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Abstract
The extremal structure of zero-neighbourhoods of a topological module is analyzed reaching unexpected 
conclusions when the module topology is not Hausdorff. These results motivate us to introduce the notion 
of metric modules, which are modules endowed with a translation-invariant metric, turning them into an 
(additive) topological group. We study the central and diametral points of additively symmetric subsets 
and find examples of convex sets which are not symmetric translates (translates of addivitely symmetric 
subsets). As a consequence of all of these, it seems natural to transport the well-known Bishop-Phelps 
property from the category of real topological vector spaces to general topological modules over topologi-
cal rings. Then we stick to particular topological rings, the unital C∗-algebras, showing that the subset of 
positive elements lying below the unity is an effect algebra. We also prove that every continuous linear 
operator on a Hausdorff locally convex topological vector space that commutes with all continuous linear 
projections of one-dimensional range is a multiple of the identity. Finally, we discuss how to transport the 
previous result to C∗-algebras.

Keywords Topological module · Topological ring · C∗-algebra · Effect algebra

Introduction

Classical geometrical properties of convex sets in a normed space [9] have been studied in more particular contexts such 
as normed algebras [33] and more general contexts such as topological vector spaces [31, 14, 22]. Recently, a strong trend 
has been consolidating which consists in transporting the classical notions of Geometry of Banach Spaces [8, 4, 3, 25, 26, 
20] to the category of topological modules over a topological ring [19, 16, 17, 18, 43, 21]. This manuscript contributes 
to that trend by providing new and unexpected results dealing with the extremal structure of zero-neighbourhoods and 
additively symmetric subsets of topological modules. Applications to C∗-algebras are also provided.
If X is a bounded pseudometric space, then the diameter of X is defined as d(X) ∶= sup d(X × X) = sup{d(x, y) ∶ x, y ∈ X}. 
For every x ∈ X  , the x-radius of X is defined as rx(X) ∶= sup{d(x, y) ∶ y ∈ X} . The radius of X is defined as 
r(X) ∶= inf{rx(X) ∶ x ∈ X}. It is not hard to check that d(X) ≤ 2r(X) . Indeed, for every 𝜀 > 0 there exists x0 ∈ X such 
that r(X) > rx0 (X) −

𝜀

2
 , thus, for every x, y ∈ X , d(x, y) ≤ d(x, x0) + d(x0, y) ≤ rx0 (X) + rx0 (X) < 2r(X) + 𝜀 , meaning that 

d(X) ≤ 2r(X) . We refer the reader to [23] for a wider perspective on such topics.
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The center of X [7] is defined as Xc ∶= {x ∈ X ∶ rx(X) = r(X)}. The points of Xc will be called central points. The 
diametrality of X is defined as Xd ∶= {x ∈ X ∶ rx(X) = d(X)}. The points of Xd will be called diametral points. And X 
is said to be diametral provided that Xd = X . Notice that

that is, Xc is admissible if it is nonempty. Also, notice that if Xd ≠ X and Xc ≠ ∅ , then d(Xc) < d(X) . These notions have 
strong applications on Fixed-Point Metric Theory [30].
All rings considered in this manuscript are assumed to be associative and unitary, and all modules over a ring are 
considered left and unital by default (notice that the dual of a left module is a right module). Let R be a ring and M 
an R-module. A subset B of M is said to be (additively) symmetric provided that B = −B . A translation-invariant 
pseudometric on M is a pseudometric d on M satisfying that d(m + p, n + p) = d(m, n) for every m, n, p ∈ M . Such a 
module will be called a pseudometric module. Observe that a translation-invariant pseudometric turns a module into 
an additive topological group. The above metric notions (center and diametrality) are invariant under translations in a 
pseudometric module M. Indeed, if A ⊆ M is bounded, then ra(A) = rm+a(m + A) for all m ∈ M and all a ∈ A . Therefore, 
(m + A)c = m + Ac and (m + A)d = m + Ad for all m ∈ M.
Given a topological space X and an element x ∈ X , the filter of all neighbourhoods of x is denoted by Nx(X) , or simply 
by Nx if there is no confusion with X. The intersection of all neighbourhoods of x, denoted by

plays an important role when it comes to separation properties. Indeed, if X is a regular topological space, then the fol-
lowing conditions are equivalent for all x, y ∈ X : 

1. y ∈
⋂

V∈Nx(X)
V .

2. x ∈
⋂

V∈Ny(X)
V .

3. y ∈ cl({x}).
4. x ∈ cl({y}).

As a consequence, X(x) = cl({x}) , hence X(x) is contained in any closed subset of X that contains x.
Let R be a ring. The following characterization of ring topology [49, 50, 10] will be very much employed. If � is a 
ring topology on R and B is a base of neighbourhoods of 0, then the following is verified:

• For every V ∈ B , there exists U ∈ B with U + U ⊆ V .

• For every V ∈ B , there exists U ∈ B with −U ⊆ V .

• For every V ∈ B , there exists U ∈ B with UU ⊆ V .

• For every V ∈ B and every r ∈ R , there exists U ∈ B with rU ∪ Ur ⊆ V .

