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Abstract
This paper is devoted to the well-posedness of a novel nonlinear interface problem on an unbounded domain 
with nonmonotone set-valued transmission conditions. This interface problem involves a nonlinear mono-
tone partial differential equation in the interior domain and the Laplacian in the exterior domain. Such a 
scalar interface problem models nonmonotone frictional contact of elastic infinite media. The variational 
formulation of the interface problem leads to a hemivariational inequality (HVI), which however lives on 
the unbounded domain, and thus cannot be analyzed in a reflexive Banach space setting. Boundary integral 
methods lead to another HVI that is amenable to functional analytic methods using standard Sobolev spaces 
on the interior domain and Sobolev spaces of fractional order on the coupling boundary. Broadening the 
scope of the paper, we consider extended real-valued HVIs augmented by convex extended real-valued 
functions. Under a smallness hypothesis, we provide existence and uniqueness results and, moreover, estab-
lish a stability result for extended real-valued HVIs with respect to the extended real-valued function as a 
parameter. Based on the latter general stability result, we provide various stability results for the interface 
problem, as well as the stability of a related bilateral obstacle interface problem with respect to the obstacles.

Keywords  Monotone operator · Nonmonotone transmission conditions · Unbounded domain · Extended 
real-valued hemivariational inequality · Existence · Uniqueness · Stability

Introduction

This paper is devoted to the well-posedness of a novel nonlinear interface problem on an unbounded domain with 
nonmonotone set-valued transmission conditions which is described by a hemivariational inequality (HVI) in a weak 
formulation.
The theory of HVIs was introduced and has been studied since 1980s by Panagiotopoulos [46], as a generalization of vari-
ational inequalities with the aim to model many problems coming from mechanics when the energy functionals are nonconvex, 
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but locally Lipschitz, so the Clarke generalized differentiation calculus [11] can be used (see [18, 19, 41]). For more recent 
monographs on HVIs with application to contact problems, we refer to [39, 53].
While stability and sensitivity in variational inequalities and in quasi-variational inequalities have already been treated 
for a longer time (see in chronological order, e.g., the papers [1, 6, 10, 14, 29, 35, 37, 42]), stability in HVIs has been 
more recently studied (see, e.g., [3, 27, 30, 31, 54, 56, 57, 59]). Contrary to the work cited above, the underlying state 
problem of this paper is not a boundary value problem on a bounded domain, but an interface problem involving a pde on 
an unbounded domain. For the simplicity of presentation, we consider a scalar interface problem with a pde of the form 
div (p(|∇u|) ⋅ ∇u) on the interior domain, where the nonlinearity p can be handled by the theory of monotone operators, 
and the Laplacian on the exterior domain, connected by nonmonotone set-valued transmission conditions as a novelty. 
This scalar problem models nonlinear contact problems with nonmonotone friction in infinite elastic media that arise in 
various fields of science and technology; let us mention geophysics (see, e.g., [50]), soil mechanics, in particular soil-
structure interaction problems (see, e.g., [16]), and civil engineering of underground structures (see, e.g., [55]).
It should be underlined that such interface problems involving a pde on an unbounded domain are more difficult than 
standard boundary value problems on bounded domains, since a direct variational formulation of the former problems 
leads to a HVI, which lives on the unbounded domain, and thus cannot be analyzed in a reflexive Banach space setting. 
Thanks to boundary integral methods (see the monograph [28]), we provide another HVI that is amenable to functional 
analytic methods using standard Sobolev spaces on the interior domain and Sobolev spaces of fractional order on the 
coupling boundary. Let us note in passing that these integral methods lay the basis for the numerical treatment of such 
interface problems by the well-known coupling of boundary elements and finite elements (see [26, Chapter 12]).
A main novel ingredient of our analysis is a stability theorem that considerably improves a related result in the recent 
paper [51] and extends it to more general extended real-valued HVIs augmented by convex extended real-valued func-
tions. This general stability theorem provides the key to a unified approach to various stability results for the interface 
problem with respect to the right-hand side, as well as stability for a related bilateral obstacle interface problem with 
respect to the obstacles.
The plan of the paper is as follows. The next Section 2 provides preliminaries and consists of three parts: a collection of 
some basic tools of Clarke’s generalized differential calculus for the analysis of the nonmonotone transmission conditions, 
a description of the interface problem in strong form and in weak HVI formulation, and existence and uniqueness results 
for a class of abstract HVIs using an equilibrium approach. Section 3 establishes well-posedness results, in particular a 
stability theorem for a more general class of extended real-valued HVIs. Based on this general stability theorem, Section 4 
presents a unified approach to various stability results for the interface problem as well as stability for a related bilateral 
obstacle interface problem with respect to the obstacles. The final Section 5 shortly summarizes our findings, gives some 
concluding remarks, and sketches some directions of further research.

Some preliminaries—Clarke’s generalized differential calculus, the interface problem, 
and an equilibrium approach to HVIs

Some preliminaries from Clarke’s generalized differential calculus

From Clarke’s generalized differential calculus [11], we need the concept of the generalized directional derivative of 
a locally Lipschitz function � ∶ X → ℝ on a real Banach space X at x ∈ X in the direction z ∈ X defined by

Note that the function z ∈ X ↦ �0(x;z) is finite, sublinear, and hence convex and continuous; further, the function 
(x, z) ↦ �0(x;z) is upper semicontinuous. The generalized gradient of the function � at x, denoted by (simply) ��(x) , is 
the unique nonempty weak∗ compact convex subset of the dual space X′ , whose support function is �0(x;.) . Thus,

�0(x;z) ∶= lim sup
y→x;t↓0

�(y + tz) − �(y)

t
.

� ∈ ��(x) ⇔ �0(x;z) ≥ ⟨�, z⟩, ∀z ∈ X,

�0(x;z) = max{⟨�, z⟩ ∶ � ∈ ��(x)}, ∀z ∈ X.
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When X is finite dimensional, then, according to Rademacher’s theorem, � is differentiable almost everywhere, and the 
generalized gradient of � at a point x ∈ ℝ

n can be characterized by

where “co” denotes the convex hull.

