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Abstract In a recent paper in this journal, Gong, Mao and Zhang, using the theory of
Dirichlet forms, extendedKarlin andMcGregor’s classical results on first-hitting times
of a birth–death process on the nonnegative integers by establishing a representation
for the Laplace transform E[esTi j ] of the first-hitting time Ti j for any pair of states i
and j , as well as asymptotics for E[esTi j ] when either i or j tends to infinity. It will
be shown here that these results may also be obtained by employing tools from the
orthogonal-polynomial toolbox used byKarlin andMcGregor, in particular associated
polynomials and Markov’s theorem.
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1 Introduction

A birth–death process is a continuous-time Markov chain X := {X (t), t ≥ 0} taking
values in S := {0, 1, 2, . . .} with q-matrix Q := (qi j , i, j ∈ S) given by

qi,i+1 = λi , qi+1,i = μi+1, qii = −(λi + μi ),

qi j = 0, |i − j | > 1,
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where λi > 0 for i ≥ 0, μi > 0 for i ≥ 1 and μ0 ≥ 0. Positivity of μ0 entails that
the process may evanesce by escaping from S, via state 0, to an absorbing state −1.
Throughout this paper, we will assume that the transition probabilities

Pi j (t) := P(X (t) = j | X (0) = i), i, j ∈ S,

satisfy both the backward and forward Kolmogorov equations, and mostly also that
they are uniquely determined by the birth rates λi and death rates μi . Karlin and
McGregor [14] have shown that the latter is equivalent to assuming

∞∑

n=0

(
πn + 1

λnπn

)
= ∞, (1)

where the πn are constants given by

π0 := 1 and πn := λ0λ1 · · · λn−1

μ1μ2 · · · μn
, n > 0.

We note that condition (1) does not exclude the possibility of explosion, escape from
S, via all states larger than the initial state, to an absorbing state ∞.

We denote by Ti j the (possibly defective) first-hitting time of state j , starting in
state i �= j . Then, writing

P̂i j (s) :=
∫ ∞

0
est Pi j (t)dt, s < 0,

and

F̂i j (s) := E[esTi j ] =
∫ ∞

0
estdP(Ti j ≤ t), i �= j, s < 0,

we have the well-known result

F̂i j (s) = P̂i j (s)

P̂j j (s)
, i �= j (2)

(see, for example, [15, Equation (1.3)]). Karlin and McGregor give in [14, Equa-
tion (3.21)] a representation for P̂i j (s), which upon substitution in (2) yields

F̂i j (s) = Qi (s)

Q j (s)
, 0 ≤ i < j, (3)

where Qn, n = 0, 1, . . . , are the birth–death polynomials associated with the process
X , that is, the Qn satisfy the recurrence relation

λn Qn+1(x) = (λn + μn − x)Qn(x) − μn Qn−1(x), n > 0,

λ0Q1(x) = λ0 + μ0 − x, Q0(x) = 1. (4)
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The representation (3) was observed explicitly for the first time by Karlin and McGre-
gor themselves in [16, p 378]. Since then several authors have rediscovered the result
or provided alternative proofs (see Diaconis and Miclo [4] for some references).

In a recent paper in this journal, Gong et al. [12], using the theory of Dirichlet
forms, extended Karlin and McGregor’s result by establishing a representation for the
Laplace transform of the first-hitting time Ti j for any pair of states i �= j , as well
as asymptotics when either i or j tends to infinity. It will be shown here that these
results may also be obtained by exploiting Karlin and McGregor’s toolbox, which is
the theory of orthogonal polynomials.

Our findings, which are actually somewhat more general than those of Gong et al.
are presented in Sect. 3 and proven in Sect. 4. In the next section, we introduce some
further notation, terminology and preliminary results. Since a path between two states
in a birth–death process has to hit all intermediate states, we obviously have

F̂i j (s) =
{

F̂0 j (s)/F̂0i (s) if i < j
F̂i0(s)/F̂j0(s) if i > j.