Conversely, if B is a filter base of P(R) verifying all four properties above, then there exists a unique ring topology 
on R such that B is a base of 0-neighbourhoods. This topology is given by

Notice that topological rings are uniform spaces, therefore, they are regular topological spaces, but they are not necessar-
ily Hausdorff. In fact, it is not hard to show that a topological ring R is Hausdorff if and only if 

⋂
V∈N0(R)

V = {0} . Thus, 
throughout this manuscript, topological rings will not be assumed Hausdorff by default. Topological rings satisfying 
that zero belongs to the closure of the invertibles will be called practical rings [19]. Next, let M be an R-module for R a 
topological ring. According to [49, 50], if � is a module topology on M and B is a base of neighbourhoods of 0 in M, then 
the following is verified:

Xc =
⋂

y∈X

�X(y, r(X)) =
⋂

y∈X

(
⋂

n∈ℕ

�X

(
y, r(X) +

1

n

))
,

X(x) ∶=
⋂

V∈Nx(X)

V = {y ∈ X ∶ x ∈ cl({y})},

𝜏 ∶= {A ⊆ R ∶ ∀a ∈ A ∃U ∈ B a + U ⊆ A} ∪ {∅}.
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• For every V ∈ B , there exists U ∈ B with U + U ⊆ V .

• For every V ∈ B , there exists U ∈ B with −U ⊆ V .

• For every V ∈ B , there exist U ∈ B and W ∈ N0(R) with WU ⊆ V .

• For every V ∈ B and every r ∈ R , there exists U ∈ B with rU ⊆ V .

• For every V ∈ B and every m ∈ M , there exists W ∈ N0(R) with Wm ⊆ V .

Conversely, if B is a filter base of P(M) verifying all five properties above, then there exists a unique module topology 
on M such that B is a base of zero-neighbourhoods. This topology is given by

Topological modules are also uniform spaces, therefore, they are regular topological spaces, but they are not necessarily 
Hausdorff. In fact, a topological module M is Hausdorff if and only if 

⋂
V∈N0(M) V = {0} . Thus, throughout this manuscript, 

topological modules will not be assumed Hausdorff by default. The notion of boundedness in this setting will be crucial 
for our results in this manuscript. A subset B of a topological module M over a topological ring R is said to be bounded 
if for every neighbourhood V ⊆ M of 0 there exists an invertible u ∈ U(R) verifying that B ⊆ uV  . The topological dual of 
a topological module M over a topological ring R is by definition the module of all continuous R-linear maps from M to 
R and is usually denoted by M∗ . It is worth mentioning that, since M is assumed to be a left R-module, then M∗ acquires 
structure of right R-module. From now on, if there is no confusion with the underlying R, we will simply say “linear” 
instead of “R-linear”. The reader is referred to [49, 50, 2, 10, 15] for a wider perspective on topological rings and modules.

Results

The intersection of all neighbourhoods of zero

If M is a topological module over a topological ring R and N0(M) denotes the filter of all neighbourhoods of 0 in M, then 
the intersection of all 0-neighbourhoods of M is commonly denoted as OM , that is, OM ∶= M(0) ∶=

⋂
V∈N0(M) V  . Observe 

that OM is a bounded and closed submodule of M whose inherited topology is the trivial topology [19, Theorem 2]. It is 
well known that M is Hausdorff if and only if OM = {0} [49, 50, 2, 10].

Theorem 1 If M is a topological module over a topological ring R, then OM is contained in every closed submodule N of M.

Proof Let N be any closed submodule of M. Since {0} ⊆ N , we have that cl({0}) ⊆ N . Finally, any topological group 
is regular, in particular, so is any topological module, therefore, OM = cl({0}) ⊆ N by bearing in mind the observation 
provided in the Introudction about regular topological spaces.   ◻

Theorem 1 motivates the definition of “topological kernel”.

Definition 1 (Topological kernel) Let M, N be topological modules over a topological ring R. The topological kernel of 
a linear operator T ∶ M → N is defined as ker�(T) ∶= T−1

�
ON

�
= {m ∈ M ∶ T(m) ∈

⋂
V∈N0(N)

V}.

Observe that if M, N are seminormed modules over a seminormed ring R, then ON =
⋂

V∈N0(N)
V = {n ∈ N ∶ ‖n‖ = 0} 

in view of [19, Theorem 2], hence ker�(T) = {m ∈ M ∶ ‖T(m)‖ = 0}.

Theorem 2 Let M, N be topological modules over a topological ring R. Consider a linear operator T ∶ M → N . Then 
ker�(T) is a submodule of M. Even more, if T is continuous, then ker�(T) is closed and contains OM.

Proof In virtue of [19, Theorem 2], ON is a closed submodule of N, so ker�(T) ∶= T−1
(
ON

)
 is a submodule of M. Suppose that 

T is continuous. Then ker�(T) is closed in M because ON is a closed submodule of N. Thus, according to Theorem 1, ker�(T) 

𝜏 ∶= {A ⊆ M ∶ ∀a ∈ A ∃U ∈ B a + U ⊆ A} ∪ {∅}.
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contains OM . However, we will provide a different proof of the fact that ker�(T) contains OM without having to rely on properties 
of regular topological spaces. Indeed, the continuity of T allows that T−1 preserves neighbourhoods of 0, hence

Therefore,

  ◻

Corollary 1 Let M, N be topological modules over a topological ring R. If T ∶ M → N is linear and continuous and N is 
Hausdorff, then OM ⊆ ker(T).

