decomposition theorem tool to discuss the interesting condi-
tions regarding CTMCwith instantaneous states posted by David Williams. The more
important application, i.e., to investigate the fundamental problems of existence and
uniqueness of denumerable Markov process together with some important examples
will be postponed to a sequent paper.

Before proceeding, it is necessary to mention two points in the terminologies used
in this paper. The first one is that we shall use the synonyms “continuous timeMarkov
chains” and “denumerable Markov process” to denote our model. Secondly, we shall
use the term “Q-process” to refer either Q-function P(t), Q-resolvent R(λ) or the
true process (i.e., the family of random variables) {Xt (w); t ≥ 0}. Such usage is,
of course, commonly accepted and won’t cause any confusion. In case we need to
distinguish them, we shall use the notations P(t), R(λ) or {Xt ; t ≥ 0} to emphasize
the difference.

2 Resolvent Decomposition Theorems

Suppose P(t) is a transition function on the countable state space E with a q-matrix
Q and resolvent R(λ), respectively. Let F ⊂ E be a finite subset of E and denote
G = E\F. In most of cases (but not always), we shall assume that the states in the set
F are instantaneous and also that, without loss of any generality, we have re-arranged
E = {e1, e2, . . . , en, en+1, . . .} such that F = {e1, e2, . . . , en} contains the first n
elements.

For later usage, let us assume that �(λ) (λ > 0) is a (not necessarily honest)
resolvent function defined on G, i.e., �(λ) (λ > 0) satisfies (1.9) (1.10) and (1.11)
with respect toG. Further assume η(λ) (λ > 0) and ξ(λ) (λ > 0) are, for each λ > 0,
row vector and column vector on G, respectively. Define

H� = {η(λ); 0 ≤ η(λ) ∈ �,

η(λ) − η(μ) = (μ − λ)η(λ)�(μ) for all λ > 0 and μ > 0}

and
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K� = {ξ(λ); 0 ≤ ξ(λ) ≤ 1, ξ(λ) − ξ(μ)

= (μ − λ)�(λ)ξ(μ) for all λ > 0 and μ > 0}.

Then we have the following conclusion whose proof can be found in Sect. 7 of Chen
and Renshaw [3].

Lemma 2.1 Suppose η(λ) ∈ H� and ξ(λ) ∈ K� . Then

(i) η(λ) ≡ 0 (∀ λ > 0) if and only if η(λ0) = 0 for some λ0 > 0.
(ii) η(λ) and η(λ)1 are decreasing functions of λ > 0 and satisfy η(λ) ↓ 0 (λ ↑ ∞)

and η(λ)1 ↓ 0 (λ ↑ ∞).
(iii) λη(λ)1 is an increasing function of λ > 0 and thus limλ→∞ λη(λ)1 exists but

may be an infinite value.
(iv) η = η(μ)+μη(μ)� (μ > 0) and η = η(λ)+λη�(λ) (λ > 0) where the limits

η = limλ→0+ η(λ) and � = limλ→0+ �(λ) both exist but may be an infinite
value.

(v) ξ(λ) ≡ 0 (∀ λ > 0) if and only if ξ(λ0) = 0 for some λ0 > 0.
(vi) ξ(λ) ↓ 0 as λ → +∞ and ξ(λ) ↑ ξ as λ → 0+ and that 0 ≤ ξ ≤ 1.
(vii) ξ − ξ(λ) = λ�(λ)ξ and ξ − ξ(μ) = μ�ξ(μ) where ξ = limλ→0+ ξ(λ) as in

(vi) and � = lim
λ→0

�(λ).

Now, in addition to η(λ) ∈ H� and ξ(λ) ∈ K� we further assume that ξ(λ) ≤
1 − λ�(λ)1 and then η(λ) and ξ(λ) enjoy more interesting properties as revealed
in the following two lemmas whose proof can also be found in Sect. 7 of Chen and
Renshaw [3].

Lemma 2.2 Suppose η(λ) ∈ H� and ξ(λ) ∈ K� and that ξ(λ) ≤ 1 − λ�(λ)1. Then

(i)
(λ − μ) 〈η(μ), ξ(λ)〉 = λ 〈η(λ), ξ 〉 − μ 〈η(μ), ξ 〉 . (2.1)

(ii) All the three functions λ 〈η(λ), 1〉, λ 〈η(λ), ξ 〉 and λ 〈η(λ), 1 − ξ 〉 are increasing
functions of λ > 0 and thus the limits limλ→∞ λ 〈η(λ), 1〉, limλ→∞ λ 〈η(λ), ξ 〉
and limλ→∞ λ 〈η(λ), 1 − ξ 〉 exist but may be an infinite value.

(iii) limλ→0 λ 〈η(λ), ξ 〉 = 0,
where the notations such as 〈η(μ), ξ(λ)〉, say, in the above expressions denote
the inner product of the row vector η(μ) and the column vector ξ(λ) on E.

Lemma 2.3 Suppose η(λ) ∈ H� and let ξ (0)(λ) = 1 − λ�(λ)1. Then ξ (0)(λ) ∈ K�

and thus enjoys all the properties expressed in Lemmas 2.1 and 2.2. Moreover, we
have that

λ
〈
η(λ), 1 − ξ (0)

〉
< +∞ and, also, is independent of λ > 0

where ξ (0) = limλ→0 ξ (0)(λ).

Moreover, suppose for each i ∈ F we have a row vector η(i)(λ) on G such that
η(i)(λ) ∈ H� (i ∈ F).We pack these row vectors onG together as a finite-dimensional

123



Journal of Theoretical Probability (2020) 33:2089–2118 2095

column vector whose components are row vectors on G. We still denote it as η(λ).
Hence η(λ) = {η(i)

j (λ); i ∈ F, j ∈ G} is, in fact, an F × G matrix. For convenience,
we also express it as η(λ) = {ηi j (λ); i ∈ F, j ∈ G}. Now, all the above information
could be simply packed into a matrix equation

η(λ) − η(μ) = (μ − λ)η(λ)�(μ) (λ > 0, μ > 0). (2.2)

Similarly, if for each i ∈ F we have a column vector ξ (i)(λ) on G such that
ξ (i)(λ) ∈ K� , thenwe can get a finite-dimensional row vector, denoted by ξ (λ), whose
components are column vectors on G. That is that ξ(λ) = {ξ (i)

j (λ); i ∈ G, j ∈ F}, or
ξ(λ) = {ξ i j (λ); i ∈ G, j ∈ F} is a G × F matrix satisfying the matrix equation

ξ(λ) − ξ(μ) = (μ − λ)�(λ)ξ(μ) (λ > 0, μ > 0). (2.3)

Now, the “inner product” of η(λ) and ξ(λ) is an F × F matrix. We shall denote it as
[η(λ), ξ(λ)].

We can now restate Lemma 2.2 as the following useful and convenient conclusion.

Lemma 2.4 Suppose η(λ) = {ηi j (λ); i ∈ F, j ∈ G} satisfies (2.2) and ξ(λ) =
{ξi j (λ); i ∈ G, j ∈ F} satisfies (2.3). Further assume that ξ(λ)1 ≤ 1 − λ�(λ)1.
Then

(i) Both η(λ) and ξ(λ) are increasing matrix function of λ > 0 and thus the limit
ξ = lim

λ→0
ξ(λ) exists and ξ is an F × G bounded matrix (bounded by 1, say).