So for notational simplicity—andwithout loss of generality—wewill restrict ourselves
to an analysis of T0n and Tn0 for n > 0.

2 Preliminaries

We will use the shorthand notation

Kn :=
n∑

i=0

πi , Ln :=
n∑

i=0

(λiπi )
−1, 0 ≤ n ≤ ∞,

and, following Anderson [1, Chapter 8],

C :=
∞∑

n=0

(λnπn)−1Kn, D :=
∞∑

n=0

(λnπn)−1(K∞ − Kn). (5)

We have K∞ + L∞ = ∞ by our assumption (1), while, obviously,

K∞ = ∞ �⇒ D = ∞, L∞ = ∞ �⇒ C = ∞. (6)

Also, C + D = K∞L∞, so (1) is actually equivalent to C + D = ∞. Whether the
quantities C and D are infinite or not determines the type of the boundary at infinity
(see, for example, Anderson [1, Section 8.1]), but also, as we shall see, the asymptotic
behavior of the polynomials Qn of (4).

Since the birth–death polynomials Qn satisfy the three-terms recurrence relation
(4), they are orthogonal with respect to a positive Borel measure on the nonnegative
real axis, and have positive and simple zeros. The orthogonalizing measure for the
polynomials Qn (normalized to be a probability measure) is not necessarily uniquely
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determined by the birth and death rates, but there exists, in any case, a unique natural
measure ψ , characterized by the fact that the minimum of its support is maximal. We
refer to Chihara’s book [3] for properties of orthogonal polynomials in general, and
to Karlin and McGregor’s papers [14,15] for results on birth–death polynomials in
particular (see also [10, Section 3.1] for a concise overview). For our purposes, the
following properties of birth–death polynomials are furthermore relevant.

With xn1 < xn2 < · · · < xnn denoting the n zeros of Qn(x), there is the classical
separation result

0 < xn+1,i < xni < xn+1,i+1, i = 1, 2, · · · , n, n ≥ 1,

so that the limits
ξi := lim

n→∞ xni , i = 1, 2, . . . . (7)

exist. We further let
σ := lim

i→∞ ξi (8)

(possibly infinity). The numbers ξi may be defined alternatively as

ξ1 := inf supp(ψ) and ξi+1 := inf{supp(ψ) ∩ (ξi ,∞)}, i ≥ 1,

where supp stands for support. So knowledge of the (natural) orthogonalizingmeasure
for the polynomials Qn implies knowledge of the numbers ξi . It is clear from the
definition of ξi that

0 ≤ ξi ≤ ξi+1 ≤ σ, i ≥ 1.

Moreover, we have, for all i ≥ 1,

ξi+1 = ξi ⇐⇒ ξi = σ,

as is evident from the alternative definition of ξi . By suitably interpreting [6, Equa-
tions (2.6) and (2.11)], it follows that

∞∑

i=1

ξ−1
i = lim

n→∞
1

1 + μ0Ln

n∑

j=0

(λ jπ j )
−1

j∑

i=0

πi (1 + μ0Li−1),

where the left-hand side should be interpreted as infinity if ξ1 = 0. In particular,

μ0 = 0 �⇒
∞∑

i=1

ξ−1
i = C.

Also, by [6, Theorem 2],

μ0 = 0 : C < ∞ or D < ∞ ⇐⇒
∞∑

i=2

ξ−1
i < ∞ (9)
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and

μ0 > 0 : C < ∞ or D < ∞ ⇐⇒
∞∑

i=1

ξ−1
i < ∞. (10)

Given a sequence of birth–death polynomials {Qn}, we obtain the sequence {Q(l)
n }

of associated polynomials of order l ≥ 0 by replacing Qn by Q(l)
n , λn by λn+l and μn

byμn+l in the recurrence relation (4). Evidently, the polynomials Q(l)
n are birth–death

polynomials again, so Q(l)
n (x) has simple, positive zeros x (l)

n1 < x (l)
n2 < · · · < x (l)

nn and
we can write

Q(l)
n (x) = Q(l)

n (0)
n∏

i=1

(
1 − x

x (l)
ni

)
, n, l ≥ 0,

while it follows by induction that

Q(l)
n (0) = 1 + μlπl(Ln+l−1 − Ll−1), n, l ≥ 0, (11)

where L−1 := 0. Note that Q(0)
n (0) = Qn(0) = 1 for all n if μ0 = 0.

