
Vol.:(0123456789)

Journal of Mathematical Sciences
https://doi.org/10.1007/s10958-024-07036-w

The Lichnerowicz Laplacian Acting on Symmetric Tensor Fields 
— The Bochner Technique Point of View

J. Mikeš1  · S. E. Stepanov2,3 · I. I. Tsyganok3

Accepted: 15 March 2024 
© The Author(s) 2024

Abstract
In this paper, we prove vanishing theorems for the null space of the Laplacian admitting the Weizenböck 
decomposition and acting on the space of smooth sections of a Riemannian bundle and, in particular, the 
space of smooth sections of a bundle of symmetric tensors over complete and closed Riemannian mani-
folds. In addition, we give a general estimate for eigenvalues of the Laplacian admitting the Weizenböck 
decomposition and acting on the space of smooth sections of a bundle of symmetric tensors over closed 
Riemannian manifolds.
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Introduction

The Lichnerowicz Laplacian acting on smooth sections of a tensor bundle over a Riemannian manifold differs from the 
usual Laplacian acting on functions by the Weitzenböck decomposition formula involving the Riemann curvature tensor 
(see, for example, ([14], p. 344); ([4], pp. 54-58); [11]). The Laplacian of this type is the simplest elliptic operator and is 
at the core of Hodge theory as well as the results of de Rham cohomology.
On the other hand, one of the oldest and most important techniques in modern Riemannian geometry is that of the Boch-
ner technique (see, for example, ([14], pp. 333-364); [15, 19]). Furthermore, in the well-known monograph ([4], p. 53) 
the following was written: the Bochner technique is a method of proving vanishing theorems for null space of a Laplace 
operator admitting a Weitzenböck decomposition and further of estimating its lowest eigenvalue. Therefore, the Bochner 
technique has a broad scope of applications.
Our paper is structured as follows. The second section of the article discusses the basic information about the Lapla-
cian admitting the Weizenböck decomposition and acting on the space of smooth sections of a Riemannian bundle (see 
([15], p.104) and [9]). In particular, we prove several new vanishing theorems for the null space of the Laplace operator 
acting on these sections and obtain new estimates for its smallest eigenvalue. As an application of the obtained results, in 
the third section of the article, we consider the kernel and give a general estimate for eigenvalues of the Laplacian admit-
ting the Weizenböck decomposition and acting on traceless q-tensors (special cases were considered in [6]). In addition, 
in these paper sections, we will show how the Bochner technique works for these operators. This topic is of exceptional 
importance (see, for example, [13] and its References).
In the presented paper, we will continue the research begun in our article [17].

Preliminary information about a Laplace operator admitting a Weizenböck decomposition

2.1. Let (M, g) be an n-dimensional connected complete Riemannian manifold with the Levi-Civita connection ∇ . 
Further, let E be a Riemannian fiber bundle of rank r over (M, g), i.e., a fiber bundle equipped with a scalar product and a 
compatible connection (see ([2], p. 378)). At the same time, the scalar product and compatible connection of E (as well as 
of M) will be denoted by the same symbols g and ∇ . Let P(TM) denote the principal O(n)-bundle of orthonormal frames 
on (M, g) or, in particular, SO(n)-bundle if (M, g) has an orientation. In this case, we can consider E → M as a Riemann-
ian vector bundle, associated with P(TM) via an orthogonal representation � ∶ O(n) → O(E).
Moreover, we can define the L2-global scalar product on C∞-sections of E by the formula ⟨�, �⟩ = ∫

M
g(�, �)d�g for 

�, � ∈ C∞(E) and we introduce the associated Hilbert space L2(E) . Then, using the L2-structures on C∞(E) , we can define 
the Bochner (or connection) Laplacian by the formula Δ̄ = ∇∗∇ where ∇∗ is the self-adjoint operator with respect to the 
L2-global scalar product of the compatible connection ∇ : C∞(E) → C∞(T∗M ⊗ E) (see ([14], p. 378) and ([2], p. 378)). 
Due to the above definitions and notations, we can define the natural Laplacian ΔE : C∞(E) → C∞(E) which satisfies the 
Weitzenböck decomposition formula (see [9])

where t ∈ ℝ is a suitable constant and ℜ is the Weitzenböck curvature operator that defines a symmetric endomorphism 
ℜx : Ex → Ex for all x ∈ M (see also ([2], p. 378-379)). The Weitzenböck curvature operator ℜ is defined as follows (see 
[9]): the Riemann curvature tensor R of (M, g) at each its point lies in Sym2(�o(n)) for the Lie algebra �o(n) ≅ Λ2

ℝ
n . 