(ii)
(λ − μ)[η(μ), ξ(λ)] = λ[η(λ), ξ ] − μ[η(μ), ξ ]. (2.4)

Proof It follows directly from Lemma 2.2. ��
Note that (2.1) and(2.4) are very similar, but the meaning is different. Indeed, both

sides of (2.1) are just scalars, while both sides of (2.4) areF×Fmatrices. For example,
suppose F = {a, b} where a �= b, then the meaning of the simple form (2.4) is

(λ − μ)

( 〈
η(a)(μ), ξ (a)(λ)

〉
,
〈
η(a)(μ), ξ (b)(λ)

〉
〈
η(b)(μ), ξ (a)(λ)

〉
,
〈
η(b)(μ), ξ (b)(λ)

〉
)

= λ

( 〈
η(a)(λ), ξ (a)

〉
,
〈
η(a)(λ), ξ (b)

〉
〈
η(b)(λ), ξ (a)

〉
,
〈
η(b)(λ), ξ (b)

〉
)

− μ

( 〈
η(a)(μ), ξ (a)

〉
,
〈
η(a)(μ), ξ (b)

〉
〈
η(b)(μ), ξ (a)

〉
,
〈
η(b)(μ), ξ (b)

〉
)

.

We are now ready to state our main conclusions in this paper. Since we are mainly
interested in the honest transition function, we shall assume that P(t) or, equivalently,
R(λ) is honest. Then we have the following basic theorem.

Theorem 2.1 Suppose Q = {qi j ; i, j ∈ E} is a q-matrix on the state space E (that is
that there exists a transition function P(t) such that P ′(0) = Q). Suppose further that
R(λ) = {ri j (λ); i, j ∈ E, λ > 0} is an honest Q-resolvent. Let F be a finite subset of
E and denote G = E\F. Then R(λ) can be uniquely decomposed as follows

R(λ) =
(
0 0
0 �(λ)

)
+

(
A(λ) A(λ)η(λ)

ξ(λ)A(λ) ξ(λ)A(λ)η(λ)

)
(2.5)
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where

(i) A(λ) is the restriction of R(λ) on F × F, i.e., A(λ) = {ri j (λ); i, j ∈ F} and

|A(λ)| > 0 (∀ λ > 0) (2.6)

and thus A(λ) is invertible for each λ > 0.
(ii) �(λ) = {ψi j (λ); i, j ∈ G} is a QGG-resolvent (usually dishonest) where

QGG = (qi j ; i, j ∈ G) is the restriction of Q on G × G.
(iii) η(λ) = {ηi j (λ); i ∈ F, j ∈ G} satisfies

η(λ) − η(μ) = (μ − λ)η(λ)�(μ), (∀ λ,μ > 0) (2.7)

and
0 ≤ ηi ·(λ) ∈ l1 (∀ i ∈ F,∀ λ > 0). (2.8)

(iv) ξ(λ) = {ξi j (λ); i ∈ G, j ∈ F} satisfies

ξ(λ) − ξ(μ) = (μ − λ)�(λ)ξ(μ), (∀ λ,μ > 0) (2.9)

and
0 ≤ ξi j (λ) < ∞ with ξ(λ)1 = 1 − λ�(λ)1 (2.10)

and also

ξi j (λ) ↑ ξi j ≤ 1 as λ → 0 (∀ i ∈ F, j ∈ G).

(Here 1 is a column vector whose elements are all 1 and the dimension of which
depends. For example, the first 1 in (2.10) is a finite-dimensional vector of F,
while the other two in (2.10) are infinite-dimensional vector on G)

(v)

lim
λ→∞ λη(λ) = QFG (2.11)

lim
λ→∞ λξ(λ) = QGF (2.12)

where QFG = (qi j , i ∈ F, j ∈ G) and QGF = (qi j , i ∈ G, j ∈ F) are the
restriction of Q on F × G and G × F, respectively.

(vi)
lim

λ→∞ λ
∑

j∈G
ηi j (λ)(1 − ξ j i ) < +∞ (∀ i ∈ F). (2.13)

(vii) There exists a constant matrix C = {ci j ; i, j ∈ F} such that

A−1(λ) = C + λI + λ[η(λ), ξ ] (2.14)
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and thus the right-hand side of (2.14) is invertible. Moreover,

cii ≥ 0 ci j ≤ 0 (i �= j) (i, j ∈ F) (2.15)

−ci j = qi j + lim
λ→∞ λ

∑

k∈G
ηik(λ)ξk j (∀ i, j ∈ F, i �= j) (2.16)

∑

j∈F
ci j = λ

∑

k∈G
ηik(λ)

⎛

⎝1 −
∑

j∈F
ξk j

⎞

⎠ , (∀ i ∈ F) (2.17)

where the right-hand side of the above expression (2.17) is independent of λ > 0.
(viii) If i ∈ F is unstable, i.e., qi = +∞, then

lim
λ→∞ λ

∑

k∈G
ηik(λ)ξki = +∞ (∀ i ∈ F) (2.18)

or, equivalently
lim

λ→∞ λ
∑

k∈G
ηik(λ) = +∞ (∀ i ∈ F) (2.19)

while if i ∈ F is stable, i.e., qi < ∞, then

lim
λ→∞ λ

∑

k∈G
ηik(λ)ξki < +∞ (2.20)

and
qi = cii + lim

λ→∞ λ
∑

k∈G
ηik(λ)ξki (2.21)

here, ξ = {ξi j ; i ∈ G, j ∈ F} in (2.14)–(2.18) and (2.20)–(2.21) is

ξ = lim
λ→0

ξ(λ). (2.22)

(Recall the monotone property of ξ(λ) stated in (iv) above and thus the limit ξ in (2.22)
does exist).

Remark 2.1 If the transition function P(t) or resolvent R(λ) may not be honest, then
Theorem 2.1 still holds. The only difference is that the equality in (2.17) becomes the
following (2.24) and the second equality in (2.10) become inequalities as the following
(2.23), i.e.,

0 ≤ ξi j (λ) < ∞ with ξ(λ)1 ≤ λ�(λ)1 (2.23)

and
∑

j∈F
ci j = lim

λ→∞ λ
∑

k∈G
ηik(λ)

⎛

⎝1 −
∑

j∈F
ξk j

⎞

⎠ (∀ i ∈ F). (2.24)
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However, it is important to note that, different from the expression (2.17) which is
independent of λ > 0, the right-hand side of the above (2.24) does depend on λ > 0
and thus a limit here is necessary.

This extremely useful theorem has a very clear probabilistic meaning. It is just
the Laplace transform version of the first-entrance and the last-exit decomposition
theorem. Indeed, ξ(λ) and η(λ) are simply the Laplace transforms of the first-entrance
law to, and last-exit law from, the subset F of the corresponding Markov chain and
�(λ) is just the taboo-resolvent. See Chung [12] for the celebrated idea of taboo
probability. This idea has been extensively developed by Syski [34], though this latter
book has concentrated on the Feller minimal chains and thus the q-matrix concerned is
stable. It should also be emphasized that theA(λ) in (2.5) and (2.6) is just the Laplace
transform of the “transition function” of a quasi-Markov chain, a theory brilliantly
developed by Kingman [21], in which the “Markov characterization problem” was
tackled and solved.

Surely, the idea of decomposition theorem 2.1, though not in the completed and
subtle form as stated here, has a long history which can be traced back at least to
Neveu [24–26]. Based on Neveu and Chung’s works, Williams systematically studied
and raised it to a considerable high level, see Rogers and Williams [33].

However, it seems that people have paid little attention to the converse of Theo-
rem 2.1, which, in our opinion, is more important and has much more applications,
particularly, in the study of unstable chains. That is that we have the following con-
clusion.