Defining the quantities ξ
(l)
i and σ (l) in analogy to (7) and (8), we have, by [3,

Theorem III.4.2],
ξ

(l)
i ≤ ξ

(l+1)
i ≤ ξ

(l)
i+1, l ≥ 0, i ≥ 1, (12)

so that

σ (l) = σ, l ≥ 0.

Moreover, [5, Theorem 1] tells us that

lim
l→∞ ξ

(l)
i = σ, i ≥ 1. (13)

Since the polynomials Q(l)
n are birth–death polynomials, they are orthogonal with

respect to a unique natural (probability) measure ψ(l) on the nonnegative real axis. A
key ingredient in our analysis isMarkov’s theorem,which relates theStieltjes transform
of the measure ψ(l) to the polynomials Q(l)

n and Q(l+1)
n , namely

∫ ∞

0

ψ(l)(dx)

x − s
= lim

n→∞
1

λl

Q(l+1)
n−1 (s)

Q(l)
n (s)

, Re(s) < ξ
(l)
1 . (14)

We note that ψ(l) is not necessarily the only orthogonalizing measure for the poly-
nomials Q(l)

n , a setting usually not covered in statements of Markov’s theorem in the
literature (see, for example, [3, p 89]). However, an extension of the original theorem
that serves our needs can be found in Berg [2] (see in particular [2, Section 3], where
the measure μ(0) corresponds to our ψ(l)).
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We will also have use for a classical result in the theory of continued fractions
relating the Stieltjes transforms of the measures ψ(l) and ψ(l+1), namely

∫ ∞

0

ψ(l)(dx)

x − s
=

{
λl + μl − s − λlμl+1

∫ ∞

0

ψ(l+1)(dx)

x − s

}−1

, Re(s) < ξ
(l)
1 .

(15)
Again we refer to Berg [2, Section 4] for statements of this result in the generality
required in our setting.

Our final preliminary results concern asymptotics for the polynomials Q(l)
n as n →

∞, which may be obtained by suitably interpreting the results of [17] (which extend
those of [6]). We state the results in three propositions and give more details about
their derivations in Sect. 4. Recall that ξ (l)

0 = −∞ and Qn(0) = 1 if μ0 = 0.

Proposition 1 Let K∞ = L∞ = ∞. Then C = D = ∞, σ = 0 and, for l ≥ 0,

lim
n→∞ Q(l)

n (x) = ∞ if x < 0.

Proposition 2 Let K∞ = ∞ and L∞ < ∞. Then D = ∞ and,

(i) for l ≥ 0,

lim
n→∞ Q(l)

n (0) = 1 + μlπl(L∞ − Ll−1) < ∞;

(ii) if C = ∞, for l ≥ 0,

lim
n→∞ Q(l)

n (x) =
{∞ if x < 0
0 if 0 < x ≤ ξ

(l)
k for some k ≥ 1;

(iii) if C < ∞, for l ≥ 0,

lim
n→∞

Q(l)
n (x)

Q(l)
n (0)

=
∞∏

i=1

(
1 − x

ξ
(l)
i

)
, x ∈ R,

an entire function with simple, positive zeros ξ
(l)
i , i ≥ 1.