Applying the representation � ∶ �o(n) → EndE , we get the Weitzenböck curvature operator ℜ in Sym2(EndE) and then 
composition of endomorphisms gives a self-adjoint endomorphism of E.
Various geometrical problems give rise to different values of t ∈ ℝ , (see [9]). Namely, the Laplacian ΔE is a second-order 
elliptic linear differential operator on C∞(E) which is symmetric with respect to the L2-global scalar product. On a closed 
(i.e., compact without boundary) manifold (M, g), for fixed t ∈ ℝ , we have the orthogonal (with respect to the L2-global 
scalar product) decomposition formula (see ([2], p. 464))

(1)ΔE = Δ̄ + t ℜ,

(2)C∞(E) = kerΔE ⊕ ImΔE,
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where the first component kerΔE is the kernel of the Laplacian ΔE . Since ΔE is elliptic, the dimension of the kernel of 
ΔE is finite. In accordance with ([15], p. 104), its smooth sections will be called ΔE -harmonic. Moreover, we define the 
vector space of ΔE-harmonic C∞-sections of E → M by kerΔE = {� ∈ C∞(E)∶ ΔE � = 0} for an arbitrary t ≠ 0 . On the 
other hand, for t = 0 any smooth ΔE-harmonic section satisfies the equation ∇� = 0.
If (M, g) is a closed manifold, then multiplying the Weitzenböck formula (1) by � and integrating over M, gives (see also 
([2], p. 389))

where � ∈ C∞(E) . In this case, if t > 0 and ℜ is non-negative endomorphism at each point of M, then the right side of 
inequality (3) is non-negative. Hence ΔE� = 0 implies both ∇� = 0 and ℜ(�) = 0 . Furthermore, if ℜ is strictly positive 
at some point of M, then clearly � = 0 . Therefore, we can formulate the following theorem.

Theorem 2.1 Let ΔE be the Laplacian on C∞-sections of a Riemannian fiber bundle E → M of rank r over a closed Rie-
mannian manifold (M, g), satisfying (1). 

 (i) If t > 0 and the Weitzenböck curvature operator ℜ satisfies ℜ ≥ 0 , then ∇� = 0 for an arbitrary � ∈ kerΔE and 
dim

ℝ
kerΔE ≤ r . In particular, if ℜ ≥ 0 , and there exists an x in M such that ℜ > 0 , then dim

ℝ
kerΔE = 0.

 (ii) On the other hand, if t < 0 and the Weitzenböck curvature operator ℜ satisfies ℜ ≤ 0 , then ∇� = 0 for an arbi-
trary � ∈ kerΔE and dim

ℝ
kerΔL ≤ r . In particular, if ℜ ≤ 0 , and there exists an x in M such that ℜ < 0 , then 

dim
ℝ
kerΔE = 0.

The Weitzenböck curvature operator ℜ has the following representation (see ([5], p. 1214), [9])

where {Ea} is an orthonormal basis of the Lie algebra �o(n) ≅ Λ2
ℝ

n , such that the curvature operator of the first kind 
R̂ ∶ Λ2M → Λ2M of (M, g) is identified by R̂ =

∑
a,b RabEa ⊗ Eb (see ([14], p. 345); [5, 9]). As observed by Hitchin (see 

[9]), the curvature operator of the first kind R̂ ∶ Λ2M → Λ2M of (M, g) is positive semidefinite (resp. positive) if and 
only if the Weitzenböck curvature operator ℜ is positive semidefinite (resp. positive) for all irreducible representations 
� ∶ SO(n) → O(E) . Or in other words, if � ∶ �o(n) → EndE has no trivial factors and R̂ is positive definite, then ℜ is also 
positive definite. In particular, if R̂ is positive semidefinite, then so is ℜ (see [5, 9]). Due to the above definitions and 
notations, we can formulate a corollary.