The interface problem

Let Ω ⊂ ℝ
d (d ≥ 2) be a bounded domain with Lipschitz boundary Γ = cl Γs ∪ cl Γt with nonempty open disjoint bound-

ary parts Γs and Γt . Let n denote the unit normal on Γ defined almost everywhere pointing from Ω into Ωc ∶= ℝ
d ⧵Ω . Let 

the data f ∈ L2(Ω) , u0 ∈ H1∕2(Γ) , and q ∈ L2(Γ) be given.
In the interior part Ω , consider the nonlinear partial differential equation

where p ∶ [0,∞) → [0,∞) is a continuous function with t ⋅ p(t) being monotonously increasing with t.
In the exterior part Ωc , consider the Laplace equation

with the radiation condition at infinity for |x| → ∞,

where a is a real constant for any u, but may vary with u.
With u1 ∶= u|Ω and u2 ∶= u|Ωc , the tractions on the coupling boundary Γ are given by the traces of p(|∇u1|) �u1�n

 and − �u2
�n

 , 
respectively. Prescribe classical transmission conditions on Γt:

and on Γs analogously for the tractions:

and the generally nonmonotone, set-valued transmission condition:

Here, the function j ∶ Γs ×ℝ → ℝ is such that j(⋅, �) ∶ Γs → ℝ is measurable on Γs for all � ∈ ℝ and j(s, ⋅) ∶ ℝ → ℝ is 
locally Lipschitz for almost all (a.a.) s ∈ Γs with �j(s, �) ∶= �j(s, ⋅)(�) , the generalized gradient of j(s, ⋅) at �.
Further, require the following growth condition on the so-called superpotential j: There exist positive constants cj,1 and 
cj,2 such that for a.a. s ∈ Γs , all � ∈ ℝ and for all � ∈ �j(s, �) the following inequalities hold:

Note that it follows from Eq. (2.7) (i) and Eq. (2.7) (ii), respectively, that for a.a. s ∈ Γs

and

��(x) = co {� ∈ ℝ
n ∶ � = lim

k→∞
∇�(xk), xk → x, � is differentiable at xk},

(2.1)div
(
p(|∇u|) ⋅ ∇u

)
+ f = 0 in Ω,

(2.2)Δu = 0 in Ωc

(2.3)u(x) =

{
a + o(1) if d = 2,

O(|x|2−d) if d > 2,

}

(2.4)u1|Γt
= u2|Γt

+ u0|Γt
and p(|∇u1|)

�u1
�n

||||Γt

=
�u2
�n

||||Γt

+ q|Γt

(2.5)p(|∇u1|)
�u1
�n

||||Γs

=
�u2
�n

||||Γs

+ q|Γs

(2.6)p(|∇u1|)
�u1
�n

||||Γs

∈ �j(⋅, u0 + (u2 − u1)
||Γs

) .

(2.7)(i) |�| ≤ cj,1(1 + |�|) , (ii) � � ≥ −cj,2|�| .

(2.8)
|||j
0(s, �;�)

||| ≤ cj,1(1 + |�|)|�|, ∀ �, � ∈ ℝ
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Altogether, the interface problem consists in finding u1 ∈ H1(Ω) and u2 ∈ H1
loc
(Ωc) that satisfy Eqs. (2.1)–(2.6) in a weak 

form.
To exhibit the relation of the above scalar interface problem to an elastic transmission problem with frictional contact, we 
insert the following remark.

Remark 1  In elasticity—to simplify focus to the case d = 2 — instead of the unknown scalar field u, there is the displace-
ment field u which decomposes in its normal component un = u ⋅ n and its tangential component ut = (u − unn) ⋅ t , where 
t = (−n2, n1)

T for n = (n1, n2)
T . Similarly, as dual variable, the flux q� =

�u

�n
 at the boundary is to be replaced by the 

boundary stress vector T with its normal component Tn and its tangential component Tt . This leads in local coordinates 
to ui = (ut

i
, un

i
);Ti = (Tn

i
, Tt

i
) with i = (1, 2) for the elastic body in the bounded domain (i = 1) and the exterior elastic 

medium (i = 2) . Then, the set-valued transmission condition Eq. (2.6) includes a transmission condition of Tresca’s type 
analogous to Tresca’s friction boundary condition (given friction model) (see [13, 32]). Indeed, choose j(⋅, �) = g(⋅)|�| 
with given nonnegative friction force g ∈ L∞(Γs) , then

is monotone set-valued and with

Equation (2.6) becomes

In this sense, Equation (2.6) gives a simplified (scalar) model of an elastic transmission problem with frictional contact.

To arrive at a first variational formulation of the interface problem in the form of a HVI, introduce some function spaces. For 
the bounded Lipschitz domain Ω , use the standard Sobolev space Hs(Ω) and the Sobolev spaces on the bounded Lipschitz 
boundary Γ (see [49, Sect 2.4.1]),

Further, for the unbounded domain Ωc = ℝ
d�Ω introduce the Fréchet space (see, e.g., [28, Section 4.1, (4.1.43)])

By the trace theorem, u|Γ ∈ H1∕2(Γ) for u ∈ H1
loc
(Ωc) . Next, define Φ ∶ H1(Ω) × H1

loc
(Ωc) → ℝ ∪ {∞} by

Here, the data f ∈ L2(Ω), q ∈ L2(Γ) enter the linear functional

(2.9)j0(s, �; − �) ≤ cj,2|�|, ∀� ∈ ℝ.

𝜕j⋅, 𝜉 =

⎧⎪⎨⎪⎩

−g if 𝜉 < 0

[−g, g] if 𝜉 = 0

g if 𝜉 > 0

�u ∶= u0 + (un
2
− un

1
)|Γs

{|p(|T1|)Tt
1
| ≤ g if �u = 0,

p(|T1|)Tt
1
= g

�u

|�u| if �u ≠ 0.

Hs(Γ) =

⎧⎪⎨⎪⎩

{u�Γ ∶ u ∈ Hs+1∕2(ℝd)} (0 < s ≤ 1),

L2(Γ) (s = 0),

(H−s(Γ))∗ (dual space) (−1 ≤ s < 0).

Hs
loc
(Ωc) = {u ∈ D

∗(Ωc) ∶ �u ∈ Hs(Ωc) ∀� ∈ C∞
0
(ℝd)} .