Theorem 2.2 Let Q = (qi j ; i, j ∈ E) be a pre-q-matrix on E and F is a finite subset
of E. Suppose there exist two functions η(λ) and ξ(λ) of λ > 0 and a QGG-resolvent
�(λ) together with a constant matrix C = {ci j ; i, j ∈ F} such that (2.7)–(2.13) (the
equalities in (2.10) and (2.17) could be relaxed as the inequalities in (2.23) and (2.24))
and (2.15)–(2.21) are satisfied, where G = E\F and QGG is the restriction of Q on
G × G, then Q is a q-matrix, that is that there exists a Q-function. Moreover, if the
above �(λ), ξ(λ) and η(λ) further satisfy

∑

k∈F
ξik(λ) = 1 − λ

∑

k∈G
ψik(λ) (∀ i ∈ E) (2.25)

and for all stable i ∈ F ∑

j∈F
qi j = − lim

λ→∞ λ
∑

k∈G
ηik(λ) (2.26)

then there exists an honest Q-function. The corresponding Q-resolvent (honest and
dishonest) can be constructed by using the given�(λ), η(λ), ξ(λ), the constant matrix
C in terms of (2.5) and (2.14)–(2.22).

The important thing here in Theorem 2.2 is that it not only gives the existence
conditions but also yields uniqueness criteria. It also provides amethod to construct the
q-resolvents, by which the property of the corresponding q-processes can be analyzed.
This makes Theorems 2.1 and 2.2 very useful even for the stable q-processes. In
particular, if the underling QGG resolvent �(λ) is known, then the property of the
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Q-process may be easily derived. This idea has stimulated some new research works,
see, for example, Chen and Renshaw [7] in which the underlying structure is an
M/M/1 (queue), and Chen and Renshaw [5,9] when the underlying structure is a
simple Markov branching process.

In case that F is a single element set of E, Theorems 2.1 and 2.2 have been fully
proved in Chen and Renshaw [3]. Their proof could be extended to our current general
case by using the induction principle, seeHou et al. [18]. However, we prefer to provide
a more simple and direct proof here, see the last section of this paper.

Note that in both Theorems 2.1 and 2.2, we do not impose any condition for the
pre-q-matrix Q. That is that the pre-q-matrix Q is arbitrary. It may be stable, totally
instantaneous or a mixed type (i.e., with both stable and instantaneous states).

In the following, we shall mainly be concerned with the case that all states in
G are stable, though the states in the finite set F are arbitrary. Now, suppose that
P(t) = {pi j (t); i, j ∈ G, t ≥ 0} is a QGG-function where QGG is a stable q-matrix
(that is that for all i ∈ G, qi < ∞). Following Yang [36] (see also Hou and Guo [17]
or Anderson [1]), we shall call P(t) is a B-type QGG transition function if

d pi j (t)

dt
=

∑

k∈G
qik pk j (t) (∀ i, j ∈ G) (2.27)

or an F-type QGG transition function if

d pi j (t)

dt
=

∑

k∈G
pik(t) qkj (∀ i, j ∈ G). (2.28)

Note that the resolvent forms of (2.27) and (2.28) are sometimes more convenient.
That is the that a QGG-resolvent �(λ) is called a B-type or an F-type QGG-resolvent
if

λ ψi j (λ) − δi j =
∑

k∈G
qik ψk j (λ) (i, j ∈ G) (2.29)

or
λ ψi j (λ) − δi j =

∑

k∈G
ψik(λ)qkj (i, j ∈ G) (2.30)

holds, respectively.
It is well known that if QGG is stable, then there always exists a QGG-function

(QGG-resolvent) that satisfies both (2.27) and (2.28) (or, equivalently, (2.29) and
(2.30)) and also possesses the minimal property which is usually called the Feller
minimal one. In caseweneed to emphasize this Fellerminimal one,we shall usually use
F(t) or	(λ) to denote this Fellerminimal transition function or resolvent, respectively.

If Q is not stable on E but QGG is stable, then although we are able to define
neither the B-type nor the F-type transition function, we may define the so-called
almost B-type (F-type) as follows.

Without loss of any generality, let us assume that all the states in the finite set F are
instantaneous, i.e., F = {i ∈ E; qi = +∞}, and all the states in G = E\F are stable.
We then define a Q-function on E as almost B-type if
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d pi j (t)/dt =
∑

k∈E
qik pk j (t) (∀ i ∈ G,∀ j ∈ E) (2.31)

or almost F-type if

d pi j (t)/dt =
∑

k∈E
pik(t)qkj (∀ i ∈ E,∀ j ∈ G). (2.32)

Furthermore, a Q-function is called an almost B ∩ F type if both (2.31) and 2.32)
hold. Again, it is more convenient if the resolvent form is used. That is that a Q-
resolvent R(λ) = {ri j (λ); i, j ∈ E} is almost B-type if

λ ri j (λ) − δi j =
∑

k∈E
qikrk j (λ) (∀ i ∈ G, ∀ j ∈ E) (2.33)

or, almost F-type if

λ ri j (λ) − δi j =
∑

k∈E
rik(λ)qkj (∀ i ∈ E, ∀ j ∈ G). (2.34)

Furthermore, a Q-resolvent R(λ) = {ri j (λ); i, j ∈ E} is almost B ∩ F-type if both
(2.33) and (2.34) hold.

Now, we have the following simple but useful conclusion.

Theorem 2.3 Let Q = {qi j ; i, j ∈ E} be a pre-q-matrix on E with a finite set F =
{i ∈ E, qi = +∞} and G = {i ∈ E, qi < +∞} here G = E\F.
(i) R(λ) is an almost B-type Q-resolvent if and only if the restricting QGG-resolvent

�(λ) is B-type.
(ii) R(λ) is an almost F-type Q-resolvent if and only if the restricting QGG-resolvent

�(λ) is F-type.
(iii) R(λ) is an almost B ∩ F-type Q-resolvent if and only if the restricting QGG-

resolvent �(λ) is B ∩ F-type.

Note that Theorems 2.1 and 2.2 hold true even if Q is stable. Although in this case,
they do not provide further information regarding the existence of Q-function (which
is trivial since we always have the Feller minimal one), Theorems 2.1 and 2.2 still give
very useful information regarding the structure of the Q-functions (Q-resolvents). In
particular, if the stable Q is regular, then such structure takes a very simple formwhich
makes it very useful in realizing the properties of the Q-process. For this reason, we
state it here for reference. Its proof is omitted since it is merely a direct corollary of
Theorems 2.1 and 2.2.

LetQ be a regular (and thus conservative and stable)q-matrix definedon a countable
state space E. Let F be a finite subset of E and G = E\F. We write Q as

Q =
(
QFF QFG

QGF QGG

)
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where QFF is the restriction of Q to F×F, QFG is the restriction of Q to F×G, etc.
Now, let R(λ) = {ri j (λ), λ > 0, i, j ∈ E} be the minimal Q-resolvent (the resolvent
of the minimal Q-process), and observe that R(λ) can be written similarly as

R(λ) =
(
RFF (λ) RFG(λ)

RGF (λ) RGG(λ)

)
.

Since Q is regular, the R(λ) is honest in that λR(λ)1 = 1, where 1 is the column
vector in E whose elements are all 1 .