Corollary 2.1 Let ΔE be the Laplacian on C∞-sections of a Riemannian fiber bundle E → M of rank r over a closed 
Riemannian manifold (M, g), satisfying (1) for t > 0 . If the representation � ∶ �o(n) → EndE has no trivial factors and 
the curvature operator of the first kind R̂ ∶ Λ2M → Λ2M of (M, g) is positive semidefinite, then ∇� = 0 for an arbitrary 
� ∈ kerΔE and dim

ℝ
kerΔE ≤ r . In particular, if R̂ is positive definite, dim

ℝ
kerΔE = 0.

The above arguments belong to the classical Bochner technique (see, for example, ([14], pp. 333-364)). In what follows, we 
will assume that (M, g) is a complete noncompact Riemannian manifold. First of all, we define the vector space of Lq(E)-sec-
tions of E → M by the condition Lq(kerΔE) = {� ∈ kerΔE : ‖�‖ ∈ Lq(M)} , where ‖�‖2 = g(�,�).
Let � ∈ kerΔE , then from the second Kato inequality (see ([2], p. 380))

where Δ = div◦grad is the Beltrami Laplacian on function and Weitzenböck decomposition (1), we deduce

(3)
�M

g(ΔE𝜑,𝜑)d𝜈g = �M

{g(Δ̄𝜑,𝜑) + t g(ℜ(𝜑),𝜑)}d𝜈g

= �M

‖∇𝜑‖2d𝜈g + t�M

g(ℜ(𝜑),𝜑)}d𝜈g ≥ t�M

g(ℜ(𝜑),𝜑)}d𝜈g,

ℜ = −
∑

a,b

Rabd�(Ea)d�(Eb),

‖𝜑‖ ⋅ Δ‖𝜑‖ ≥ −g(Δ̄𝜑,𝜑),
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In this case, if t > 0 and ℜx is a non-negative symmetric endomorphism at each point x of M, then the right side of the 
above inequality is non-negative. In this case, by the S.-T. Yau theorem in the above inequality, we conclude that for 
any positive number q > 1 either ∫

M
‖�‖qd�g = ∞ or ‖�‖ = C for some constant C ≥ 0 (see [20, 21]). In particular, if 

‖�‖ ∈ Lq(M) for some the positive number q > 1 and the volume of (M, g) is infinite, then the constant C is zero. On the 
other hand, for the case when ‖�‖ = C , t > 0 and ℜ is non-negative, we conclude from (4) that ∇� = 0 . Then, the fol-
lowing statement holds.

Theorem 2.2 Let (M, g) be a complete noncompact Riemannian manifold and ΔE be the natural Laplacian on C∞-sections 
of a Riemannian fiber bundle E → M over (M, g), satisfying (1). 

 (i) If t > 0 and ℜx is a non-negative symmetric endomorphism of Ex at each point x of M, then ∇� = 0 for an arbitrary 
� ∈ Lq(kerΔE) and for any positive number q > 1 . In particular, if (M, g) has infinite volume, then Lq(kerΔE) is 
trivial for any number q > 1.

 (ii) On the other hand, if t < 0 and ℜx is a non-negative symmetric endomorphism of Ex at each point x of M, then 
∇� = 0 for an arbitrary � ∈ Lq(kerΔE) and for any positive number q > 1 . In particular, if (M, g) has infinite 
volume, then Lq(kerΔE) is trivial for any number q > 1.