Proposition 3 Let K∞ < ∞ and L∞ = ∞. Then C = ∞ and,

(i) for l = 0 and μ0 > 0, or l ≥ 1,

lim
n→∞ Q(l)

n (0) = ∞;

(ii) if D = ∞, for l ≥ 0,

lim
n→∞ Q(l)

n (x) =
{

∞ if ξ
(l)
2k < x ≤ ξ

(l)
2k+1 for some k ≥ 0

−∞ if ξ
(l)
2k+1 < x ≤ ξ

(l)
2k+2 for some k ≥ 0;
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(iii) if D < ∞ and μ0 = 0,

lim
n→∞

Qn(x)

Ln−1
= −x K∞

∞∏

i=1

(
1 − x

ξi+1

)
, x ∈ R,

an entire function with simple zeros ξ1 = 0 and ξi+1 > 0, i ≥ 1;
(iv) if D < ∞, for l = 0 and μ0 > 0, or l ≥ 1,

lim
n→∞

Q(l)
n (x)

Q(l)
n (0)

=
∞∏

i=1

(
1 − x

ξ
(l)
i

)
, x ∈ R,

an entire function with simple, positive zeros ξ
(l)
i , i ≥ 1.

3 Results

Representations forE[esT0n I{T0n<∞}] andE[esTn0I{Tn0<∞}] in terms of the polynomials

Q(l)
n are collected in the first theorem.

Theorem 1 We have, for μ0 ≥ 0 and n ≥ 1,

E[esT0n I{T0n<∞}] = 1

Qn(s)
, s < xn,1, (16)

and, if C + D = ∞,

E[esTn0I{Tn0<∞}] = λ0

λnπn
lim

N→∞
Q(n+1)

N−n (s)

Q(1)
N (s)

, s < ξ
(1)
1 . (17)

Note that for s < 0, we have E[esT0n I{T0n<∞}] = E[esT0n ], so the representation
(16) reduces to Karlin and McGregor’s result (3). The explicit representation (17) is
new, but may be obtained by a limiting procedure fromGong et al. [12, Corollary 3.6],
where a finite state space is assumed.

By choosing s = 0 in (16) and (17) and using (11), we obtain expressions for
the probabilities P(T0n < ∞) and P(Tn0 < ∞) that are in accordance with [15,
an unnumbered formula on page 387 and Theorem 10]. For convenience, we state the
results as a corollary of Theorem 1, but remark that a proof of (19) on the basis of
(17) would require additional motivation in the case ξ

(1)
1 = 0.

Corollary 1 ([15]) We have, for μ0 ≥ 0 and n ≥ 1,

P(T0n < ∞) = 1

1 + μ0Ln−1
, (18)
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and, if C + D = ∞,

P(Tn0 < ∞) = 1 − Ln−1

L∞
. (19)

After a little algebra, (17) and (11) lead to

E[esTn0I{Tn0<∞}] =
(
1 − Ln−1

L∞

)
lim

N→∞
Q(n+1)

N−n (s)/Q(n+1)
N−n (0)

Q(1)
N (s)/Q(1)

N (0)
, s < ξ

(1)
1 .

Subsequently applying Propositions 1, 2 (iii) and 3 (iv), we obtain the second corollary
of Theorem 1.

Corollary 2 If C + D = ∞, but C < ∞ or D < ∞, then, for n ≥ 1,

E[esTn0I{Tn0<∞}] =
(
1 − Ln−1

L∞

)
∞∏

i=1

(
1 − s

ξ
(n+1)
i

)

∞∏

i=1

(
1 − s

ξ
(1)
i

) , s < ξ
(1)
1 , (20)

where the infinite products are entire functions with simple, positive zeros ξ
(n+1)
i and

ξ
(1)
i , i ≥ 1.

Assuming a denumerable state space, but under the condition C = ∞ and D < ∞,
Gong et al. give in [12, Theorem 5.5 (a)] a representation for E[esTn0 ], s < 0, which
is encompassed by Corollary 2. Indeed, in this case we have L∞ = ∞, and hence, by
(19), P(Tn0 < ∞) = 1.

Asymptotic results for E[esT0n I{T0n<∞}] and E[esTn0I{Tn0<∞}] as n → ∞ are sum-
marized in the second theorem.