Theorem 2.4 Suppose Q is a regular q-matrix defined on E = F ∪ G. Then, the
(honest) minimal Q-resolvent R(λ) can be written as

R(λ) =
(
A(λ) A(λ)η(λ)

ξ(λ)A(λ) ξ(λ)A(λ)η(λ)

)
+

(
0 0
0 �(λ)

)
, (2.35)

where (i) A(λ) = RFF (λ), (ii) �(λ) is the minimal QGG-resolvent (which is dis-
honest except for the trivial case QGF ≡ 0), (iii) η(λ) = QFG�(λ) and (iv)
ξ(λ) = �(λ)QGF. Moreover, each element of ξ(λ) is a bounded (by 1, say) decreas-
ing function of λ > 0 and thus the limit ξ(λ) ↑ ξ exists as λ ↓ 0. The matrix
function A(λ) is invertible for each λ > 0. Furthermore, after writing the row vector
η(λ) = (η(a)(λ); a ∈ F) and the column vector ξ = (ξ (b), b ∈ F), where we have,
respectively, denoted the row vector η(α)(λ) = {ηα j (λ), j ∈ G}, (α ∈ F) and the
column vector ξ (β) = {ξ jβ, j ∈ G}, (β ∈ F), then we have

A−1(λ) = C + λI + λ 〈η(λ), ξ 〉 (2.36)

where the constant matrix C = {ci j ; i, j ∈ F) takes the form

− ci j = qi j + lim
λ→∞ λ

∑

k∈G
ηik(λ)ξk j (∀ i, j ∈ F, i �= j) (2.37)

∑

j∈F
ci j = 0 (∀ i ∈ F). (2.38)

3 Williams’ Conditions for q-Matrices

In his study of totally instantaneous Markov chains, D. Williams has obtained the
following famous result regarding the totally instantaneous Markov chains.

Proposition 3.1 Suppose Q is a totally instantaneous q-matrix, i.e., for all i ∈ E, qi =
+∞. Then there exists a Q-function P(t) if and only if the following two conditions
hold

(i) ∑

j∈E\{a,b}
(qaj ∧ qbj ) < ∞ (∀ a ∈ E, b ∈ E, a �= b). (3.1)
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(ii) There exists an infinite subset K of E such that

∑

j∈K\{i}
qi j < +∞ (∀ i ∈ E). (3.2)

Conditions (i) and (ii) in the above are usually referred to as (N ) and (S) conditions,
respectively.

Note that both (N ) and (S) conditions also hold trivially true for stable Q-matrices.
Naturally, we are interested in knowing whether they would be true for Q-matrices
with finitely many instantaneous states. Of course, we only want to know whether
they are necessary conditions since it is obvious that they cannot be sufficient. Note
that Williams’ proof was probabilistic. We are thus also interested in answering the
following questions. Can we give an analytic and simple proof of these conditions?
Are these conditions always necessary for existence of Q-functions? Are there any
relationships between the (N ) condition and (S) condition?

The following conclusion shows that (N )-condition is in fact always necessary.

Theorem 3.1 If Q = {qi j ; i, j ∈ E} is a q-matrix, i.e., if there exists a Q-function,
then the N-condition (3.1) holds.

Proof Suppose a ∈ E, b ∈ E and a �= b. Without loss of generality, we may assume
that a ∈ F and b ∈ F in Theorem 2.1 since otherwise we could enlarge F. Then by
(2.13) we have

lim
λ→+∞ λ

〈
η(a)(λ), 1 − ξ (a)

〉
< +∞

where η(a)(λ) = {ηaj (λ); j ∈ G} and ξ (a) = {ξ ja; j ∈ G}. Similarly, we have

lim
λ→+∞ λ

〈
η(b)(λ), 1 − ξ (b)

〉
< +∞.

Hence
lim sup
λ→+∞

λ
〈
η(a)(λ) ∧ η(b)(λ), 1 − ξ (a)

〉
< +∞ (3.3)

and
lim sup
λ→+∞

λ
〈
η(a)(λ) ∧ η(b)(λ), 1 − ξ (b)

〉
< +∞. (3.4)

It follows from (3.3) and (3.4) that

lim inf
λ→+∞ λ

〈
η(a)(λ) ∧ η(b)(λ), 2 − ξ (a) − ξ (b)

〉

≤ lim sup
λ→+∞

λ
〈
η(a)(λ) ∧ η(b)(λ), 2 − ξ (a) − ξ (b)

〉

≤ lim sup
λ→+∞

λ
〈
η(a)(λ) ∧ η(b)(λ), 1 − ξ (a)

〉

+ lim sup
λ→+∞

λ
〈
η(a)(λ) ∧ η(b)(λ), 1 − ξ (b)

〉
< +∞. (3.5)
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But by (2.10) we have

ξ (a)(λ) + ξ (b) ≤ 1 − λψ(λ)1 ≤ 1 (∀ λ > 0).

Now, by letting λ → 0 in the above inequality we immediately get that

ξ (a) + ξ (b) ≤ 1

and thus by using (3.5) we obtain

lim inf
λ→+∞ λ

〈
η(a)(λ) ∧ η(b)(λ), 1

〉
< +∞. (3.6)

Applying Fatou’s lemma in (3.6) and noting (2.11) and (2.12) together with the fact
that F is a finite set then immediately yield the (N )-condition (3.1). ��

In fact, amuchmore strong formof N -condition can be obtained by simply applying
Theorem 3.1.

Theorem 3.2 Suppose Q is a q-matrix on E×E. Let E1 and E2 be two disjoint finite
subsets of E, i.e., E1 ⊂ E, E2 ⊂ E and E1 ∩ E2 = φ. Then

∑

j∈E\(E1∪E2)

⎡

⎣

⎛

⎝
∑

a∈E1

qaj

⎞

⎠
∧

⎛

⎝
∑

b∈E2

qbj

⎞

⎠

⎤

⎦ < +∞ (3.7)

and, in particular

∑

j∈E\(E1∪E2)

⎡

⎣

⎛

⎝
∨

a∈E1

qaj

⎞

⎠
∧

⎛

⎝
∨

b∈E2

qbj

⎞

⎠

⎤

⎦ < +∞. (3.8)

Proof We only need to prove (3.7) since (3.8) is an easy corollary of (3.7). In order to
show (3.7), we first see that by Theorem 3.1 we have

lim
λ→∞ λ

〈
η(a)(λ), 1 − ξ (a)

〉
< +∞ (∀ a ∈ E1). (3.9)

Since E1 ∩E2 = φ, we have
∑
b∈E2

ξ (b) ≤ 1− ξ (a) and thus as a direct consequence

of (3.9) we have that

lim
λ→+∞ λ

〈
η(a)(λ),

∑

b∈E2

ξ (b)

〉
< +∞ (∀ a ∈ E1). (3.10)
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Note also that it is easy to see that the limit in the left-hand side of (3.10) does exist.
Now, since E1 is a finite subset of E we get by (3.10) that

lim
λ→∞ λ

〈
∑

a∈E1

η(a)(λ),
∑

b∈E2

ξ (b)

〉
< +∞

and hence

lim sup
λ→∞

λ

〈⎛

⎝
∑

a∈E1

η(a)(λ)

⎞

⎠
∧

⎛

⎝
∑

b∈E2

η(b)(λ)

⎞

⎠ ,
∑

b∈E2

ξ (b)

〉
< +∞. (3.11)

On the other hand, by using

lim sup
λ→+∞

λ
〈
η(b)(λ), 1 − ξ (b)

〉
< +∞ (∀ b ∈ E2)

we obtain

lim
λ→+∞ λ

〈
η(b)(λ), 1 −

∑

b∈E2

ξ (b)

〉
< +∞ (∀ b ∈ E2). (3.12)