2.2. Let (M, g) be an n-dimensional (n ≥ 2) closed Riemannian manifold. An eigensection of the natural Laplacian ΔE is 
� ∈ C∞(E) satisfying the condition ΔL�x = ��x for some � ∈ ℝ at each point x ∈ M , where the constant � is called the 
eigenvalue of ΔE corresponding to � . Since ΔE is an elliptic operator, we can conclude that on a closed manifold (M, g) the 
space E(�) of ΔE eigensection of associated with the eigenvalue � has a finite dimension. An estimate for the dimension 
of this space can be found in ([2], p. 389). Moreover, the set of all eigenvalues of the Laplacian ΔE is discrete and forms 
a nondecreasing sequence of the eigenvalues {�a}a≥1 counted with multiplicities (see [2]).
We define the real numbers ℜmin = inf{ℜx∶ x ∈ M} and ℜmax = sup{ℜx∶  x ∈ M} , then ℜmin ≤ ℜx ≤ ℜmax for any x ∈ M . 
Next, let t be a fixed positive number, then integrating the Weitzenböck formula (1), we obtain (see also ([2], p. 394))

Then, from the above inequality, we deduce � ≥ tℜmin for any � ∈ E(�) . As a result, we can formulate the following

Theorem 2.3 Let ΔL : C∞(E) → C∞(E) be the natural Laplacian on a closed Riemannian manifold (M, g) satisfying 
the Weitzenbock decomposition formula ΔL = Δ̄ + tℜ for t ∈ ℝ . Then, for all a ≥ 1 the eigenvalues �a of ΔL satisfy the 
inequalities 

 (i) �a ≥ tℜmin for a fixed positive number t;
 (ii) �a ≥ tℜmax for a fixed negative number t.

2.3. Let t > 0 and E = ⊗pT∗M , then the natural Laplacian on C∞-sections of E satisfying (1) is the Lichnerowicz Lapla-
cian defined in ([14], p. 344). In special cases when t = 1 the Lichnerowicz-type Laplacian is the ordinary Lichnerowicz 
Laplacian defined in ([11], p. 315) and ([4], p. 54) by the Weitzenböck decomposition formula ΔL = Δ̄ +ℜ , where the 
Weitzenböck curvature operator ℜ depends linearly on the Riemann curvature tensor R and the Ricci tensor Ric of (M, g).
Remark In particular, if E = C∞(ΛqM) for an arbitrary 1 ≤ q ≤ n − 1 , where ΛqM is the vector bundle of differential 
q-forms on M, then the Lichnerowicz Laplacian ΔL is the well-studied Hodge Laplacian ΔH acting on C∞-sections of 
ΛqM on (M, g) (see ([14], p. 237)). It admits decomposition (1) with t = 1 , where ℜ is an algebraic operator, which is the 
restriction of the Weitzenböck curvature operator to differential forms. Further in this paper, we will consider the Lichne-
rowicz Laplacian ΔL acting on C∞-sections of the bundle SqM of covariant symmetric q-tensors (see ([3], pp. 387-388)). 

(4)‖�‖ ⋅ Δ‖�‖ ≥ t g(ℜ(�),�).

�M

g(ΔL�,�)d�g ≥ tℜmin�M

‖�‖2d�g,
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The theory of such Lichnerovich Laplacians has hardly been studied for the case q > 2 . An exception is the studies of 
Boucetta (see, for example, [6]).

On the kernel and estimate for the eigenvalues of the Lichnerowicz Laplacian acting 
on symmetric tensors

3.1. In this section, we consider the Lichnerowicz Laplacian ΔL : C∞(SqM)→ C∞(SqM) . In this case, we have the 
Weitzenböck decomposition formula (1) for a suitable constant t > 0 and the curvature operator ℜ given by the for-
mula (see ([4], p. 54); ([11], p. 315))

for any i, j, k, l,⋯ ∈ {1, 2,… , n} and for local components �i1…iq
 , Rik and Rikjl of � ∈ C∞(SqM) the Ricci tensor Ric and 

the curvature tensor R, respectively. These components are defined by the formulas (see ([10], pp. 203; 249))

where gij = g(ei, ej) for any frame {e1,… , en} of TxM at an arbitrary point x. In addition, we have that Rlkij + Rijkl = 0 , 
Rkl = Ri

kil
 , Rk

j
= gkiRij , where (gij) = (gij)−1.