Proof Since N is Hausdorff, ON = {0} , hence ker�(T) = ker(T) . By Theorem 2, OM ⊆ ker�(T) = ker(T).   ◻

According to [19, Theorem 2], the inherited topology of OM is the trivial topology. Therefore, if OM is linearly comple-
mented in M, that is, if there exists a linear projection P ∶ M → M whose range is OM , then P is continuous. Our final 
result in this subsection is aimed at unveiling more properties of this projection map by proving that I − P is a closed map 
over its range in the sense that it maps closed subsets of M onto closed subsets of ker(P).

Theorem 3 Let M be a topological module over a topological ring R. Suppose that OM is linearly complemented in M and 
let P ∶ M → M be a linear projection whose range is OM . Let B ⊆ M . If z ∈ cl(B) , then z − P(z) ∈ cl(B) . As a consequence, 
if B is closed in M, then (I − P)(B) is closed in ker(P).

Proof Let us show first that z − P(z) ∈ cl(B) . Fix any arbitrary 0-neighbourhood V of M. There exists another 
0-neighbourhood W of M such that W +W ⊆ V  . Observe that z +W ⊆ (z − P(z)) + V  . Indeed, if w ∈ W  , then 
z + w = (z − P(z)) + P(z) + w ∈ (z − P(z)) +W +W ⊆ (z − P(z)) + V  . At this point, it is sufficient to realize that 
(z +W) ∩ B ≠ ∅ by hypothesis, meaning that ((z − P(z)) + V) ∩ B ≠ ∅ . This shows that z − P(z) ∈ cl(B) . Next, assume 
that B is closed in M. For every b ∈ B , b − P(b) ∈ cl(B) = B , that is, (I − P)(B) ⊆ B , meaning that (I − P)(B) = B ∩ ker(P) , 
hence (I − P)(B) is closed in ker(P) .   ◻

Extreme points

In [16, Definition 3.12] and [18, Definition 4.1], the notion of 2-extreme point for rings and modules was introduced, 
which we recall in the next definition.

Definition 2 (2-Extreme point) Let M be a module over a ring R. Let e ∈ A ⊆ M . We will say that e is a  of A provided 
that the condition 2e = a + b , with a, b ∈ A , implies that a = b = e . The set of 2-extreme points of A is denoted by ext�(A).

Our next results are aimed at showing that if a topological module is not Hausdorff, then every regular closed neighbour-
hood of zero does not contain 2-extreme points.

Lemma 1 Let M be a topological module over a topological ring R. If U is an open neighbourhood of 0 in M, then v + U = U 
for all v ∈

⋂
V∈N0(M) V  . If U is a regular closed neighbourhood of 0 in M, then v + U = U for all v ∈

⋂
V∈N0(M) V .

Proof First of all, let us assume that U is open. For every u ∈ U , U − u ∈ N0(M) , hence v ∈ U − u , meaning that 
v + U ⊆ U . By the same argument, −v + U ⊆ U . As a consequence, we obtain the desired result. Next, let us assume that 
U is regular closed. Since int(U) is open, we know that int(U + v) = int(U) + v = int(U) . By taking closures, we obtain 
that U + v = cl(int(U)) + v = cl(int(U + v)) = cl(int(U)) = U .   ◻

{
T−1(V) ∶ V ∈ N0(N)

}
⊆ N0(M).

OM =
⋂

W∈N0(M)

W ⊆
⋂

V∈N0(N)

T−1(V) = T−1

(
⋂

V∈N0(N)

V

)
= T−1(ON) = ker�(T).
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Theorem 4 Let M be a topological module over a topological ring R. If M is not Hausdorff, then every regular closed 
0-neighbourhood of X is free of 2-extreme points.

Proof Let U be any regular closed 0-neighbourhood of M. Fix any arbitrary u ∈ U . We will show that u is not a 2-extreme 
point of U. Take any v ∈

⋂
V∈N0(M) V such that v ≠ 0 . By Lemma 1, v + u,−v + u ∈ U . Then 2u = (v + u) + (−v + u) with 

u ≠ v + u , meaning that u ∉ ext2(U) .   ◻

Countable biorthogonal systems

As mentioned in the Introduction, the topological dual of a topological module M over a topological ring R is by 
definition the module of all continuous R-linear maps from M to R and is usually denoted by M∗ . Notice that, since M is 
assumed to be a left R-module, then M∗ acquires structure of right R-module. If there is no confusion with the underlying 
R, we will simply say “linear” instead of “R-linear”.
The linear span of a subset G of a topological module M is by definition the set of all linear combinations of elements of 
G and is usually denoted by span(G) , that is, span(G) ∶= {r1g1 +⋯ + rkgk ∶ k ∈ ℕ, r1,… , rk ∈ R, g1,… , gk ∈ G} . To 
avoid confusion, whenever we say that G spans M, we mean that span(G) = M , and whenever we say that G generates M, 
we mean that span(G) = M.

Proposition 5 Let M be a topological module over a topological ring R. If A is a dense subset of R and G ⊆ M satisfies 
that span(G) = M , then the set

is dense in M.