Note that the vector 1 − ∑
b∈E2

ξ (b) in (3.12) is actually independent of b ∈ E2 and
thus by using (3.12) and the finiteness of E2 we obtain

lim
λ→∞ λ

〈
∑

b∈E2

η(b)(λ), 1 −
∑

b∈E2

ξ (b)

〉
< +∞

and hence

lim sup
λ→+∞

λ

〈⎛

⎝
∑

a∈E1

η(a)(λ)

⎞

⎠
∧

⎛

⎝
∑

b∈E2

η(b)(λ)

⎞

⎠ , 1 −
∑

b∈E2

ξ (b)

〉
< +∞. (3.13)

Combining (3.13) and (3.11) immediately yields

lim inf
λ→+∞ λ

〈⎛

⎝
∑

a∈E1

η(a)(λ)

⎞

⎠
∧

⎛

⎝
∑

b∈E2

η(b)(λ)

⎞

⎠ , 1

〉
< +∞. (3.14)

Applying Fatou’s lemma in (3.14) immediately yields the required (3.7). ��

As a direct consequence of Theorem 3.2, we have the following corollary.
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Corollary 3.1 Suppose Q is a q-matrix on E×E. Let E1 be a finite subset of E. Then
for any a ∈ E\E1, we have

∑

j∈E\{E1∪a}

⎛

⎝qaj
∧

⎛

⎝
∑

b∈E1

qbj

⎞

⎠

⎞

⎠ < +∞. (3.15)

Note that the Williams’ (N )-condition is a direct consequence of (3.15). We see that
by the above conclusions we have had much more deep understanding of the (N )-
condition. We now turn to consider the (S)-condition.

If the q-matrix Q is stable, then (S)-condition holds trivially. On the other hand, if
the q-matrix Q has only one instantaneous state, then the (S)-condition may not hold.
A counter example is the famous Kolmogorov q-matrix, see Reuter [30] or Chen and
Renshaw [4]. Hence in the following we shall assume that the given pre-q-matrix Q
has at least two instantaneous states.

We now first show that for any given q-matrix Q that has at least two instantaneous
states, then a weaker version of the (S)-condition does hold.

Theorem 3.3 Suppose that Q is a q-matrix on E. Further suppose that Q possesses
at least two instantaneous states. Then for any i ∈ E, there exists an infinite subset
Ki ⊂ E such that ∑

j∈Ki\i
qi j < +∞. (3.16)

Compared with the originalWilliams’ condition, we see that the difference is that in
our Theorem 3.3, the infinite subset Ki may depend on i . We shall prove Theorem 3.3
by using two lemmas which deal with the two different cases.

Lemma 3.1 Suppose Q = {qi j ; i, j ∈ E} is a q-matrix on E×E. Further assume that
a ∈ E, b ∈ E, a �= b and that

∑
j �=a

qaj = qa = +∞ and
∑
j �=b

qbj = qb = +∞. Then

there exist two infinite subsets Ka and Kb of E such that

∑

j∈Ka\{a}
qaj < +∞ and

∑

j∈Kb\{b}
qbj < +∞. (3.17)

Proof By Theorem 3.1 we have

∑

j∈E\{a,b}

(
qaj ∧ qbj

)
< +∞. (3.18)

Now, define

Ka = { j; j ∈ E\{a, b} such that qaj < qbj }
Kb = { j; j ∈ E\{a, b} such that qaj > qbj }
Kc = { j; j ∈ E\{a, b} such that qaj = qbj }.
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Obviously, Ka ∪ Kb ∪ Kc = E\{a, b} and they are disjoint. Hence (3.18) may be
rewritten as ∑

j∈Ka

qaj +
∑

j∈Kb

qbj +
∑

j∈Kc

(qaj ∨ qbj ) < +∞. (3.19)

We now claim that Ka is an infinite subset. Indeed if it is a finite subset of E, then of
course we have

∑
j∈Ka

qbj < +∞. This together with (3.19) yields
∑

j∈E\{a,b} qbj <

+∞, a contradiction to our assumption
∑

j∈Eb\{a,b} qbj = +∞. Similarly, we can
prove Kb is also an infinite subset of E. ��
Lemma 3.2 Suppose Q = {qi j ; i, j ∈ E} is a q-matrix on E × E and a ∈ E, b ∈ E.
Further assume that ∑

j �=a

qaj = qa = +∞ (3.20)

and ∑

j �=b

qbj < qb = +∞. (3.21)

Then, there exists an infinite subset Ka ⊂ E such that

∑

j∈Ka\{a}
qaj < +∞. (3.22)

Proof First note that it is easily seen that (3.22) holds true if and only if
lim inf j→+∞ qaj = 0 and thus if the conclusion does not hold, then we must have

lim inf
j→+∞ qaj > 0. (3.23)

We now derive a contradiction. Indeed, if (3.23) is true, then the vector α :=
{qaj ; j ∈ E\{0}} has at most finitely many 0’s. Without loss of any generality, we may
assume that qaj > 0 for all j ∈ E\{a}. Now, by Theorem 3.1, we have

lim
λ→+∞ λ

〈
η(a)(λ), ξ (b)

〉
< +∞

and then by applying Fatou’s lemma and noting limλ→+∞ λη(a)(λ) = α, we obtain

〈
α, ξ (b)

〉
< +∞.

It follows that
lim

j→+∞ qajξ
(b)
j = 0. (3.24)

Using (3.23), we see that (3.24) implies that lim j→+∞ ξ
(b)
j = 0. Hence there exist a

finite subset E1 (which is independent of λ > 0) and a constant δ > 0 such that

ξ
(b)
j < δ for all j /∈ E1. (3.25)
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Since λ
〈
η(b)(λ), 1 − ξ (b)

〉
is an increasing function of λ when λ tends to +∞, and

that lim
λ→+∞ λ

〈
η(b)(λ), 1 − ξ (b)

〉
< +∞, it follows that there exists a constant c > 0

such that

λ
〈
η(b)(λ), 1 − ξ (b)

〉
≤ c (∀ λ > 0).

It follows, by also using (3.25), that

c ≥
∑

j /∈E1

λη
(b)
j (λ)

(
1 − ξ

(b)
j

) ≥
∑

j /∈E1

λ η
(b)
j (λ)(1 − δ)

or

∑

j /∈E1

λη
(b)
j (λ) ≤ c

1 − δ
.

Hence

∑

j∈E
λη

(b)
j (λ) =

∑

j∈E1

λη
(b)
j (λ) +

∑

j /∈E1

λη
(b)
j (λ) ≤

∑

j∈E1

λη
(b)
j (λ) + c

1 − δ
. (3.26)

Noting that E1 is a finite subset of E and also E1 does not depend on λ > 0 and
thus (3.26) implies that

lim
λ→+∞ λ

〈
η(b)(λ), 1

〉
≤

∑

j∈E1

qbj + c

1 − δ
< +∞

which contradicts with qa = +∞, see (2.18). ��
By Lemmas 3.1 and 3.2, we see that Theorem 3.3 has been proven. In other words,

if Q is a q-matrix with at least two instantaneous states, then it must satisfy the weaker
form of (S)-condition as stated in Theorem 3.3. We are now interested in knowing
whether the original Williams’ condition is true or not. Interestingly, this question can
be answered completely. In fact, if the q-matrix Q has infinitely many instantaneous
states, then the Williams’ condition always hold. However, if the q-matrix Q has only
finitely many instantaneous states, then the (S)-condition of Williams may not hold
true. In a sequent paper we shall give an example to show that for any positive integer
n we could construct a q-matrix such that the q-matrix Q has exactly n instantaneous
states that does not satisfy the original (S)-condition. In spite of this, we could, inter-
estingly, prove that (S)-condition is “nearly” true. The exact meaning is the following
conclusion.