(2.10)Φ(u1, u2) ∶= ∫Ω

g(|∇u1|) dx + 1

2 ∫Ωc

|∇u2|2 dx − L(u1, u2|Γ).
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Further, in Eq. 2.10, the function g is given by p (see Eq. (2.1)) through

assume that p is C1 , 0 ≤ p(t) ≤ p0 < ∞ , and t ↦ t ⋅ p(t) is strictly monotonic increasing. Then, 0 ≤ g(t) ≤ 1

2
p0 ⋅ t

2 and the 
real-valued functional

is strictly convex. The Gateaux derivative of G,

is Lipschitz continuous and strongly monotone in H1(Ω) with respect to the semi-norm

that is, there exists a constant cG > 0 such that

Analogously to [9, 38], we first define

and then the affine, hence a convex set of admissible functions

According to [9, Remark 4], C is closed in H1(Ω) × H1
loc
(Ωc) . Further, it holds

Then, it can be proved [25, Theorem 1] that the interface problem Eqs. (2.1)–(2.6) is equivalent in the sense of distributions 
to the HVI problem (PΦ) : Find (û1, û2) ∈ C such that for all (u1, u2) ∈ C , there holds for 𝛿u1 ∶= u1 − û1, 𝛿u2 ∶= u2 − û2,

However, since this HVI lives on the unbounded domain Ω × Ωc (as the original problem), this HVI cannot be treated in 
a reflexive Banach space setting and therefore provides only an intermediate step in the analysis. Therefore, we employ 
the boundary integral operator theory [26, 28] to reformulate the interface problem Eqs. (2.1)–(2.6) in the weak sense 
as a boundary-domain variational inequality on Γ × Ω . From now on, concentrate the analysis to the case of dimension 
d = 3 , since as already the distinction in the radiation condition Eq. (2.3) indicates, in the case d = 2 , some peculiarities 
of boundary integral methods for exterior problems come up that need extra attention (see, e.g., [9, 26, Sec. 12.2]). As 
a result, we arrive at an equivalent hemivariational formulation of the original interface problem Eqs. (2.1)–(2.6) that 
lives on Ω × Γ and consists of a weak formulation of the nonlinear differential operator in the bounded domain Ω , the 
Poincaré–Steklov operator on the bounded boundary Γ , and a nonsmooth functional on the boundary part Γs.

(2.11)L(u, v) ∶= ∫Ω

f ⋅ u dx + ∫Γ

q ⋅ v ds .

g ∶ [0,∞) → [0,∞), t ↦ g(t) = ∫
t

0

s ⋅ p(s) ds,

G(u) ∶= ∫Ω

g(|∇u|)dx, u ∈ H1(Ω)

(2.12)DG(u;v) = ∫Ω

p(|∇u|)(∇u)T ⋅ ∇v dx u, v ∈ H1(Ω)

�v�H1(Ω) = ‖∇ v‖L2(Ω),

(2.13)cG |u − v|2
H1(Ω)

≤ DG(u;u − v) − DG(v;u − v) ∀u, v ∈ H1(Ω).

L0 ∶= {v ∈ H1
loc
(Ωc) ∶ Δv = 0 in H−1(Ωc)

(and for d = 2∃a ∈ ℝ such that v satisfies (2.3))},

C ∶= {(u1, u2) ∈ H1(Ω) × H1
loc
(Ωc) ∶ u1|Γt

= u2|Γt
+ u0|Γt

and u2 ∈ L0}.

DΦ((û1, û2);(u1, u2)) = DG(û1;u1) + ∫
Ωc ∇û2 ⋅ ∇u2 dx

− ∫
Ω
f ⋅ u1 dx − ∫

Γt
q ⋅ u2|Γt

ds.

(2.14)DΦ((û1, û2);(𝛿u1, 𝛿u2)) + J0(𝛾(û2 − û1 + u0);𝛾(𝛿u2 − 𝛿u1)) ≥ 0 .
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To this end recall, the Poincaré–Steklov operator for the exterior problem, S ∶ H1∕2(Γ) → H−1∕2(Γ) , is a selfadjoint operator 
with the defining property

for solutions u2 ∈ L0 of the Laplace equation on Ωc . The operator S enjoys the important property that it can be expressed 
as

where I,V ,K,K′, and W denote the identity, the single layer boundary integral operator, the double layer boundary integral 
operator, its formal adjoint, and the hypersingular integral operator, respectively; see [26, Sec. 12.2] for details.
Further, S gives rise to the positive definite bilinear form ⟨S⋅, ⋅⟩ , that is, there exists a constant cS > 0 such that

where ⟨⋅, ⋅⟩ = ⟨⋅, ⋅⟩H−1∕2(Γ)×H1∕2(Γ) extends the L2 duality on Γ.
Let E ∶= H1(Ω) × H̃1∕2(Γs) with �H1∕2(Γs) ∶= {w ∈ H1∕2(Γ)|suppw ⊆ Γs} . Next, define the linear functional � ∈ E∗ by

Using the representation formula of potential theory (see [17, 38] for similar nonlinear interface problems), it can be 
proved [25, Theorem 2] that the intermediate HVI (PΦ) is equivalent to the following HVI problem (PA) : Find (û, v̂) ∈ E 
such that for all (u, v) ∈ E,

where A ∶ E → E∗ is defined for all (u, v), (u�, v�) ∈ E by

An equilibrium approach to a class of HVIs—existence and uniqueness results

Next, we describe the functional analytic setting for the interface problem and provide existence and uniqueness results 
using an equilibrium approach. To this end, let X ∶= L2(Γs) and introduce the real-valued locally Lipschitz functional

Then, by Lebesgue’s theorem of majorized convergence,

where j0(s, ⋅ ; ⋅) denotes the generalized directional derivative of j(s, ⋅).
As seen in the previous subsection, the weak formulation of the problem Eqs. (2.1)–(2.6) leads, in an abstract setting, to a 
hemivariational inequality (HVI) with a nonlinear operator A and the nonsmooth functional J: Find v̂ ∈ C such that

Here, C ≠ ∅ is a closed convex subset of a real reflexive Banach space E, � ∶= �E→X is a linear continuous operator, the 
linear form � belongs to the dual E∗ . and the nonlinear monotone operator A ∶ E → E∗ is Lipschitz continuous and strongly 
monotone with some monotonicity constant cA > 0 , what results from the strong monotonicity of the nonlinear operator 

(2.15)S(u2|Γ) = −�nu2|Γ

S =
1

2
[W + (I − K�)V−1(I − K)] ,

(2.16)⟨Sv, v⟩ ≥ cS‖v‖2H1∕2(Γ)
, ∀v ∈ H1∕2(Γ) ,

�(u, v) ∶= ∫Ω

f ⋅ u dx + ⟨q + Su0, u�Γ + v⟩ , (u, v) ∈ E

(2.17)A(û, v̂;u − û, v − v̂) + J0(𝛾 v̂;𝛾(v − v̂)) ≥ 𝜆(u − û, v − v̂) ,

A(u, v) (u�, v�) = A(u, v;u�, v�) ∶= DG(u, u�) + ⟨S(u�Γ + v), u��Γ + v�⟩ .