Proof Fix an arbitrary nonempty open subset U ⊆ M . Take any u ∈ U . We can write u =
∑n

i=1
rigi with r1,… , rn ∈ R and 

g1,… , gn ∈ G . There exists a 0-neighbourhood V of M such that u + V ⊆ U . There also exists a 0-neighbourhood W ⊆ M 
satisfying that W +

n
⋯ +W ⊆ V . For every i ∈ {1,… , n} , we can find a 0-neighbourhood Oi ⊆ R satisfying that Oigi ⊆ W . 

For every i ∈ {1,… , n} , let ai ∈ A ∩
(
ri + Oi

)
 . Then

  ◻

From Proposition 5 it is directly inferred that M is separable if so is R and G is countable. Recall that a topological ring 
is said to be practical [19] whenever the invertibles approach zero.

Lemma 2 Let M be a first countable topological module over a practical topological ring. Let B = {Un ∶ n ∈ ℕ} be a 
countable nested base of 0-neighbourhoods of M. If un ∈ Un for each n ∈ ℕ , then {un ∶ n ∈ ℕ} is bounded.

Proof Fix any arbitrary 0-neighbourhood V of M. There are W0 ⊆ R a 0-neighbourhood in R and V0 ⊆ M a 0-neighbourhood in M 
satisfying that W0V0 ⊆ V . There also exists W00 ⊆ R a 0-neighbourhood in R with W00W00 ⊆ W0 . Since B is nested, there exists 
n0 ∈ ℕ such that Un ⊆ V0 for all n ≥ n0 . For every n ∈ {1,… , n0 − 1} , there exists a 0-neighbourhood Wn ⊆ R such that Wnun ⊆ V0 . 
Since R is practical, there exists r ∈ U(R) ∩ (W00 ∩W0 ∩W1 ∩⋯ ∩Wn0−1

) . Finally, observe that if n ∈ {1,… , n0 − 1} , then 
r2un = r(run) ∈ r(Wnun) ⊆ rV0 ⊆ W0V0 ⊆ V , and if n ≥ n0 , then r2un ∈ W00W00Un ⊆ W0Un ⊆ W0V0 ⊆ V , in other words, 
r2{un ∶ n ∈ ℕ} ⊆ V , reaching the conclusion that {un ∶ n ∈ ℕ} is bounded because r2 ∈ U(R) .   ◻

S ∶=

{
n∑

i=1

aigi ∶ n ∈ ℕ, a1,… , an ∈ A, g1,… , gn ∈ G

}

n∑

i=1

aigi = u +

n∑

i=1

(ai − ri)gi ∈ u +

n∑

i=1

Oigi ⊆ u +
(
W +

n
⋯ +W

)
⊆ u + V ⊆ U.
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Lemma 2 does not remain true if B is not nested. Indeed, consider B ∶=

{[
−

1

n
,
1

n

]
∶ n ∈ ℕ

}
∪ {[−n, n] ∶ n ∈ ℕ} is a 

countable base of 0-neighbourhoods in ℝ but taking un ∶= n for all n ∈ ℕ we conclude that {un ∶ n ∈ ℕ} is unbounded.
In general, an important difference between Banach spaces and general topological modules is that finite-dimensional 
subspaces of a Banach space are always closed, while finitely spanned submodules of a topological module (even of a 
Hilbert C∗-module) need not be closed. This is one of the reasons why some notions and results from Operator Theory on 
Banach spaces can not directly be transferred to operators on topological modules and why Operator Theory on topologi-
cal modules sometimes requires another approach than Operator Theory on Banach spaces. Fredholm and semi-Fredholm 
Theory on the standard Hilbert module over an unital C∗-algebra is one of the examples illustrating how the proofs and 
the approach in this setting are very different from the situation of the classical Fredholm and semi-Fredholm Theory on 
Banach spaces. Although Hilbert C∗-modules are also Banach spaces, semi-Fredholm Theory in the sense of [28, 27, 38, 
40] differs very much from the classical semi-Fredholm Theory exactly due to the fact that finitely spanned submodules 
may behave much differently from finite-dimensional subspaces.
Let M be a topological module over a topological ring R. Given a subset B ⊆ M , the annihilator of B is defined as 
B⟂ ∶= {m∗ ∈ M∗ ∶ B ⊆ ker (m∗)} . The preannihilator of a subset A ⊆ M∗ is defined as A⊤ ∶=

⋂
a∗∈A ker(a

∗).
Next notions to be recalled require the hypothesis of Hausdorffness. Let M be a Hausdorff topological module over a 
Hausdorff topological ring R. We say that M is torsionless [19] provided that A⟂ = M∗ implies that A = {0} for every 
nonempty subset A of M. We say that M is strongly torsionless [19] provided that for every proper closed submodule N 
of M and every m ∈ M ⧵ N , there exists m∗ ∈ N⟂ ⧵ {m}⟂ . And M is said to be w∗-strongly torsionless [19] provided that 
for every proper w∗-closed submodule N of M∗ and every m∗ ∈ M∗ ⧵ N , there exists m ∈ N⊤ ⧵ {m∗}⊤.
Our next result shows that, under the hypotheses of Hausdorffness and strongly torsionless, finitely spanned submodules 
are closed.

Theorem 6 Let M be a Hausdorff topological module over a Hausdorff topological division ring R. Then: 

1. If M is torsionless, then the principal submodules of M (i.e. those spanned by one element) are closed.
2. If M is strongly torsionless, then the finitely spanned submodules of M are closed.

Proof We will proceed by induction on the number of generators. 