Theorem 3.4 Suppose Q = {qi j ; i, j ∈ E} is a q-matrix on E × E with n ≥ 2
instantaneous states. Then for any finite subset E1 of E, there exists an infinite subset
K of E such that
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∑

j∈K\{i}
qi j < +∞ (∀ i ∈ E1)

provided that |E1| < n where |E1| denote the cardinal number of E1.

Proof Without loss of generality, we could assume that

∑

j �=i

qi j = qi = +∞ (∀ i ∈ E1),

since otherwise we may discuss a more smaller E1. Now, by Corollary 3.1 we have

∑

j∈E\{E1∩a}

⎛

⎝qaj
∧

⎛

⎝
∑

i∈E1

qi j

⎞

⎠

⎞

⎠ < +∞.

Now, if
∑

j �=a qaj = +∞, then the conclusion follows from Lemma 3.1, while if∑
j �=a qaj < +∞, then the conclusion follows from Lemma 3.2. ��
Finally, we consider the case that the given q-matrix Q has infinitely many of

instantaneous states. For this case, the (S)-condition (3.2) will always hold true as the
following conclusion shows. This confirms the Williams’ theorem regarding totally
instantaneous states.

Theorem 3.5 Suppose Q = {qi j ; i, j ∈ E} is a q-matrix with infinitely many instan-
taneous states. Then the (S)-condition holds, i.e., there exists an infinite subset K of
E such that

∑

j∈K\{i}
qi j < +∞ (∀ i ∈ E)

Proof First note that the (S)-condition is equivalent to

lim inf
j→∞

∑

i≤n

qi j = 0 (∀ n).

Hence to complete the proof of this theorem we only need to prove that if there exists
a positive integer n ≥ 2 such that

lim inf
j→+∞

∑

i≤n

qi j > 0 (3.27)

then Q can only have finitely many of instantaneous states.
To this end, we just need to show that if b > n, then bmust be a stable state. Indeed,

by Theorem 3.1 and b > n we have

lim
λ→+∞ λ

〈
η(i)(λ), ξ (b)

〉
< +∞ (∀ i ≤ n).
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Therefore

lim
λ→+∞ λ

〈
∑

i≤n

η(i)(λ), ξ (b)

〉
< +∞.

Applying Fatou’s lemma then yields

∑

j∈E

⎛

⎝
∑

i≤n

qi j

⎞

⎠ · ξ
(b)
j < +∞

and thus

lim
j→∞

⎛

⎝
∑

i≤n

qi j

⎞

⎠ · ξ
(b)
j = 0.

By (3.27) we then obtain lim
j→+∞ ξ

(b)
j = 0. Now, similarly as we did in Lemma 3.2 we

may easily prove that the state b is stable. ��

4 Proofs of the Resolvent Decomposition Theorems

Our main aim of this section is to prove the resolvent decomposition theorems stated
in Sect. 2.

Proof of Theorem 2.1 For notational convenience, we rearrange the states in E such
that the states in the finite set F are in the beginning. Considering F ∪ G = E and
F ∩ G = φ, we could write the transition function P(t) in matrix block form as

P(t) =
(
PFF(t), PFG(t)
PGF(t), PGG(t)

)

where the meaning of the four block matrix is self-explained. Now, define Chung’s
taboo probability

F pi j (t) = P{Xs /∈ F, 0 < s < t, Xt = j | X0 = i}, (4.1)

for i, j ∈ G and let FP(t) = {F pi j (t); i, j ∈ G}, Then P(t) can be written as

P(t) =
(
0 0
0 FP(t)

)
+

(
PFF(t) PFG(t)
PGF(t) PGG(t) − FP(t)

)
(4.2)

where PGG(t) − FP(t) ≥ 0 (pointwise) for obvious reasons.
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By the general last-exit (from set F) decomposition, we have

pi j (t) =
∑

k∈F

∫ t

0
pik(s)gkj (t − s)ds (i ∈ F, j ∈ G) (4.3)

where the term pik(s)gkj (t−s)ds represents, intuitively, the probability that X(t) = j
and the last visit to k in F until time t occurred between s and s+ds under the condition
that X(0) = i , see Chung [12]. Now, for notational convenience, we simply denoted
the Laplace transforms matrices as

A(λ) =
∫ ∞

0
e−λt PFF(t)dt

then ∫ ∞

0
e−λt PFG(t)dt = A(λ)η(λ) (4.4)

where

η(λ) = {ηi j (λ), i ∈ F, j ∈ G} and ηi j (λ) =
∫ ∞

0
e−λt gi j (t)dt .

Similarly, by the general first-entrance (into set F) decomposition.

pi j (t) =
∑

k∈F

∫ t

0
fik(s)pkj (t − s)ds (i ∈ G, j ∈ F) (4.5)

where the term fik(s)pkj (t − s)ds represents, intuitively, the probability that the
Markov chain {Xt } first hits k between times s and s + ds given that X(0) = i . Hence
paralleling to (4.4) we can get that

∫ ∞

0
e−λt PGF(t)dt = ξ(λ)A(λ) (4.6)

where ξ(λ) = {ξi j (λ), i ∈ G, j ∈ F} with the obvious meaning of ξi j (λ) =∫ ∞

0
e−λt fik(t)dt .

Now, it is pretty clear that we can get that

∫ ∞

0
e−λt (PGG − FP(t)) dt = ξ(λ)A(λ)η(λ).

If we further denote R(λ) =
∫ ∞

0
e−λt P(t)dt and �(λ) =

∫ ∞

0
e−λt

FP(t)dt , then the

Laplace transform of (4.2) takes a simply form as

R(λ) =
(
0 0
0 �(λ)

)
+

(
A(λ) A(λ)η(λ)

ξ(λ)A(λ) ξ(λ)A(λ)η(λ)

)
(4.7)
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together with the following pointwise nonnegative properties for all λ > 0

�(λ) ≥ 0 (λ > 0) (4.8a)

η(λ) ≥ 0 (λ > 0) (4.8b)

ξ(λ) ≥ 0 (λ > 0) (4.8c)

A(λ) ≥ 0 (λ > 0). (4.8d)

Although it is fairly easy to prove now that the �(λ) in (4.7) itself is a QGG
resolvent where QGG = {qi j ; i, j ∈ G}, we shall not do so here for the reasons of
getting more results and transparency. In fact, we shall prove our theorem in a few
steps. Since we have represented the Q-resolvent R(λ) as in (4.7) together with the
nonnegative property of the corresponding quantities, then firstly we claim that the
R(λ) satisfies the resolvent equation (1.10) if and only if the following equations hold,
simultaneously, for all λ > 0 and μ > 0:

A(λ) − A(μ) = (μ − λ)A(λ)A(μ)

+(μ − λ)A(λ)η(λ)ξ(μ)A(μ) (λ > 0, μ > 0) (4.9a)

η(λ) − η(μ) = (μ − λ)η(λ)�(μ) (λ > 0, μ > 0) (4.9b)

ξ(λ) − ξ(μ) = (μ − λ)�(λ)ξ(μ) (λ > 0, μ > 0) (4.9c)

�(λ) − �(μ) = (μ − λ)�(λ)�(μ) (λ > 0, μ > 0). (4.9d)