(2.18)J(y) ∶= ∫Γs

j(s, y(s)) ds , y ∈ X .

(2.19)J0(y;z) = ∫Γs

j0(s, y(s);z(s)) ds , (y, z) ∈ X × X ,

(2.20)A(v̂)(v − v̂) + J0(𝛾 v̂;𝛾v − 𝛾 v̂) ≥ 𝜆(v − v̂) ∀v ∈ C.
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DG in H1(Ω) with respect to the semi-norm � ⋅ �H1(Ω) = ‖∇ ⋅ ‖L2(Ω) and the positive definiteness of the Poincaré–Steklov 
operator S (see [9, Lemma 4.1]).
On the other hand, by Eq. 2.8 and the compactness of the operator � the real-valued upper semicontinuous bivariate 
function, shortly bifunction

becomes pseudomonotone (see [44, Lemma 1], [24, Lemma 4.1]). The latter result also shows that Eq. (2.9) implies a 
linear growth of �(⋅, 0) . This and the strong monotonicity of A imply coercivity. Therefore, by the theory of pseudomono-
tone VIs [20, Theorem 3], [58] (see [45] for the application to HVIs), we have solvability of Eq. 2.20.
Further, suppose that the generalized directional derivative J0 satisfies the one-sided Lipschitz condition: There exists 
cJ > 0 such that

Then, the smallness condition

implies unique solvability of Eq. 2.20 (see, e.g., [43, Theorem 5.1] and [53, Theorem 83]).
It is noteworthy that under the smallness condition Eq. (2.22) together with Eq. (2.21), fixed point arguments [8] or 
the theory of set-valued pseudomonotone operators [53] are not needed, but simpler monotonicity arguments are suf-
ficient to conclude unique solvability. Moreover, the compactness of the linear operator � is not needed either. In fact, 
Equation (2.20) can be framed as a monotone equilibrium problem in the sense of Blum-Oettli [5]:

Proposition 1  Suppose Eqs. (2.21) and (2.22). Then, the bifunction � ∶ C × C → ℝ defined by

has the following properties:

   �(v, v) = 0 for all v ∈ C.
   �(v, ⋅) is convex and lower semicontinuous for all v ∈ C.
   There exists some 𝜇 > 0 such that �(v,w) + �(w, v) ≤ −�‖v − w‖2

E
 for all v,w ∈ C (strong monotonicity).

   The function t ∈ [0, 1] ↦ �(tw + (1 − t)v,w) is upper semicontinous at t = 0 for all v,w ∈ C (hemicontinuity).

Proof  Obviously, � vanishes on the diagonal and is convex and lower semicontinuous with respect to the second variable. 
To show strong monotonicity, estimate

To show hemicontinuity, it is enough to consider the bifunction (y, z) ∈ X × X ↦ J0(y;z − y) . Then, for (y, z) ∈ X × X 
fixed, t ∈ [0, 1] , one has

and thus, hemicontinuity follows from upper semicontinuity of J0,

�(v,w) ∶= J0(�v;�w − �v) ,∀(v,w) ∈ E × E

(2.21)J0(y1;y2 − y1) + J0(y2;y1 − y2) ≤ cJ‖y1 − y2‖2X ∀y1, y2 ∈ X .

(2.22)cJ‖𝛾‖2E→X
< cA

(2.23)�(v,w) ∶= A(v)(w − v) + J0(�v;�w − �v) − �(w − v)

�(v,w) + �(w, v)

=(A(v) −A(w))(w − v)

+ J0(�v;�w − �v) + J0(�w;�v − �w)

≤ − cA ‖v − w‖2
E
+ cJ‖�v − �w‖2

X

≤ − (cA − cJ‖�‖2E→X
) ‖v − w‖2

E
.

J0(y + t(z − y);z − (y + t(z − y))) = (1 − t)J0(y + t(z − y);z − y)
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Since strong monotonicity implies coercivity and uniqueness, the fundamental existence result [5, Theorem 1] applies to 
the HVI Eq. (2.20) to conclude the following:

Theorem 1  Suppose Eqs. (2.21) and (2.22). Then, the HVI Eq. (2.20) is uniquely solvable.

Thus, under the smallness condition, unique solvability holds for (PA).

Extended real‑valued HVIs—well‑posedness

In view of the subsequent study of stability in Section 4 for the interface problem which we have described in the 
previous section, we broaden the scope of analysis and consider extended real-valued HVIs: Find v̂ ∈ dom F such that

Here, V is a real reflexive Banach space, the nonlinear operator A ∶ V → V∗ is a monotone operator, � ∶= �V→X with X a 
real Hilbert space (in the interface problem, we have X = L2(Γs) ) denotes a linear continuous operator, J0 stands for the 
generalized directional derivative of a real-valued locally Lipschitz functional J, and now, in addition, F ∶ V → ℝ ∪ {+∞} 
is a convex lower semicontinuous function that is supposed to be proper (i.e., F ≢ ∞ on C ). This means that the effective 
domain of F in the sense of convex analysis ([48]),

is nonempty, closed, and convex. To resume the HVI Eq. (2.20) of Section 2.2, let F(v) ∶= �(v) + �C(v) , where � ∈ V∗ and

is the indicator function on C in the sense of convex analysis ([48]).
Next, similarly to Eq. 2.23 in Sect. 2.2, define

and apply Proposition 1. Thus, under the assumptions Eqs. (2.21) and (2.22), the above HVI Eq. (3.1) falls into the frame-
work of an extended real-valued equilibrium problem of monotone type in the sense of [23]. Clearly, strong monotonicity 
implies uniqueness. Note that by the separation theorem, it can be shown that any convex proper lower semicontinuous 
function � ∶ V → ℝ ∪ {+∞} is conically minorized, that is, it enjoys the estimate

with some c𝜙 > 0 . Hence, strong monotonicity implies the asymptotic coercivity condition in [23], too. Thus, the exist-
ence result [23, Theorem 5.9] applies to the HVI Eq. (3.1) to conclude the following:

Theorem 2  Suppose Eqs. (2.21) and (2.22). Then, the HVI Eq. (3.1) is uniquely solvable.