Theorem 2 We have, for μ0 ≥ 0 and s < 0,

lim
n→∞E[esT0n I{T0n<∞}] =

⎧
⎪⎨

⎪⎩

1

1 + μ0L∞

∞∏

i=1

ξi

ξi − s
if C < ∞, D = ∞

0 if C = ∞,

(21)

and

lim
n→∞E[esTn0I{Tn0<∞}] =

⎧
⎪⎨

⎪⎩

0 if C < ∞, D = ∞
∞∏

i=1

ξ
(1)
i

ξ
(1)
i − s

if C = ∞, D < ∞.
(22)

The infinite products in (21) and (22) are reciprocals of entire functions with simple,
positive zeros ξi and ξ

(1)
i , i ≥ 1, respectively.
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By (18), we have

lim
n→∞ P(T0n < ∞) = 1

1 + μ0L∞
,

so (21) implies

lim
n→∞E[esT0n | T0n < ∞] =

∞∏

i=1

ξi

ξi − s
if C < ∞, D = ∞,

which generalizes [12, Theorem 4.6] where μ0 = 0 is assumed. (At the end of [12,
Section 4], the authors remark that the caseμ0 > 0 may be treated in a way analogous
to the case μ0 = 0, but no explicit result is given.) If C = ∞ and D < ∞, we must
have L∞ = ∞, and hence, by (19), P(Tn0 < ∞) = 1. So (22) implies

lim
n→∞E[esTn0 ] =

∞∏

i=1

ξ
(1)
i

ξ
(1)
i − s

if C = ∞, D < ∞,

which is [12, Theorem 5.5 (b)].

4 Proofs

4.1 Proofs of Propositions 1–3

The conclusions regarding C and D in the Propositions 1, 2 and 3 are given already
in (6), while the statements (i) in Propositions 2 and 3 are implied by (11). The
other statements follow from results in [17], where two cases—corresponding in the
setting at hand to μ0 = 0 and μ0 > 0—are considered simultaneously by means of a
duality relation involving polynomials Rn and R∗

n . The asymptotic results for Rn may
be translated into asymptotics for Qn if μ0 = 0, while the results for R∗

n , suitably

interpreted, give asymptotics for Qn ifμ0 > 0, and for Q(l)
n with l ≥ 1. Concretely, the

statements in Proposition 1, Proposition 2 (ii) and Proposition 3 (ii) regarding the case
x < 0 follow from [17, Lemma2.4 andTheorems3.1 and 3.3],while the results for x >

0 are implied by [17, Theorems 2.2, 3.6 and 3.8]. Proposition 2 (iii) follows from [17,
Theorem3.1] for l = 0 andμ0 = 0, and from [17, Corollary 3.2] for l = 0 andμ0 > 0,
and for l ≥ 1. Proposition 3 (iii) is implied by [17, Theorems 2.2, 3.3 and 3.4 (ii)],
while Proposition 3 (iv) is a consequence of [17, Corollary 3.2]. Finally, the fact that
σ = 0 in the setting of Proposition 1 is stated, for example, in [17, Theorem 2.2 (iv)].

4.2 Proof of Theorem 1

As observed already, substitution in (2) of Karlin and McGregor’s formula for P̂i j (s)
given on [14, Equation (3.21)] leads to (3) and hence, by analytic continuation, to (16).

123



J Theor Probab (2017) 30:594–607 603

To obtain (17) we note that [15, Equation (3.21)] also yields

P̂10(s) = − 1

λ0
+ Q1(s)P̂00(s) = 1

λ0

[
(λ0 + μ0 − s)P̂00(s) − 1

]
,

which upon substitution in (2) leads to

F̂10(s) = 1

λ0

[
λ0 + μ0 − s − 1

P̂00(s)

]
, s < 0.