1. Fix an arbitrary m ∈ M and consider Rm. If Rm = {0} , then it is closed because M is Hausdorff. Assume that Rm ≠ {0} . 
Since M is torsionless, there exists m∗ ∈ M∗ such that m∗(Rm) ≠ {0} . Now, if (rim)i∈I is a net of Rm converging to 
some n ∈ M , then 

(
rim

∗(m)
)
i∈I

 converges to m∗(n) . Note that m∗(m) ≠ 0 , hence (ri)i∈I converges to m∗(n)m∗(m)−1 . As 
a consequence, (rim)i∈I converges to m∗(n)m∗(m)−1m . Since R is Hausdorff, we conclude that n = m∗(n)m∗(m)−1m.

2. According to [19, Lemma 4(1)], M is torsionless, so the principal submodules of M are closed. Let m1,… ,mk ∈ M 
with k > 1 . We will show that span{m1,… ,mk} is closed. By induction on k, we assume that span{m1,… ,mk−1} is 
closed. We also may assume that mk ∉ span{m1,… ,mk−1} . Since M is strongly torsionless, there exists m∗ ∈ M∗ with 
m∗(mk) ≠ 0 and m∗

(
span{m1,… ,mk−1}

)
= {0} . Next, take a net (r1im1 +⋯ + rkimk)i∈I of span{m1,… ,mk} converging 

to some n ∈ M . The net 
(
rkim

∗(mk)
)
i∈I

 converges to m∗(n) , hence (rki)i∈I converges to m∗(n)m∗(mk)
−1 . As a conse-

quence, (rkimk)i∈I converges to m∗(n)m∗(mk)
−1mk . Then (r1im1 +⋯ + rk−1imk)i∈I converging to n − m∗(n)m∗(mk)

−1mk , 
in other words, n − m∗(n)m∗(mk)

−1mk ∈ span{m1,… ,mk−1} , meaning that n ∈ span{m1,… ,mk} . As a consequence, 
span{m1,… ,mk} is closed.   ◻

Let R be a topological ring and M a topological R-module. A biorthogonal system in M is a family of pairs (
ei, e

∗
i

)
i∈I

⊆ M ×M∗ such that e∗
i
(ej) = �ij for all i, j ∈ I . Next theorem provides a sufficient condition on a topological 

module to assure the existence of a biorthogonal system. Within its proof, bear in mind that if M is a left R-module, then 
M∗ is a right R-module, hence elements of M∗ will be multiplied from the right by elements of the ring R, like m∗r.

Theorem 7 Let R be a Hausdorff topological division ring and M a Hausdorff topological R-module. If M is strongly 
torsionless and linearly spanned by a countable subset, that is, M = span(G) for a countable subset G of M, then there 
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exists a countable biorthogonal system 
(
ei, e

∗
i

)
i∈N

 , with 
(
ei, e

∗
i

)
∈ M ×M∗ for all i ∈ N , such that M = span

{
ei ∶ i ∈ N

}
 . 

If, in addition, M is w∗-strongly torsionless, then M∗ = span
�∗{

e∗
i
∶ i ∈ N

}
.

Proof Since R is a division ring, Zorn’s Lemma assures the existence of a countable basis 
(
ui
)
i∈N

 in M in the sense that 
it is linearly independent and spans M, that is, M = span{ui ∶ i ∈ N} (in fact, 

(
ui
)
i∈N

 can be chosen to be contained in 
G). According to Theorem 6, the finitely spanned submodules of M are closed. Therefore, the upcoming sequences can 
be recursively constructed following a Gram-Schmidt process: e1 ∶= u1 and e∗

1
∶= u∗

1
u∗
1
(e1)

−1 , where u∗
1
∈ {0}⟂ ⧵ {e1}

⟂ , 
that is, u∗

1
∈ M∗ and u∗

1
(e1) ≠ 0 , and for i ≥ 2,

where u∗
i
∈
(
span{e1,… , ei−1}

)⟂
⧵ {ei}

⟂ due to the fact that span{e1,… , ei−1} is closed and M is strongly 
torsionless. Observe that 

(
ei, e

∗
i

)
i∈N

 is a biorthogonal system such that M = span
{
ei ∶ i ∈ N

}
 because 

span
{
e1,… , ei

}
= span

{
u1,… , ui

}
 for all i ∈ N . Finally, let us assume that M is w∗-strongly torsionless. According to 

[19, Lemma 5] and by bearing in mind that M = span
{
ei ∶ i ∈ N

}
 , we conclude that

  ◻

In accordance with [38, Definition 1.4.1], the notion “countably generated” means that a module is the closure of the 
linear span of a countable subset. Under the settings of Theorem 7, if M is assumed to be countably generated, that is, 
M = span(G) for a countable subset G of M, then the constructed countable biorthogonal system 

(
ei, e

∗
i

)
i∈N

 verifies that 
M = span

{
ei ∶ i ∈ N

}
 since span{e1,… , ei} = span{u1,… , ui} for all i ∈ N.

The assumptions in Theorem 7 that R is a division ring and that every finitely spanned submodule of M is closed seem to 
be quite strong in order to assure the existence of countable biorthogonal systems. Indeed, if A is a unital C∗-algebra and 
if we consider the Hilbert A-module �2(A) , then this module satisfies that A is not a division ring and its finitely spanned 
submodules are not necessarily closed, however �2(A) has a natural orthonormal basis [38].