By this solvability result, we can introduce the solution map S by S(F) ∶= v̂ , the solution of Eq. 3.1. Next, we investigate 
the stability of the solution map S with respect to the extended real-valued function F. Here, we follow the concept of 
epi-convergence in the sense of Mosco [2, 40] (“Mosco convergence”). Let Fn (n ∈ ℕ),F ∶ V → ℝ ∪ {+∞} be convex 
lower semicontinuous proper functions.

lim sup
t↓0

J0(y + t(z − y);z − y) ≤ J0(y;z − y) .

(3.1)A(v̂)(v − v̂) + J0(𝛾 v̂;𝛾v − 𝛾 v̂) + F(v) − F(v̂) ≥ 0 ∀v ∈ V .

dom F ∶= {v ∈ V ∶ F(v) < +∞}

�C(v) ∶=

{
0 if v ∈ C

+∞ elsewhere

(3.2)�(v,w) ∶= A(v)(w − v) + J0(�v;�w − �v)

�(v) ≥ −c�(1 + ‖v‖) , v ∈ V
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Then, Fn are called to converge to F in the Mosco sense, written Fn

M
⟶F , if and only if the subsequent two hypotheses 

hold: 

	(m1) 	If vn ∈ V (n ∈ ℕ) weakly converge to v for n → ∞ , then 

	(m2) 	For any v ∈ V  , there exist vn ∈ V (n ∈ ℕ) strongly converging to v for n → ∞ such that 

In view of our later applications, it is not hard to require that the functions Fn are uniformly conically minorized, 
that is, there holds the estimate

with some d0 ≥ 0 . Moreover, similar to [51], in addition to the one-sided Lipschitz continuity Eq. (2.21), we assume that 
the local Lipschitz function J satisfies the following growth condition:

for some dJ > 0 , what is immediate from the growth condition Eq. (2.7) for the integrand j.
Now, we are in the position to state the main result of this section which extends the stability result of [21] for monotone vari-
ational inequalities to extended real-valued HVIs with an unperturbed bifunction � in the coercive situation.

Theorem 3  Suppose that the operator A is continuous and strongly monotone with monotonicity constant cA > 0 , 
the linear operator � is compact, and the generalized directional derivative J0 satisfies the one-sided Lipschitz con-
dition Eq. (2.21) and the growth condition Eq. (3.4). Moreover, suppose the smallness condition Eq. (2.22). Let 
F,Fn ∶ V → ℝ ∪ {+∞} (n ∈ ℕ) be convex lower semicontinuous proper functions that satisfy the lower estimate Eq. 
(3.3); let Fn

M
⟶F . Then, strong convergence S(Fn) → S(F) holds.

Proof  We divide the proof into three parts. We first show that the ûn = S(Fn) are bounded, before we can establish the 
convergence result. In the following, c0, c1,… are generic positive constants.

(1) The sequence {ûn} ⊂ V  is bounded.
By definition, ûn satisfies for all v ∈ V ,

Now, let v0 be an arbitrary element of dom F . Then, by Mosco convergence, (M2), there exist vn ∈ dom Fn (n ∈ ℕ) such 
that for n → ∞ the strong convergences hold

Let n ∈ ℕ . Then, insert v = vn in Eq. 3.5 and obtain

Write A(ûn) = A(ûn) −A(vn) +A(vn) and use the strong monotonicity of the operator A and the estimate Eq. (3.3) to get

On the other hand, write

F(v) ≤ lim inf
n→∞

Fn(vn) .

F(v) = lim
n→∞

Fn(vn) .

(3.3)Fn(v) ≥ −d0(1 + ‖v‖), ∀n ∈ ℕ, v ∈ V

(3.4)‖�‖X∗ ≤ dJ(1 + ‖z‖X) ∀z ∈ X, � ∈ �J(z)

(3.5)A(ûn)(v − ûn) + J0(𝛾 ûn;𝛾v − 𝛾 ûn) + Fn(v) − Fn(ûn) ≥ 0 .

(3.6)vn → v0;Fn(vn) → F(v0) .

A(ûn)(ûn − vn) ≤ J0(𝛾 ûn;𝛾vn − 𝛾 ûn) + Fn(vn) − Fn(ûn) .

(3.7)

cA‖ûn − vn‖2V
≤ ‖A(vn)‖V∗‖ûn − vn‖V + Fn(vn) + d0(1 + ‖ûn‖)
+ J0(𝛾 ûn;𝛾vn − 𝛾 ûn).
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Hence, by the one-sided Lipschitz condition Eq. (2.21),

Further, by Eq. 3.4,

By the convergences Eq. (3.6), �Fn(un)� ≤ c0, ‖A(vn)‖V∗ ≤ c1, ‖vn‖V ≤ c2 . Thus, Eqs. (3.7), (3.8), and (3.9) result in

Hence, by the smallness condition Eq. (2.22), a contradiction argument proves the claimed boundedness of {ûn}.
(2) ûn = S(Fn) converges weakly to û = S(F) for n → ∞..
To prove this claim, we employ a “Minty trick” similar to the proof of [23, Prop.3.2] using the monotonicity of the 

operator A.
Take v ∈ V  arbitrarily. By (M2), there exist vn ∈ V (n ∈ ℕ) such that

We test the inequality Eq. (3.5) with vn , use the monotonicity of the operator A , and obtain

On the other hand, by the previous step, there exists a subsequence {ûnk}k∈ℕ that converges weakly to some ũ ∈ dom F ⊂ V . 
Further, since � is completely continuous, 𝛾 ûnk → 𝛾 ũ . Thus, the continuity of A , the upper semicontinuity of 
(y, z) ∈ X × X ↦ J0(y;z) , (M1), and Eq. (3.10) entail together with Eq. (3.11)

Hence, for v ∈ dom F fixed, for arbitrary s ∈ [0, 1) and ws ∶= v + s(ũ − v) ∈ dom F inserted above, the positive homo-
geneity of J0(𝛾 ũ;⋅) and the convexity of F imply after division by the factor (1 − s) > 0

Letting s → 1 , hence ws → ũ , A(ws) → A(ũ) results in

This shows by uniqueness that ũ = S(F) and the entire sequence {ûn} converges weakly to û = S(F).
(3) ûn = S(Fn) converges strongly to û = S(F) for n → ∞.
By (M2), there exist un ∈ V (n ∈ ℕ) such that

Test the inequality Eq. (3.5) with un , use the strong monotonicity of the operator A , and obtain

J0(𝛾 ûn;𝛾vn − 𝛾 ûn)

= J0(𝛾 ûn;𝛾vn − 𝛾 ûn) + J0(𝛾vn;𝛾 ûn − 𝛾vn) − J0(𝛾vn;𝛾 ûn − 𝛾vn).