Moreover, by Karlin and McGregor’s representation formula for the transition prob-
abilities Pi j (t) (see [14, Section III.6]) we have P00(t) = ∫ ∞

0 e−xtψ(dx), where ψ

is a (probability) measure with respect to which the polynomials Qn are orthogonal.
Since the condition C + D = ∞ is equivalent to (1), it ensures that the transition
probabilities are uniquely determined by the birth and death rates, whence ψ must be
the natural measure (see [14]). So we have

P̂00(s) =
∫ ∞

0

ψ(dx)

x − s
, s < ξ1. (23)

Subsequently applying (15) with l = 0, it follows that

F̂10(s) = μ1

∫ ∞

0

ψ(1)(dx)

x − s
, s < 0, (24)

whence, more generally,

F̂l,l−1(s) = μl

∫ ∞

0

ψ(l)(dx)

x − s
, s < 0, l ≥ 1,

and, by analytic continuation,

E[esTl,l−1I{Tl,l−1<∞}] = μl

∫ ∞

0

ψ(l)(dx)

x − s
, s < ξ

(l)
1 , l ≥ 1. (25)

Since Tn0 = Tn,n−1 + · · · + T10, while Tn,n−1, . . . , T10 are independent random
variables, Markov’s theorem (14) implies that we can write

E[esTn0I{Tn0<∞}] = E[esTn,n−1I{Tn,n−1<∞}] · · ·E[esT10I{T10<∞}]
= μ1 · · · μn

λ1 · · · λn

(
lim

N→∞
Q(n+1)

N−n (s)

Q(n)
N−n+1(s)

)
· · ·

(
lim

N→∞
Q(2)

N−1(s)

Q(1)
N (s)

)

= λ0

λnπn
lim

N→∞
Q(n+1)

N−n (s)

Q(1)
N (s)

.

Recalling (12), we conclude that this expression holds for s < ξ
(1)
1 .
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4.3 Proof of Theorem 2

Letting n → ∞ in (16) and applying the results of Propositions 1, 2 and 3 readily
yields the first statement of Theorem 2.

To prove the second statement, we employ Corollary 2. First note that, for a > 0
and s ≤ 0, we have 1 ≤ 1 − s

a ≤ e−s/a , so that, for l ≥ 0,

1 ≤
∞∏

i=1

(
1 − s

ξ
(l)
i

)
≤ exp

{
−s

∞∑

i=1

1

ξ
(l)
i

}
, s ≤ 0,

provided ξ
(l)
1 > 0. Defining C (l) and D(l) in analogy to (5) it is easily seen that

C < ∞ ⇐⇒ C (l) < ∞, D < ∞ ⇐⇒ D(l) < ∞.

So, assuming C < ∞ or D < ∞, we have, by (10),

∞∑

i=1

1

ξ
(l)
i

< ∞, l ≥ 1.

Hence σ (l) = σ = ∞, so that, by (13), ξ (l)
i → ∞ as l → ∞. As a consequence

lim
l→∞

∞∏

i=1

(
1 − s

ξ
(l)
i

)
= 1, s ≤ 0,

and the result follows since L∞ < ∞ if C < ∞, whereas L∞ = ∞ if C = ∞ and
D < ∞.

5 Concluding Remarks

First we note that the result (24)—or rather a generalization of (24)—may be derived
directly from the Kolmogorov differential equations and Karlin and McGregor’s rep-
resentation formula for the transition probabilities Pi j (t). The argument is given on
[8, p 508] (and essentially already on [15, p 385]) and yields

P(t < Tn0 < ∞) = μ1

∫ ∞

0

e−xt

x
Q(1)

n−1(x)ψ(1)(dx), n ≥ 1,

so that

F̂n0(s) = μ1

∫ ∞

0

Q(1)
n−1(x)

x − s
ψ(1)(dx), s < 0, n ≥ 1. (26)
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Note that as a consequence of (17) and (26), we have, for all m ≥ 0,

∫ ∞

0

Q(1)
m (x)

x − s
ψ(1)(dx) = π1

λm+1πm+1
lim

n→∞
Q(m+2)

n−m−1(s)

Q(1)
n (s)

, s < 0,

which implies a partial extension of Markov’s theorem (14) to the effect that, for
m ≥ 0 and l ≥ 1 (and l = 0 if μ0 > 0),

∫ ∞

0

Q(l)
m (x)

x − s
ψ(l)(dx) = πl

λm+lπm+l
lim

n→∞
Q(m+l+1)

n−m−1 (s)

Q(l)
n (s)

. (27)

Using (14), (15), and the recurrence relation for the polynomials Q(l)
n , it may be

shown by induction that (27) is actually valid for all l ≥ 0, m ≥ 0 and Re(s) < ξ
(l)
1 .