Metric modules

An old problem in Geometry of Banach Spaces [39, 42] consists on determining the best translation possible that turns 
a convex set into the most symmetric possible. Motivated by this problem, we show the existence of convex sets which 
are not symmetric translates, that is, no translate of the convex set is symmetric.

Lemma 3 Let M be a pseudometric module over a ring R. For every p, q ∈ M and every n ∈ ℕ , d(np, nq) ≤ nd(p, q).

Proof We will prove it first for q = 0 . Note that d(m + m, 0) ≤ d(m + m,m) + d(m, 0) = d(m, 0) + d(m, 0) = 2d(m, 0). By 
induction, we obtain the desired result for q = 0 . Finally, for any p, q ∈ M , d(np, nq) = d(n(p − q), 0) ≤ nd(p − q, 0) = nd(p, q).

Notice that, under the settings of Lemma 3, if d(np, 0) = nd(p, 0) for all p ∈ M and all n ∈ ℕ , then d(np, nq) = nd(p, q) 
for every p, q ∈ M and every n ∈ ℕ . A pseudometric d satisfying that d(np, nq) = nd(p, q) for every p, q ∈ M and every 
n ∈ ℕ will be called a homogeneous pseudometric.

Theorem 8 Let R be a ring and M a homogeneous pseudometric R-module. If A ⊆ M is bounded and symmetric and 0 ∈ A , 
then Ac ⊇ �A(0, 0) and r(A) = 1

2
d(A).

ei ∶= ui −

i−1∑

k=1

e∗
k

(
ui
)
ek and e∗

i
∶= u∗

i
u∗
i
(ei)

−1,

span
𝜔∗{

e∗
i
∶ i ∈ N

}
=

({
e∗
i
∶ i ∈ N

}⊤
)⟂

= {0}⟂ = M∗.
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Proof We will first prove that r0(A) ≤ ra(A) for every a ∈ A . Indeed, fix an arbitrary a ∈ A . Take any b ∈ A . If d(a, b) ≤ d(0, b) , then

meaning that d(0, b) ≤ d(−b, a) ≤ ra(A) . Otherwise, d(0, b) < d(a, b) ≤ ra(A) . In any case, d(0, b) ≤ ra(A) , hence 
r0(A) ≤ ra(A) . As a consequence, r(A) = r0(A) and 0 ∈ Ac . Next, notice that if a in metric space X two elements x, y ∈ X 
satisfy that d(x, y) = 0 , then d(x, z) = d(y, z) for all z ∈ X , therefore, rx(X) = ry(X) if X is bounded. As a consequence, 
�A(0, 0) ⊆ Ac . Moreover, for every 𝜀 > 0 we can find b ∈ A such that r0(A) < d(0, b) + 𝜀 , meaning that

which implies that r(A) ≤ 1

2
d(A) . Finally, simply note that the reverse inequality, r(A) ≥ 1

2
d(A) , holds in any bounded 

pseudometric space as highlighted in the Introduction, reaching the desired result.   ◻

Corollary 2 Let R be a ring and M a homogeneous pseudometric R-module. If A ⊆ M is bounded and there exists m ∈ M 
such that m + A is symmetric and 0 ∈ m + A , then −m ∈ Ac.

Proof In accordance with Theorem 8, 0 ∈ (m + A)c = m + Ac , hence −m ∈ Ac .   ◻

We will apply the previous results to find a compact convex subset of a Hilbert space which is not a symmetric translate. 
Recall that a convex subset of a real vector space is symmetric if and only if it is balanced. We refer the reader to Appendix 
A for the related basic notions.

Example 1 Let X be a real Hilbert space of dim(X) ≥ 2 . Let T ∶= co{x, y, z} where x, y, z ∈ X are different, not aligned, 
and equidistant, that is, ‖x − y‖ = ‖x − z‖ = ‖y − z‖ . It is trivial to observe that Tc = {b} , where b is the centroid of the 
equilateral triangle T, that is, b =

1

3
z +

2

3

(
1

2
x +

1

2
y
)

 . If there exists h ∈ X  such that h + T  is balanced, then 
0 ∈ (h + T)c = h + Tc = h + {b} = {h + b} , hence 0 = h + b , so h = −b . Note that −b + T = co({x − b, y − b, z − b}) . By 
assumption, b − z ∈ −b + T  because −b + T  is symmetric, in other words, b − z = �1(x − b) + �2(y − b) + �3(z − b) for 
some �1, �2, �3 ≥ 0 with �1 + �2 + �3 = 1 , meaning that b − z = �1x + �2y + �3z − b , hence 2b = �1x + �2y + (�3 + 1)z . 
On the other hand, observe that 3b = x + y + z . Then

from which we obtain that

Finally, it only suffices to notice that

reaching the contradiction that x, y, z are aligned.

Bishop‑Phelps property

Let M be a topological module over a topological ring R and I a nonempty set. The set of all maps from I to M, 
MI , acquires structure of R-module. Every submodule F of MI can be endowed with a module topology called “con-
vergence linear topology”. Indeed, take G ⊆ P(I) upward directed (like, for instance, a bornology on I) satisfying 

2d(0, b) = d(0, b + b) = d(−b, b) ≤ d(−b, a) + d(a, b) ≤ d(−b, a) + d(0, b),

r(A) = r0(A) < d(0, b) + 𝜀 =
1

2
d(−b, b) + 𝜀 ≤

1

2
d(A) + 𝜀,

2x + 2y + 2z = 3�1x + 3�2y + 3(�3 + 1)z,

z =
2 − 3�1

3�3 + 1
x +

2 − 3�2

3�3 + 1
y.