(3.8)J0(𝛾 ûn;𝛾vn − 𝛾 ûn) ≤ cJ‖𝛾‖2‖vn − ûn‖2V − J0(𝛾vn;𝛾 ûn − 𝛾vn) .

(3.9)
− J0(𝛾vn;𝛾 ûn − 𝛾vn) ≤ max

𝜁∈𝜕J(𝛾vn)
‖𝜁‖X∗‖𝛾 ûn − 𝛾vn‖X

≤ dJ‖𝛾‖(1 + ‖𝛾‖‖vn‖V )‖ûn − vn‖V .

(cA − cJ‖𝛾‖2)‖ûn − vn‖2V ≤ c0 + [c1 + dJ‖𝛾‖(1 + c2‖𝛾‖)]‖ûn − vn‖V + d0(1 + ‖ûn‖) .

(3.10)lim
n→∞

vn = v; lim
n→∞

Fn(vn) = F(v)

(3.11)A(vn)(vn − ûn) + J0(𝛾 ûn;𝛾vn − 𝛾 ûn) ≥ Fn(ûn) − Fn(vn) .

A(v)(v − ũ) + J0(𝛾 ũ;𝛾v − 𝛾 ũ)

≥ lim
k→∞

A(vnk )(vnk − ûnk ) + lim sup
k→∞

J0(𝛾 ûnk ;𝛾vnk − 𝛾 ûnk )

≥ lim inf
n→∞

Fn(ûn) − lim
n→∞

Fn(vn)

≥ F(ũ) − F(v).

A(ws)(v − ũ) + J0(𝛾 ũ;𝛾v − 𝛾 ũ) + F(v) ≥ F(ũ) .

A(ũ)(v − ũ) + J0(𝛾 ũ;𝛾v − 𝛾 ũ) + F(v) ≥ F(ũ) ∀v ∈ dom F .

(3.12)(i) lim
n→∞

un = û;(ii) lim
n→∞

Fn(un) = F(û) .
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Analyze the summands in Eq. 3.13 separately: By Eq. 3.12 (i), A(un) → A(û) , hence

By the upper semicontinuity of (y, z) ∈ X × X ↦ J0(y;z) , (M1) and by the complete continuity of �,

By Eq. 3.12 (ii) and by M1,

Thus, from Eq. (3.13) finally by the triangle inequality,

and the theorem is proved. 	�  ◻

To conclude this section, let us compare the above Theorem 3 with a similar stability result of [51, Theorem 6]. There one 
has the special setting of F(v) ∶= �C(v) + �(v) , where C ⊂ V is closed convex and � ∈ V∗ is given by � ∶= �∗f  with f ∈ X∗ , 
�∗ the adjoint to the linear operator � ∶ V → X , which is assumed to be completely continuous or equivalently compact (see 
[51, (4.3)]).
Likewise, for n ∈ ℕ , one has convex closed sets Cn ⊂ V  and linear forms �n ∶= �∗fn with fn ∈ X∗ giving rise to 
Fn(v) ∶= �Cn

(v) + �n(v).
Note by the Schauder theorem (see, e.g., [47, 3.7.17]), the adjoint �∗ ∶ X∗ → V∗ is compact. Hence, the assumed weak conver-
gence fn ⇀ f  in X∗ entails the strong convergence �n → � in V∗ , thus further the lower estimate Eq. (3.3), in view of �Cn

≥ 0.
Moreover, the Mosco convergence Fn

M
⟶F follows at once from the assumed Mosco convergence Cn

M
⟶C , namely from the 

hypotheses: 

	(m1) 	If vn ∈ Cn (n ∈ ℕ) weakly converge to v for n → ∞ , then v ∈ C.
	(m2) 	For any v ∈ C , there exist vn ∈ Cn (n ∈ ℕ) strongly converging to v for n → ∞.

On the other hand, an inspection of the above proof of Theorem 3 shows that is enough to demand for J̃0(v;w) = J0(𝛾v;𝛾w) , 
the generalized directional derivative of the real-valued locally Lipschitz functional J̃(v) ∶= J(𝛾v) , that

This abstract condition [51, (4.2)] is derived in the above proof of Theorem 3 from the compactness of � and the upper 
semicontinuity of (y, z) ∈ X × X ↦ J0(y;z).
Concerning the monotone operator A ∶ V → V∗ , we only require its norm continuity, not needing Lipschitz continuity. 
More importantly, we can also dispense with the condition [51, (4.1)]:

It seems that this condition forces an elliptic operator, which stems from an elliptic pde on the domain, to be linear.

(3.13)
A(un)(un − ûn) + J0(𝛾 ûn;𝛾un − 𝛾 ûn)

+ Fn(un) − Fn(ûn) ≥ cA ‖un − ûn‖2.

lim
n→∞

A(un)(un − ûn) = 0 .

lim sup
n→∞

J0(𝛾 ûn;𝛾un − 𝛾 ûn) ≤ 0 .

lim sup
n→∞

[Fn(un) − Fn(ûn)] ≤ 0 .