Remark Some writers denote our Rijkl = gimR
m
jkl

 by Rjkli = gimRjkl
m for Rijk

mem = R(ei, ej)ek.
In this case, the Weitzenböck curvature operator ℜ : ⊗qT∗M → ⊗qT∗M satisfies the following identities (see ([11], p. 
315)):

for any �,�� ∈ C∞(SqM).
By direct calculations from the Weitzenböck decomposition formula (1), we obtain the following formula:

where Q(�) = g(ℜ(�),�) is a quadratic form Q: SqM ⊗ SqM → ℝ such that (see also [16])

where �i1,…,iq = �j1,…,jq
gi1j1 … giqjq are local contravariant components of an arbitrary � ∈ SqM.

On the other hand, we recall that the point-wise symmetric curvature operator 
◦

R : S2
0
M → S2

0
M defined on traceless 

symmetric two-tensor fields by equations

for the local contravariant components �kl = �ijg
ikgjl of an arbitrary � ∈ S2

0
M is called as the curvature operator of the 

second kind (see [7]).
Remark In the monograph ([4], p. 52), the curvature operator of the second kind was defined by the formula 
◦

R (�)ij = Rikjl�
kl since the local components Rjkli of the Riemann curvature tensor were defined there by the identities 

Rijkl = g(R(ei, ej)ek, el).

ℜ(�)i1…iq
=

q∑

a=1

gjkRiaj
�i1…ia−1kia+1…iq

−

q∑

a,b=1,a≠b
gjkglmRiajibl

�i1…ia−1kia+1…ib−1mib+1…iq

�i1…iq
= �(ei1 ,… , eiq ), Rl

kji
el = R(ei, ej)ek, Rijkl = gimR

m
jkl
,

g(ℜ(�),��) = g(�,ℜ(��)), tracegℜ(�) = ℜ(traceg(�))

(5)
1

2
Δ‖�‖2 = −g(ΔL�,�) + ‖∇�‖2 + t Q(�),

(6)
Q(�) = ℜ(�)i1,…,iq

�i1,…,iq

= q ⋅ Rij�
ikk3…kq�

j

kk3…kq
− q(q − 1)Rijkl�

ikk3…kq�jl
kk3…kq

,

(7)
◦

R (�)ij = Riklj�
kl
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We say that 
◦

R≥ 0 (resp., 
◦

R> 0 ) if the eigenvalues of 
◦

R as a bilinear form on S2
0
M are non-negative (resp., strictly 

positive). At an arbitrary point x ∈ M , we choose orthogonal unit vectors X, Y ∈ TxM at an arbitrary point x ∈ M and 
define the symmetric 2-tensor field 𝜃 = X ⊗ Y + Y ⊗ X , then by direct calculation, we obtain

Therefore, if the operator 
◦

R is nonnegative (resp. strictly positive) defined on any section of the bundle S2
0
M , then the 

sectional curvature of (M, g) is everywhere non-negative (resp. positive) (see also ([7], p. 196)). In addition, if X ∈ TxM 
is a unit vector and we complete it to an orthonormal basis {X, e2,… , en} for TxM , then

Therefore, the Ricci curvature of (M, g) is everywhere non-negative (resp. positive) if the operator 
◦

R is non-negative (resp. 
strictly positive), defined on any section of the bundle S2

0
M.

Remark We recall here that closed n-dimensional Riemannian manifolds, whose curvature operator of the second 
kind acting on symmetric traceless tensors is everywhere positive definite, are diffeomorphic to a spherical space 
form �∕Γ (see [7]).
Next, if we suppose that 

◦

R≥ 0 (resp., 
◦

R> 0 ), then Rijkl�
ik�jl ≤ 0 (resp., Rijkl𝜑

ik𝜑jl < 0 ) for an arbitrary � ∈ S2
0
M with 

local components �ij and, therefore, Rijkl�
ikk3…kq�

jl

k3…kq
≤ 0 (resp., Rijkl𝜑

ikk3…kq𝜑
jl

k3…kq
< 0 ) for an arbitrary � ∈ S

q

0
M 

with local components �k1…kq
 for q ≥ 2 (see also [15]). Furthermore, Rij�

ik2…kq�
j

k2…kq
≥ 0 (resp., Rij𝜑

ik2…kq𝜑
j

k2…kq
> 0 ) 