2 − 3�1

3�3 + 1
+

2 − 3�2

3�3 + 1
=
2 − 3�1 + 2 − 3�2

3�3 + 1
=

4 − 3(�1 + �2)

3�3 + 1

=
4 − 3(1 − �3)

3�3 + 1
=

1 + 3�3

3�3 + 1
= 1,
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that f(G) is bounded in M for all G ∈ G and all f ∈ F . For every G ∈ G and every 0-neighbourhood U ⊆ M , the sets 
U(G,U) ∶= {f ∈ F ∶ f (G) ⊆ U} form a basis of 0-neighbourhoods for a module topology on F called the convergence 
linear topology of F generated by G . Observe that if G is the set of finite subsets of I, then we obtain the pointwise con-
vergence topology on F or, equivalently, the inherited product topology on F. The dual module of M, M∗ , which is a right 
R-module, can be endowed with a convergence linear topology since M∗ ⊆ RM . For instance, if R is a practical topologi-
cal ring, in other words, 0 ∈ cl(U(R)) , then every finite subset of M is bounded (see Appendix B ), hence the set of finite 
subsets of M defines a convergence linear topology on M∗ which is the pointwise convergence topology on M∗ , also known 
as the w∗-topology. If we take the family B≀M of all bounded subsets of M, then we obtain a stronger convergence linear 
topology on M∗ called the B≀M-topology.

Remark 1 Let M be a topological module over a topological ring R, I a nonempty set and G ⊆ P(I) upward directed. If 
E ⊆ F ⊆ MI are submodules such that f(G) is bounded for every G ∈ G and every f ∈ F , then the inherited convergence lin-
ear topology of E from F is precisely the convergence linear topology of E in view of the fact that UE(G,U) = UF(G,U) ∩ E 
for all G ∈ G and all U ∈ N0(M) . On the other hand, let G1,G2 ⊆ P(I) be upward directed. If G1 ⊆ G2 , then the convergence 
linear topology generated by G1 is clearly coarser than the convergence linear topology generated by G2 . If for every G2 ∈ G2 
there exists G1 ∈ G1 such that G2 ⊆ G1 , then the convergence linear topology generated by G1 is finer than the convergence 
linear topology generated by G2.

Next notion is borrowed from Metric Fixed-Point Theory [5], particularly from the notion of convexity structure.

Definition 3 (Structure) Let R be a topological ring and M a topological R-module. A nonempty subset G of P(M) ⧵ {∅} 
is said to be a structure on M provided that G is upward directed, closed under nonempty intersections, and every element 
of G is bounded and closed. The convergence linear topology on M∗ generated by G is called the G-topology.

Notice that if R is practical topological ring and M is Hausdorff topological module, then the set of finite subsets of M is a 
structure. The following notion is borrowed from the Banach Space Geometry Theory [9, 6] and relies on the topological 
notion of semiopenness and semicontinuity. Levine [32] introduced the concept of semiopen sets and semicontinuity in 
general topological spaces, and they are now the research topics of many topologists worldwide, such as the semisepara-
tion axioms and the binary topological spaces [24, 1, 47, 32]. A subset A of a topological space X is said to be semiopen 
[32] if there exists an open set U such that U ⊆ A ⊆ cl(U) . Obviously, any open set is semiopen, but the converse does not 
hold in general. The complement of a semiopen set is said to be semiclosed. A topological space is called semicompact 
[51] provided that any cover of semiopen sets has a finite subcover. This notion of semicompactness is different from an 
earlier one provided by Zippin [51]. We will stick with Ganster semicompactness to introduce the Bishop-Phelps property.

Definition 4 (Bishop-Phelps property) A topological module M over a topological ring R is said to 
have the Bishop-Phelps property with respect to a structure G ⊆ P(M) ⧵ {∅} if for every G ∈ G , the set 
��(G) ∶= {f ∈ M∗ ∶ f (G)is semiclosed and semicompact in R} is dense in M∗ for the G-topology (convergence linear 
topology on M∗ generated by G).

Next theorem shows that the Bishop-Phelps property is hereditary to closed complemented submodules (keep in mind that, 
in non-Hausdorff topological modules, the range of a continuous linear projection does not need to be closed). Observe 
that if G ⊆ P(M) ⧵ {∅} is a structure in a topological module M, then GN ∶= {G ∩ N ∶ G ∈ G,G ∩ N ≠ ∅} is a structure 
in any submodule N of M provided that GN ≠ ∅.

Theorem 9 Let M be a topological module over a topological ring R. Let N be a closed complemented submodule of M. 
Let G ⊆ P(M) ⧵ {∅} be a structure in M containing GN ≠ ∅ . If M has the Bishop-Phelps property with respect to G , then 
so does N with respect to GN.