Indeed, substituting (4.7) into (1.10) immediately yields that (1.10) holds true if
and only if the following equations hold true, simultaneously, for all λ > 0 and
μ > 0:

A(λ) − A(μ) = (μ − λ)A(λ)A(μ) + (μ − λ)A(λ)η(λ)ξ(μ)A(μ) (4.10a)

A(λ)η(λ) − A(μ)η(μ) = (μ − λ)A(λ)η(λ)�(μ) + (μ − λ)A(λ)A(μ)η(μ)

+(μ − λ)A(λ)η(λ)ξ(μ)A(μ)η(μ) (4.10b)

ξ(λ)A(λ) − ξ(μ)A(μ) = (μ − λ)�(λ)ξ(μ)A(μ) + (μ − λ)ξ(λ)A(λ)A(μ)

+(μ − λ)ξ(λ)A(λ)η(λ)ξ(μ)A(μ) (4.10c)

�(λ) − �(μ) + ξ(λ)A(λ)η(λ) − ξ(μ)A(μ)η(μ)

= (μ − λ)�(λ)�(μ) + (μ − λ)�(λ)ξ(μ)A(μ)η(μ)

+(μ − λ)ξ(λ)A(λ)η(λ)�(μ) + (μ − λ)ξ(λ)A(λ)A(μ)η(μ)

+(μ − λ)ξ(λ)A(λ)η(λ)ξ(μ)A(μ)η(μ). (4.10d)

Substituting (4.10a) into (4.10b), (4.10c) and (4.10d) shows that the four equa-
tions (4.10a)–(4.10d) hold true if and only if the following four equations hold true,
simultaneously, for all λ > 0 and μ > 0,

A(λ) − A(μ) = (μ − λ)A(λ)A(μ) + (μ − λ)A(λ)η(λ)ξ(μ)A(μ) (4.11a)

A(λ)η(λ) − A(λ)η(μ) = (μ − λ)A(λ)η(λ)�(μ) (4.11b)

ξ(λ)A(μ) − ξ(μ)A(μ) = (μ − λ)�(λ)ξ(μ)A(μ) (4.11c)

123



2112 Journal of Theoretical Probability (2020) 33:2089–2118

ξ(λ)A(λ)η(λ) − ξ(μ)A(μ)η(μ) + �(λ) − �(μ)

= (μ − λ)�(λ)�(μ) + ξ(λ)A(λ)(η(μ) + (μ − λ)η(λ)�(μ))

−(ξ(λ) + (λ − μ)�(λ)ξ(μ))A(μ)η(μ). (4.11d)

Recall A(λ) =
∫ ∞

0
e−λt PFF(t)dt and noting that A(λ) is a finite-dimensional

matrix function and thus A(λ) is the resolvent functions of a quasi-Markov chain
discussed in Kingman’s book [21] and thus by the same reference we know that
|A(λ)| > 0 (for all λ > 0) (see again Kingman [21]) where |A(λ)| denotes the
determinant of A(λ). Hence for all λ > 0 we know A−1(λ) does exist. Now left-
multiplicating A−1(λ) on (4.11b) and right-multiplicating A−1(μ) on (4.11c) and
then substituting the two resulting equations into (4.11d) immediately yield that the
four equations (4.11a)–(4.11d) hold true for all λ > 0 and μ > 0 if and only if the
four equations in (4.9a)–(4.9d) hold true, simultaneously, for all λ > 0 and μ > 0.

Secondly, we claim that the R(λ) represented in (4.7) satisfies (1.12) (recall for
convenience and importance we only consider honest Q-resolvent in Theorem 2.1) if
and only if the following two equations hold true, simultaneously, for all λ > 0

λA(λ)1 + λA(λ)η(λ)1 = 1 (λ > 0) (4.12a)

ξ(λ)1 + λ�(λ)1 = 1 (λ > 0). (4.12b)

This is easy. Indeed, substituting (4.7) into (1.12) immediately yields that (1.12)
holds true if and only if

λA(λ)1 + λA(λ)η(λ)1 = 1 (∀ λ > 0) (4.13)

and
λ ξ(λ)A(λ)1 + λ�(λ)1 + λξ(λ)A(λ)η(λ)1 = 1 (∀ λ > 0) (4.14)

hold true, simultaneously, for all λ > 0. Now, it is very easy to see that both (4.13)
and (4.14) hold true if and only if both (4.12a) and (4.12b) hold true, simultaneously,
for all λ > 0.

Thirdly, we claim that A(λ) satisfies (4.9a), (i.e., (4.11a)) if and only if there exists
an F×F constant matrixC = {ci j ; i, j ∈ F} such that the matrixC+λI+λ[η(λ), ξ ]
is invertible and that

A−1(λ) = C + λI + λ[η(λ), ξ ] (4.15)

where I in (4.15) is the F × F identity matrix.
Indeed, by first left-multiplication of A−1(λ) and then right-multiplication of

A−1(μ) on (4.9a) and noting η(λ) and ξ(λ) are nonnegative (see (4.8b) and (4.8c))
and the fact that A−1(λ) is a finite-dimensional matrix, we may apply associated law
on (4.9a), and then we immediately get that

A−1(μ) − A−1(λ) = (μ − λ)I + (μ − λ)[η(λ), ξ(μ)].
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Applying (2.4) in the above then yields the fact that

A−1(μ) − μI − μ[η(μ), ξ ] = A−1(λ) − λI − λ[η(λ), ξ ] (λ > 0, μ > 0) (4.16)

which shows that A−1(λ) − λI − λ[η(λ), ξ ] is a constant matrix and thus could be
expressed as C = {ci j ; i, j ∈ F}. Hence (4.15) follows. Conversely, if (4.15) holds, it
is easy to see that (4.9a) holds true.

Fourthly, we show that R(λ) in (4.7) satisfies (1.11) if and only if the following
four relations hold true.

lim
λ→+∞ λA(λ) = I (4.17a)

lim
λ→+∞ η(λ) = 0 (4.17b)

lim
λ→+∞ ξ(λ) = 0 (4.17c)

lim
λ→+∞ λ�(λ) = I (4.17d)

where in the above four expressions, I and 0 are the identity matrix and 0 matrix,
respectively. However, this verification is trivial and thus omitted.

Now, by (4.8a), (4.12b), (4.9d) and (4.17d) we see that�(λ) is a resolvent function.
We now further claim that it is a QGG-resolvent where QGG is the restriction of Q on
G × G. To this end, let us express the given q-matrix as the block form of

Q =
(
QFF QFG
QGF QGG

)

where the notations are self-explained. Now, it is easy to see that (1.13) holds true if
and only if the following relations hold true simultaneously

lim
λ→+∞ λ(λA(λ) − I) = QFF (4.18a)

lim
λ→+∞ λ2A(λ)η(λ) = QFG (4.18b)

lim
λ→+∞ λ2ξ(λ)A(λ) = QGF (4.18c)

lim
λ→+∞ λ(λ�(λ) − I + λξ(λ)A(λ)η(λ)) = QGG. (4.18d)

Using (4.17b) and (4.18c) together with the finiteness of the set F, we get that

lim
λ→+∞ λ2ξ(λ)A(λ)η(λ) = 0 (4.19)

and then
lim

λ→+∞ λ(λ�(λ) − I) = QGG (4.20)

immediately follows from (4.18d) and (4.19). Therefore, Parts (i) and (ii) in Theo-
rem 2.1 have been proven. Moreover, (4.18b) and (4.17a) immediately yield (2.11)
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and, similarly, (4.18c) and (4.17a) yield (2.12) and hence Parts (iii), (iv), and (v) in
Theorem 2.1 have been also proven. In order to prove the other parts of Theorem 2.1,
we go back to the proven (4.16) which shows that