for an arbitrary � ∈ S
q

0
M with local components �k1…kq

 for q ≥ 2.
As a result, from the above, we conclude that if (M, g) is a Riemannian manifold with positive semidefinite (resp. 
strictly positive) curvature operator of the second kind, then Q(�) = g(ℜ(�),�) ≥ 0 (resp. Q(𝜑) = g(ℜ(𝜑),𝜑) > 0).
Let (M, g) be a closed Riemannian manifold and ΔL� = 0 for some � ∈ C∞(S

q

0
M) , then from (5), we deduce the fol-

lowing integral formulas

It is obvious that 
◦

R is positive-semidefinite on (M, g) and 
◦

R> 0 at some point at (M, g), then there are no non-zero ΔL

-harmonic traceless symmetric q-tensor fields (q ≥ 2).

Theorem 3.1 Let (M, g) be a closed Riemannian manifold. If the curvature operator of the second kind 
◦

R is positive-
semidefinite on (M, g), then dim

ℝ
ΔL ≤ (

n+q−1

q

)
 . Moreover, if 

◦

R> 0 at every point of (M, g), then dim
ℝ
kerΔL = 0.

Remark A form � ∈ C∞(ΛqM) is harmonic if it is in the kernel of the Hodge Laplacian: ΔH� = 0 . The main motiva-
tion for considering this operator is that the dimension of the vector space of harmonic q-forms, denoted ℌq(M,ℝ) , 
is a topological invariant, and in fact equals to the q-th de Rham Betti number bq(M,ℝ) of M. Recall that the curvature 
operator of the first kind is the self-adjoint endomorphism R̂ of Λ2M , defined by: g(R̂(X ∧ Y), Z ∧W) = R(X, Y , Z,W) , 
where R is the Riemann tensor and X, Y, Z, W are tangent vectors (see ([14], p. 116)). Then, if R̂ , is positive-semidef-
inite on (M, g) then dim

ℝ
ΔH ≤ (

n

q

)
 . Moreover, if R̂ > 0 at some point at (M, g), then there are no non-zero harmonic 

q-forms (1 ≤ q ≤ n − 1) . In this case dim
ℝ
kerΔH = bq(M,ℝ) = 0 (see ([14], p. 351)).

On the other hand, it is obvious that (4) is valid for any q ≥ 2 . In this case, from (4), we obtain the inequality

for any � ∈ C∞(S
q

0
M) ∩ kerΔL . If the curvature operator of the second kind of (M, g) is non-negative at an arbitrary point 

x ∈ M , then Q(�) = g(ℜ(�),�) ≥ 0 . At the same time, if a Riemannian manifold has a non-negative curvature operator 

(8)
g(

◦

R (�), �) = Riklj(X
iYj + XjYi)(XkYl + XlYk)

= RikljX
iYjXlYk + RikljX

jYiXkYl

= 2 sec(X, Y).

(9)Ric(X,X) =

n∑

i=2

sec(X, ei).

0 = �M

(‖∇�‖2 + t Q(�))d�g ≥ t�M

Q(�)d�g.

(10)‖�‖Δ‖�‖ ≥ t Q(�),
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of the second kind, then it has non-negative sectional curvature (see, our formula (8)). On the other hand, if a complete 
non-compact Riemannian manifold has non-negative sectional curvature, then it must have infinite volume (see [20]). 
Therefore, we can reformulate our Theorem 2.2 in the following form.

Theorem 3.2 Let (M, g) be a connected noncompact and complete Riemannian manifold with non-negative curvature 
operator of the second kind of (M, g). Then, the vector space Lq(kerΔL) is trivial for any 1 < p < ∞.

Remark This assertion is an analog of the vanishing theorem for q-forms of the space L2(kerΔH) on complete Riemann-
ian manifolds (see [1]).
Let (M, g) be a connected closed Riemannian manifold and � be a ΔL - harmonic traceless symmetric q-tensor field (q ≥ 2) 
defined on (M, g), then proceeding from the formula (5) and using the strong maximum principle (see ([14], p. 75)), we 
conclude that the following corollary holds.