0 ≤ ‖ûn − û‖ ≤ ‖ûn − un‖ + ‖un − û‖ → 0

un ⇀ u in V and vn → v in V

⇒ lim sup J̃0(un;vn − un) ≤ J̃0(u;v − u).

un ⇀ u in V and vn → v in V

⇒ lim sup⟨Aun, un − vn⟩ ≥ ⟨Au, u − v⟩.
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Stability results

In this section, we rely heavily on the stability result Theorem 3 and present a unified approach to various stabil-
ity results for the interface problem, which was described in “Some preliminaries—Clarke’s generalized differential 
calculus, the interface problem, and an equilibrium approach to HVIs,” and for a related interface problem. For 
convenience, let us recall the boundary/domain HVI formulation (PA) of the interface problem: Find (û, v̂) ∈ E such 
that for all (u, v) ∈ E,

where E = H1(Ω) × H̃1∕2(Γs) with �H1∕2(Γs) = {w ∈ H1∕2(Γ)|suppw ⊆ Γs} on the bounded domain Ω and the boundary 
part Γs . The operator A is given for all (u, v), (u�, v�) ∈ E by

(see Eqs. (2.12), (2.15)). J0 denotes the generalized directional derivative of the Lipschitz integral function J 
(see Eqs. (2.19), (2.18)) stemming from the generally nonmonotone, set-valued transmission condition Eq. (2.6). 
� ∶ H̃1∕2(Γs) → L2(Γs) denotes the linear continuous embedding operator which is compact. The linear functional � ∈ E∗ 
is defined for (u, v) ∈ E by

where ⟨⋅, ⋅⟩ = ⟨⋅, ⋅⟩H−1∕2(Γ)×H1∕2(Γ) extends the L2 duality on Γ.
Just for simplicity, we set u0 ∶= 0 and impose for the data f, q that f ∈ L2(Ω) and q ∈ L2(Γ) . Thus, we can write

where � ∶ H1(Ω) → L2(Ω) , � ∶ H1∕2(Γ) → L2(Γ) are linear compact embedding operators and � ∶ H1(Ω) → L2(Γ) is a 
linear compact trace operator.

A first stability result for the interface problem

Here we consider stability with respect to the right-hand side f ∈ L2(Ω) distributed on the domain Ω . Thus, in the 
abstract setting of “Extended real-valued HVIs—well-posedness,” we choose the convex functional F as the linear 
functional

By the abstract existence and uniqueness result of Theorem  2, we have the control-to-state map 
f ∈ L2(Ω) ↦ S(f ) ∶= (û, v̂) ∈ E , the solution of Eq. 4.1.

Theorem 4  Suppose that the generalized directional derivative J0 satisfies the one-sided Lipschitz condition Eq. (2.21) 
and the growth condition Eq. (3.4). Moreover, suppose the smallness condition Eq. (2.22) with the monotonicity constant 
cA of the operator A . Let {fn}n∈ℕ ⊂ L2(Ω) and fn → f̂  in L2(Ω) for n → ∞ Then, there holds S(fn) → S(f̂ ) in E. If only 
fn ⇀ f̂  (weakly) in L2(Ω) , then there holds S(fnk ) → S(f̂ ) in E for a subsequence {fnk}k∈ℕ.

Proof  Since �∗ is completely continuous, we have strong convergence for a subsequence (sticking to the index n for simplic-
ity of notation) Fn ∶= (𝜅∗fn, 0) → F̂ ∶= (𝜅∗ f̂ , 0) in E∗ . Thus, the linear continuous functionals Fn satisfy the lower estimate 
Eq. (3.3). To show (m1), let (un, vn) ⇀ (u, v) in E for n → ∞ . Then, clearly, F̂(u, v) = limn→∞ Fn(un, vn) . To show (m2), 
choose for any (u, v) ∈ E , simply (un, vn) ∶= (u, v) ∈ E . Then, clearly (un, vn) → (u, v) and F̂(u, v) = limn→∞ Fn(un, vn) . 
Hence, Fn

M
⟶F̂ and Theorem 3 applies; it yields S(fn) → S(f̂ ) in E. 	�  ◻

(4.1)A(û, v̂;u − û, v − v̂) + J0(𝛾 v̂;𝛾(v − v̂)) ≥ 𝜆(u − û, v − v̂) ,

A(u, v) (u�, v�) = A(u, v;u�, v�) = DG(u, u�) + ⟨S(u�Γ + v), u��Γ + v�⟩

�(u, v) = ∫Ω

f ⋅ u dx + ⟨q + Su0, u�Γ + v⟩ ,

(4.2)�(u, v) = ⟨f , �u⟩L2(Ω)×L2(Ω) + ⟨q, �u + �v⟩L2(Γ)×L2(Γ) ,

F(u, v) ∶= ⟨f , �u⟩L2(Ω)×L2(Ω) = (�∗f )(u), F = (�∗f , 0) ∈ E∗ .
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Further stability results for the interface problem

Next, we consider the stability of the interface problem with respect to the right-hand side q ∈ L2(Γ) on the boundary 
Γ . Thus, in the abstract setting of “Extended real-valued HVIs—well-posedness,” we choose the convex functional F as 
the linear functional

By the abstract existence and uniqueness result of Theorem  2, we have the control-to-state map 
q ∈ L2(Γ) ↦ S(q) ∶= (û, v̂) ∈ E , the solution of Eq. 4.1.

Theorem 5  Suppose that the generalized directional derivative J0 satisfies the one-sided Lipschitz condition Eq. (2.21) 
and the growth condition Eq. (3.4). Moreover, suppose the smallness condition Eq. (2.22) with the monotonicity constant 
cA of the operator A . Let {qn}n∈ℕ ⊂ L2(Γ) and qn → q̂ in L2(Γ) for n → ∞ . Then, there holds S(qn) → S(q̂) in E. If only 
qn ⇀ q̂ in L2(Ω) , then there holds S(qnk ) → S(q̂) in E for a subsequence {qnk}k∈ℕ.

Proof  The proof follows from arguments similar to those that were given in the proof of Theorem 4. So the details are 
omitted. 	� ◻

Let us remark that we can also treat the simultaneous dependence of the interface problem on the parameters f ∈ L2(Ω) 
and q ∈ L2(Γ) . Then, we have the control-to-state map (f , q) ∈ L2(Ω) × L2(Γ) ↦ S(f , q) ∶= (û, v̂) , the solution of Eq. 4.1. 
By similar reasoning, we obtain an analogous stability result. The details are omitted.

A stability result for a bilateral obstacle interface problem

To conclude this section, we investigate a related bilateral obstacle interface problem similar to [36]. First, for the strong 
formulation, we modify the nonlinear partial differential equation Eq. (2.1) in the interior part Ω ⊂ ℝ

3 to the obstacle 
problem: Find u = u(x) ∈ [u(x), u(x)] such that

where the obstacle functions u, u ∈ H1(Ω) with u ≤ u a.e. in Ω are given. In the exterior part Ωc , we consider still the 
Laplace equation Eq. (2.2) with the radiation condition Eq. (2.3). The transmission conditions Eqs. (2.4), (2.5), and (2.6) 
remain in force. The variational analysis described in Section 2.2 easily modifies to arrive at the following HVI problem 
(PA⇔C) : Find (û, v̂) ∈ C such that for all (u, v) ∈ C,

where the operator A , the generalized directional derivative J0 , the linear continuous embedding operator � , and the linear 
functional � are defined as before and above in this section, whereas now E ∶= H1(Ω) × H1(Ω) and the constraint set

is closed and convex. This gives rise to the closed convex functional

Here, we consider the dependence on the obstacles u, u distributed on the domain Ω and introduce the admissible set

F(u, v) ∶= ⟨q, �u + �v⟩L2(Γ)×L2(Γ) = (�∗q, �∗q)(u, v), F = (�∗q, �∗q) ∈ E∗ .