A−1(λ) = C + λI + λ[η(λ), ξ ] (4.21)

which is just (2.14).
On the other hand, by using (4.18a) and (4.17a), it is fairly easy to show that

lim
λ→+∞

(
λI − A−1(λ)

) = QFF (4.22)

and thus by using (4.21) we obtain

lim
λ→+∞ λ

[
η(λ), ξ

] = −C − QFF.

or in component form

− ci j = qi j + lim
λ→+∞ λ

∑

k∈G
ηik(λ)ξk j (∀ i, j ∈ F). (4.23)

It follows from (4.23) that if i, j ∈ F and i �= j , then ci j ≤ 0 and (2.16) holds.
Also, by left-multiplicating A−1(λ) on (4.12a) yields

λ1 + λη(λ)1 = A−1(λ)1

which, after substituting (4.15) into it, simplifies as

λη(λ)1 = C1 + λ
[
η(λ), ξ

]
1

or, in component form,

cii = −
∑

k∈F\{i}
cik + λ

∑

k∈G
ηik(λ)

⎛

⎝1 −
∑

j∈F
ξk j

⎞

⎠ (i ∈ F). (4.24)

Note that the second term in the right-hand side of the above (4.24) is independent of
λ > 0 which is guaranteed by Lemma 2.3. Note also that the proven fact that if i �= j ,
then ci j ≤ 0 and that

∑
j∈F ξk j ≤ 1 for all k ∈ Fwe see that by (4.24), cii ≥ 0 (∀ i ∈ F)

and also, (4.24) just reads as (2.17). Hence the part (vii) of Theorem 2.1 is also proven.
Note also that the important fact (2.13) in Part (vi) follows directly from the just

proven results (2.16) and (2.17) together with the fact that F is a finite set. Hence Part
(vi) of Theorem 2.1 is proven as well.

Now, returning to (4.23) we see that for all i ∈ F we have

qi = cii + lim
λ→+∞ λ

∑

k∈G
ηik(λ)ξki (i ∈ F). (4.25)
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Now, if i ∈ F is unstable, i.e., if qi = +∞, then by (4.25) and considering cii is a
finite number we must have

lim
λ→+∞ λ

∑

k∈G
ηik(λ)ξki = +∞ (i ∈ F) (4.26)

which is just (2.18). The equivalency between (2.18) and (2.19) is obvious. Indeed, if
(2.18) (i.e., (4.26)) is true, then considering 0 ≤ ξki ≤ 1 (∀ i ∈ F, k ∈ G) we must
have limλ→+∞ λ

∑
k∈G ηik(λ) = +∞ (i ∈ F) which is (2.19). Conversely, if (2.19)

is true, i.e., if limλ→+∞ λ
∑

k∈G ηik(λ) = +∞ we must have (4.26) (i.e., (2.18))

since we always have limλ→+∞ λ
∑

k∈G ηik(λ)

(
1−∑

j∈F ξki

)
< +∞, here the last

statement comes from the proven (2.17).
On the other hand, if qi < +∞, then (4.25) immediately yields (2.20) and (2.21).

Now, the last part of Theorem 2.1, i.e., part (viii) is also proven.
Finally, we prove the decomposition form (2.5) is unique. But this is easy. Indeed,

if, in addition to (2.5), we have another decomposition form as

R(λ) =
(
0 0
0 ˜�(λ)

)
+

(
˜A(λ) ˜A(λ)η̃(λ)

˜ξ(λ) ˜A(λ) ˜ξ(λ) ˜A(λ)η̃(λ)

)

then we first must have A(λ) = ˜A(λ) since both A(λ) and ˜A(λ) are the restriction of
R(λ) on F × F. Next, we then must have

A(λ)η(λ) = A(λ)η̃(λ) (4.27)

ξ(λ)A(λ) = ˜ξ(λ)A(λ) (4.28)

�(λ) + ξ(λ)A(λ)η(λ) = ˜�(λ) + ˜ξ(λ)A(λ)η̃(λ). (4.29)

Since A−1(λ) exists and thus by (4.27) we get η(λ) = η̃(λ). Similarly by (4.28) we
obtain ξ(λ) = ˜ξ(λ). Then by (4.29) we further have �(λ) = �̃(λ). The proof of
Theorem 2.1 is completed. ��

If one carefully checks the proof of Theorem 2.1, one would find that Theorem 2.2
has been essentially proved. Indeed, in the process of proving Theorem 2.1, we have
constantly emphasized that each crucial step is both necessary and sufficient. In other
words, based on the proof of Theorem 2.1 we could easily prove Theorem 2.2 by
simply adding the detailed checking. But we shall omit such detailed checking here.

Proof of Theorem 2.3 We only need to prove (i), since the proof of (ii) is similar, while
(iii) is a direct consequenceof both (i) and (ii). For convenience,weuse the blockmatrix

form. That is that we express R(λ) as

(
RFF(λ), RFG(λ)

RGF(λ), RGG(λ)

)
where the meaning of

the four blockmatrices is obvious. Similarly, we express Q as

(
QFF, QFG
QGF, QGG

)
. Then

(2.33) can be represented as the following two relationships.
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λ RGF(λ) = QGFRFF(λ) + QGGRGF(λ) (4.30)

and
λ RGG(λ) − I = QGFRFG(λ) + QGGRGG(λ) (4.31)

hold simultaneously. Now, substituting (2.5) into (4.30) and (4.31) and after some
algebra shows that both of them hold if and only if both

λ ξ(λ)A(λ) = QGFA(λ) + QGGξ(λ)A(λ) (4.32)

and

λ �(λ) − I + λξ(λ)A(λ)η(λ) = QGG�(λ) + (
QGFA(λ) + QGGξ(λ)A(λ)

)
η(λ)

(4.33)
hold. Now, substituting (4.32) into (4.33) immediately yields

λ �(λ) − I = QGG�(λ) (4.34)

which shows that �(λ) is a B-type QGG-resolvent. To prove the converse, we need to
prove that (4.34) implies both (4.30) and (4.31). To this end, we turn to Theorem 2.1
and by (2.5) we know that

(λ I − QGG)ξ(λ) = (λ I − QGG)
[
ξ(μ) + (μ − λ)ψ(λ)ξ(μ)

]

= (λ I − QGG)ξ(μ) + (μ − λ)(λ I − QGG)�(λ)ξ(μ).

(4.35)

By using (4.34), we see that the right-most expression in (4.35) can be simplifies as

(λ I − QGG)ξ(μ) + (μ − λ)I · ξ(μ) = (μI − QGG)ξ(μ).

Hence (4.35) is just

(λ I − QGG)ξ(λ) = (μI − QGG)ξ(μ)

which shows that (λ I − QGG)ξ(λ) is a constant matrix, i.e., independent of λ > 0.
In order to obtain this constant matrix, we just consider limλ→∞(λ I − QGG)ξ(λ).
Note that ξ(λ) ↓ 0 as λ ↑ ∞ and that limλ→∞ λ ξ(λ) = QGF, see (2.8). Hence this
constant matrix is just QGF and hence

(λ I − QGG)ξ(λ) = QGF. (4.36)

By right-multiplicating A(λ) on the above (4.36) immediately yields (4.32) and then
(4.33) follows from the just proven (4.32) and (4.34). Hence both (4.32) and (4.33)
hold true and thus both (4.30) and (4.31) hold, which ends the proof. ��
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