Corollary 3.1 Let (M, g) be a connected closed Riemannian manifold and � be a ΔL-harmonic traceless symmetric q-tensor 
field (q ≥ 2) defined on (M, g). If the curvature operator of the second kind of (M, g) is positive semi-define at every points, 
then ‖�‖2 is a constant function and � is invariant under parallel translation in (M, g).

3.2. We denote by Sq
0
M the subbundle of the bundle SqM on a Riemannian manifold defined by the condition 

traceg� =
∑n

i=1
�(ei, ej,X3,… ,Xq) = 0 for � ∈ S

q

0
M and orthonormal basis {e1 … , en} of TxM at an arbitrary point x ∈ M 

(see the details of the theory in our monograph [12]). The Laplacian ΔL maps C∞(SqM) into itself. This property is a 
corollary of (3) for any � ∈ C∞(SqM) . In particular, the following equation holds

for an arbitrary � ∈ C∞(S
q

0
M) and q ≥ 2 . Then, we can conclude that ΔL : � ∈ C∞(S

q

0
M) → � ∈ C∞(S

q

0
M) since 

traceg� = 0 . Furthermore, we also conclude that traceg� ∈ kerΔL for an arbitrary � ∈ C∞(SqM) such that � ∈ kerΔL.

Lemma 3.1 Let ΔL : C∞(SqM) → C∞(SqM) be the Lichnerowicz Laplacian acting on C∞-sections of the bundle of covari-
ant symmetric p-tensor fields SqM (q ≥ 2) on a Riemannian manifold (M, g). Then, 

 (i) traceg� ∈ kerΔL for an arbitrary � ∈ C∞(SqM) such that � ∈ kerΔL;
 (ii) ΔL maps Sq

0
M into itself for the subbundle Sq

0
M of traceless covariant symmetric p-tensor fields on (M, g).

If � ∈ C∞(S
q

0
M) and the sectional curvature of (M, g) is nonnegative at an arbitrary point x ∈ M  , then 

Q(�) = g(ℜ(�),�) ≥ 0 (see [5]). In this case, for any � ∈ C∞(S
q

0
M) ∩ kerΔL , we can reformulate our Theorem 2.2 in 

the following form.

Theorem 3.3 Let (M, g) be a connected noncompact and complete Riemannian manifold with non-negative sectional 
curvature. Then, there is no non-zero ΔL-harmonic traceless symmetric q-tensor field (q ≥ 2) such that it lies in Lp for 
some 1 < p < ∞.

The following corollary is obvious (see also the proof of Theorem 2.2).

Corollary 3.2 Let (M, g) be a connected closed Riemannian manifold and � be a ΔL-harmonic traceless symmetric q-tensor 
field (q ≥ 2) defined on (M, g). If the section curvature of (M, g) is positive semi-define at every points, then ‖�‖2 is a 
constant function and � is invariant under parallel translation in (M, g).

In what follows, we will assume that (M, g) is a closed Riemannian manifold. In this case, the Lichnerowicz Laplacian ΔL : 
C∞(SqM) → C∞(SqM) has a discrete spectrum Spec(q)ΔL on (M, g) since it is an elliptic formally self-adjoint second-order 

(11)traceg(ΔL�) = ΔL(traceg�) = 0
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differential operator. If �(q)a ∈ Spec(q)ΔL is an eigenvalue of ΔL corresponding to an eigentensor � ∈ C∞(SqM) for the case 
q ≥ 2 , then from (5), we obtain the integral inequality

Let ΔL : C∞(S
q

0
M) → C∞(S

q

0
M) be the Lichnerowicz Laplacian acting on the bundle Sq

0
M of traceless symmetric q-tensors 

over (M, g). Then, if we suppose that the curvature operator of the second kind 
◦

R : S2
0
M → S2

0
M of (M, g) is positive sem-

idefinite (resp. strictly positive), then from the above formula, we conclude that �(q)a ≥ 0 (resp. 𝜆(q)a > 0 ). Namely, assume 
that the curvature operator of the second kind 

◦

R : S2
0
M → S2

0
M of (M, g) satisfies the inequality g(

◦

R (�),�) ≥ K ‖�‖2 for 
certain positive number K and for any symmetric 2-tensor field � . Taking two mutually orthogonal unite vector fields X 
and Y and putting 𝜑 = X ⊗ Y + Y ⊗ X we find, from (8),

Then, from (9) and (12), we obtain Ric(X,X) ≥ (n − 1)K > 0 . Thus,

which is positive for n ≥ 2 and q ≥ 1 . In this case, from Theorem 2.3, we can conclude that the following corollary holds.