(4.3)

−div
�
p(�∇u�) ⋅ ∇u

� ≥ f if u = u a.e. in Ω,

−div
�
p(�∇u�) ⋅ ∇u

�
= f if u < u < u a.e. in Ω,

−div
�
p(�∇u�) ⋅ ∇u

� ≤ f if u = u a.e. in Ω,

⎫⎪⎪⎬⎪⎪⎭

(4.4)A(û, v̂;u − û, v − v̂) + J0(𝛾 v̂;𝛾(v − v̂)) ≥ 𝜆(u − û, v − v̂) ,

(4.5)C ∶= Cu,u ∶= {(u, v) ∈ E| u ≤ u ≤ u a.e. in Ω}

F ∶= Fu,u ∶= �C = �Cu,u
.
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By the abstract existence and uniqueness result of Theorem  2, we have the control-to-state map 
(u, u) ∈ Uad ↦ S(u, u) ∶= (û, v̂) ∈ C , the solution of Eq. 4.4.
An essential ingredient in the subsequent proof of the subsequent stability result is the Mosco convergence of constraint 
sets. For that latter result, we exploit the lattice structure of H1(Ω) . Namely, since Ω is supposed to be a Lipschitz 
domain, H1(Ω) is a Dirichlet space ([4, Theorem 5.23], [33, Corollary A.6]) in the following sense: Let � ∶ ℝ → ℝ 
be a uniformly Lipschitz function such that the derivative �′ exists except at finitely many points and that �(0) = 0 ; 
then the induced map �∗ on H1(Ω) given by w ∈ H1(Ω) ↦ �◦w is a continuous map into H1(Ω) . In particular, the map 
w ∈ H1(Ω) ↦ w+ = max(0,w) =

1

2
(w + |w|) is a continuous map into H1(Ω).

Now, we are in the position to establish the following stability result.

Theorem 6  Suppose that the generalized directional derivative J0 satisfies the one-sided Lipschitz condition Eq. (2.21) and 
the growth condition Eq. (3.4). Moreover, suppose the smallness condition Eq. (2.22) with the monotonicity constant cA of 
the operator A . Let {(u

n
, un)}n∈ℕ ⊂ Uad and (u

n
, un) → (u

∞
, u∞) in E for n → ∞ . Then, there holds S(u

n
, un) → S(u

∞
, u∞)

Proof  We can pass to a subsequence of {(u
n
, u)}n∈ℕ , also denoted {(u

n
, un)}n∈ℕ such that

We claim the Mosco convergence Cn
M
⟶C∞ for the constraint sets

To show (m1), let (un, vn) ∈ Cn such that (un, vn) ⇀ (u, v) in E for n → ∞ . For some subsequence un → u a.e. in Ω . Thus 
by Eq. 4.6, u

∞
≤ u ≤ u∞ a.e. in Ω . Hence, (u, v) ∈ C as required and (m1) is proven.

To show (m2), we exploit the above-mentioned lattice structure of H1(Ω) and employ a cutting technique. Let 
(u, v) ∈ C∞ . Then, u

∞
≤ u ≤ u∞ a.e. in Ω . This means

Then, set

By construction (un, vn) ∈ Cn , moreover, by Eq. 4.6, min(un, u) → min(u∞, u) and un → u in H1(Ω) . Hence, (un, vn) → (u, v) 
in E as required. Thus, (m2) and the claimed Mosco convergence for the constraint sets are proved. This entails Fn

M
⟶F∞ , 

where Fn ∶= �Cn
,F∞ ∶= �C∞

 . Therefore, in virtue of Theorem 3, S(u
n
, un) → S(u

∞
, u∞) , and the theorem is proved. 	� ◻

Conclusions and outlook

This paper has shown how various techniques from different fields of mathematical analysis can be combined to arrive 
at well-posedness results for a nonlinear interface problem that models nonmonotone frictional contact of elastic infinite 
media. In particular, we established a stability result for extended real-valued hemivariational inequalities that extends 
and considerably improves the stability result of [51]. Based on this general stability result, we could present a unified 
approach to stability results for the interface problem and for a related obstacle interface problem.
In this paper, we focused to the simplest pde on the exterior domain given by the Laplacian, used the fundamental solution 
from potential theory, and arrived at a computable HVI that lives on the interior domain and on the coupling boundary, 
only. Thus, the present paper showcases how this HVI approach to interface problems on unbounded domains with non-
monotone set-valued transmission conditions could be extended to more involved related contact problems for systems 

Uad ∶= {(u, u) ∈ E| u ≤ u a.e. in Ω} .

(4.6)u
n
→ u

∞
& un → u∞ a.e. in Ω .

Cn ∶= Cu
n
,un

∶= {(u, v) ∈ E| u
n
≤ u ≤ un a.e. in Ω},

C∞ ∶= Cu
∞
,u∞

∶= {(u, v) ∈ E| u
∞
≤ u ≤ u∞ a.e. in Ω}.

max(u
∞
, min(u∞, u)) = max(u

∞
, u) = u .

un ∶= max(u
n
, min(un, u)), vn ∶= v .
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of pdes from mathematical physics, as soon as a fundamental solution to the linear pde system on the exterior domain is 
available; let us mention linear elasticity [26, Chapter 5], thermoelasticity (see, e.g., [12]), piezoelectric elasticity (see, e.g., 
[7]), and hemitropic elasticity (see, e.g., [15]). Also, in fluid mechanics, the presented HVI approach based on the bound-
ary layer potential method could be combined with additional fixed point arguments to arrive at well-posedness results 
for transmission problems for the Stokes and Darcy–Forchheimer–Brinkman pde system (see [34]), with nonmonotone 
transmission conditions. In this paper, we dealt with the primal HVI formulation of the interface problem. On the other 
hand, mixed variational formulations (see, e.g., [3, 22, 27, 52]) are another direction of research.
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