Substitution s = 0 in (27) and (11) leads in particular to

∫ ∞

0

Qm(x)

x
ψ(dx) = 1

λmπm
lim

n→∞
Q(m+1)

n−m−1(0)

Qn(0)
= L∞ − Lm−1

1 + μ0L∞
,

which is consistent with [15, Equations (9.9) and (9.14)] (also when ξ1 = 0).
If we do not impose the condition C + D = ∞, the birth and death rates do not

necessarily determine a birth–death process uniquely. However, as observed in [12],
several results remain valid if C + D < ∞, provided they are interpreted as properties
of the minimal process, which is the process with an absorbing boundary at infinity
(and which is always associated with the natural measure for the polynomials Qn ,
see [7]). Concretely, if C + D < ∞ the arguments leading to Theorem 1, and hence
Theorem 1 itself and Corollary 1, remain valid. Moreover, the results in [17] imply
that, for l ≥ 0,

C + D < ∞ �⇒ lim
n→∞

Q(l)
n (x)

Q(l)
n (0)

=
∞∏

i=1

(
1 − x

ξ
(l)
i

)
,

an entire function with simple, positive zeros ξ
(l)
i , i ≥ 1. (Note that this complements

Propositions 1—3.) Hence, also (20) remains valid. Finally, letting n → ∞ in (16)
and (20), we readily conclude that the results in Theorem 2 for C < ∞, D = ∞ are
actually valid for C + D < ∞ as well.

In the setting C + D < ∞, Gong et al. [12] pay attention also to the maximal
process, the process that is characterized by a reflecting barrier at infinity. In this
case, the measure featuring in the representation for P00(t), and hence in (23), is not
the natural measure. Although, applying the results of [7], the relevant measure can
be identified and expressed in terms of a natural measure corresponding to a dual
birth–death process, application of Markov’s theorem does not seem feasible in this
case.
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Our final remark is the following. Choosing l = 0, letting s ↑ ξ1 in (15), and using
the recurrence relation (4), we readily get

∫ ∞

0

ψ(dx)

x − ξ1
= ∞ ⇐⇒ μ1

∫ ∞

0

ψ(1)(dx)

x − ξ1
= Q1(ξ1).

In fact, using (15) again, it is not difficult to generalize this result to

∫ ∞

0

ψ(dx)

x − ξ1
= ∞ ⇐⇒ μl

∫ ∞

0

ψ(l)(dx)

x − ξ1
= Ql(ξ1)

Ql−1(ξ1)
, l ≥ 1,

which upon substitution in (25) leads to

∫ ∞

0

ψ(dx)

x − ξ1
= ∞ �⇒ E

[
eξ1Tn0I{Tn0<∞}

]
= Qn(ξ1), n ≥ 1.

(Since, by [9, Theorem 3.1], the condition above is equivalent to ξ1-recurrence of the
process, this result may also be obtained by applying [13, Lemma 3.3.3 (iii)] to the
setting at hand, see [11, Lemma 3.2].) It now follows from (22) that

C = ∞, D < ∞ �⇒ lim
n→∞ Qn(ξ1) =

∞∏

i=1

ξ
(1)
i

ξ
(1)
i − ξ1

< ∞.

If μ0 = 0 then ξ1 = 0, so the result does not take us by surprise, but for μ0 > 0 we
regain an interesting extension of Proposition 3 (iv)—recently obtained by Gao and
Mao [11, Lemma 3.4]—since it has consequences for the existence of quasi-stationary
distributions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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