Corollary 3.3 Let (M, g) be an n-dimensional closed Riemannian manifold with the curvature operator of the second 
kind 

◦

R : S2
0
M → S2

0
M satisfying the inequalities 

◦

R≥ 2K > 0 for certain positive number K. At the same time, let ΔL : 
C∞(S

q

0
M) → C∞(S

q

0
M) be the Lichnerowicz Laplacian that satisfies the Weitzenböck decomposition ΔL = Δ̄ + tℜ for a 

fixed positive number t. Then, for an arbitrary a ≥ 1 the eigenvalues �(q)a  of ΔL satisfy the inequality �(q)a ≥ q(n + q − 2) t K.

Remark Having discussed above the kernel of the Hodge Laplacian ΔH , we now turn our attention to its first positive 
eigenvalue, which we will denote by the symbol: �(q)

1
 . Then, if (M, g) is an n-dimensional closed manifold with the curva-

ture operator of the first kind R̂ satisfying the inequalities R̂ ≥ K > 0 for certain positive number K, then �(q)

1
≥ C(n, q)K , 

where C(n, q) = min{q(n − q + 1);(q + 1)(n − q)} for all q = 1,… , n − 1 (see [8]).
In particular, let (M, g) is a manifold with constant sectional curvature K > 0 (see ([10], p. 203)), then its Riemann and 
Ricci curvature tensors are given by the identities Rijkl = K(gikgjl − gilgjk) and Rij = K(n − 1)gij , respectively. Then, using 
these equalities and the equality (7) for any symmetric form � ∈ S

q

0
M , we have

where equality is possible in the case � = 0 . In this case, we deduce from (5) the integral inequality

Then, from the previous inequality, we conclude that �(q)a ≥ q(n + q − 2) tK for the first non-zero eigenvalues �(q)
1

 of the 
Lichnerowicz Laplacian ΔL : C∞(S

q

0
M) → C∞(S

q

0
M) acting on the bundle Sq

0
M of traceless symmetric q-tensors on a Rie-

mannian manifold with constant sectional curvature K > 0 . Thus, we have proved the following theorem.

Theorem 3.4 Let (M, g) be an n-dimensional closed Riemannian manifold with constant sectional curvature K > 0 and 
let ΔL : C∞(S

q

0
M) → C∞(S

q

0
M) be the Lichnerowicz Laplacian acting on the bundle Sq

0
M of traceless symmetric q-tensors 

over (M, g). Then, the first non-zero eigenvalue �(q)
1

 of ΔL satisfies the inequality �(q)
1

≥ q(n + q − 2) tK.

�(q)
a �M

‖�‖2d�g ≥ t�M

Q(�)d�g.

(12)sec(X, Y) ≥ K > 0.

Q(�) = ℜ(�)i1…iq
�i1…iq

= qRij�
ik2…kq�

j

k2…kq
− q(q − 1)Rijkl�

ikk3…kq�
jl

k3…kq
≥ q(n − 1)K ‖�‖2 + q(q − 1)K ‖�‖2

= q(n + q − 2)K ‖�‖2

g(ℜ(�),�) = qRij�
ik2…kq�

j

k2…kq
− q(q − 1)Rijkl�

ikk2…kq�
jl

k2…kq

= (n − 1)K‖�‖2 + q(q − 1)K‖�‖2

= (n + q − 2)K‖�‖2 ≥ 0,

(−�(q)
a

+ q(n + q − 2)tK)�M

‖�‖2d�g ≤ 0.
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