Proof Take any G ∈ G . We will show that ��N∗ (G ∩ N) is dense in N∗ for the GN-topology. Indeed, fix an arbitrary H ∈ G , an 
arbitrary 0-neighbourhood U ⊆ R , and an arbitrary n∗ ∈ N∗ . We will prove that ��N∗ (G ∩ N) ∩

[
n∗ + UN∗ (H ∩ N,U)

]
≠ ∅ . 

Indeed, by hypothesis, G ∩ N ∈ G , hence ��M∗ (G ∩ N) is dense in M∗ for the G-topology, that is, at 
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��M∗ (G ∩ N) ∩
[
m∗ + UM∗ (H,U)

]
≠ ∅ , where m∗ ∶= P∗(n∗) = n∗◦P and P ∶ M → N is a continuous linear projection 

of M onto N. Take f ∈ ��M∗ (G ∩ N) ∩
[
m∗ + UM∗ (H,U)

]
 . Observe that f |N(h) − n∗(h) = f (h) − m∗(h) ∈ U for every 

h ∈ H ∩ N , meaning that f |N ∈ n∗ + UN∗ (H,U) . It only remains to show that f |N ∈ ��N∗ (G ∩ N) which is immediate 
since f ∈ ��M∗ (G ∩ N) .   ◻

Conclusion

The transportation of classical properties and notions of Operator Theory and Geometry of Banach Spaces to the scope 
of topological rings and algebras is an ongoing and successful trend that is enriching the literature of Functional Analysis. 
This manuscript adds up to that trend by considering extremal and geometric properties of neighbourhoods of zero and 
by relating effect algebras with C∗-algebras.

Appendix A The centroid of a triangle

Let X be a real vector space of dimension at least 2. Let x, y, z ∈ X be different and not aligned. Consider the triangle 
T ∶= co{x, y, z} . The centroid of T is algebraically defined as b =

1

3
z +

2

3

(
1

2
x +

1

2
y
)
∈ T . Notice that 3b = z + x + y , hence 

b =
1

3
x +

2

3

(
1

2
y +

1

2
z
)
=

1

3
y +

2

3

(
1

2
x +

1

2
z
)

 . Suppose now that X is normed. We can consider the number 
r ∶= max{‖x − b‖, ‖y − b‖, ‖z − b‖} . Consider the closed ball �X(b, r) of center b and radius r. We will show that 
T ⊆ �X(b, r) . Since �X(b, r) is convex, it only suffices to prove that x, y, z ∈ �X(b, r) , which is immediate by the choice of 
r. As a consequence, if t ∈ T  , then ‖t − b‖ ≤ r because T ⊆ �X(b, r) , meaning that rb(T) = r.

Appendix B Boundedness over practical rings

Let M be a topological module over a topological ring R. A subset A ⊆ X is said to be bounded if for each 0-neigh-
bourhood U in M there is an invertible u ∈ U(R) such that A ⊆ uU . The collection of all bounded subsets of a topological 
module M over a topological ring is usually denoted by B�(M).

Lemma 4 Let R be a practical topological ring and M a topological R-module. Let A,B ⊆ M  bounded and 
{m1,… ,mk} ⊆ M . Then: 

1. {m1,… ,mk} is bounded.
2. A + B is bounded.
3. A ∪ B is bounded.

Proof 

1. Fix an arbitrary 0-neighbourhood U ⊆ M . For every i ∈ {1,… , k} , there exists a 0-neighbourhood Vi ⊆ R such that 
Vimi ⊆ M . Take V ∶= V1 ∩⋯ ∩ Vk . Since R is practical, there exists an invertible v ∈ V ∩ U(R) . Then vmi ∈ Vimi ⊆ U 
for every i ∈ {1,… , k} , meaning that mi ∈ v−1U for every i ∈ {1,… , k}.

2. Fix an arbitrary 0-neighbourhood U in M. Take V a 0-neighbourhood in M with V + V ⊆ U . There are neighbourhoods 
W1,W2 of 0 in R and M, respectively, such that W1W2 ⊆ V . Since A, B are bounded, we can find invertibles r, s ∈ R 
with A ⊆ rW2 and B ⊆ sW2 . Next, there exist neighbourhoods E, F of 0 in R such that Er ⊆ W1 and Fs ⊆ W1 . Since R 
is practical, there exists t ∈ U(R) with t ∈ E ∩ F . Then tr ∈ Er ⊆ W1 and ts ∈ Fs ⊆ W1 . This means that 

t(rW2 + sW2) = (tr)W2 + (ts)W2 ⊆ W1W2 +W1W2 ⊆ V + V ⊆ U,
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 in other words, 

 This proves that A + B is bounded.
3. Observe that A ∪ {0} and B ∪ {0} are trivially bounded. Next, A ∪ B ⊆ (A ∪ {0}) + (B ∪ {0}) and (A ∪ {0}) + (B ∪ {0}) 

is bounded.   ◻

Let R be a practical topological ring and M a nontrivial topological R-module. The set of all bounded subsets of M, B�(M) , 
is a bornology of P(M) in view of Lemma 4. The collection

is clearly a bornology base of B�(M) provided that it is nonempty. In fact, if there exists V ∈ N0(M) ∩ B�(M) , then 
{uV ∶ u ∈ U(R)} is both a base of the filter N0(M) and a base of the bornology B�(M).

Appendix C The center of B(H)

It is a well-known result in Operator Theory that if a bounded operator on a complex Hilbert space H commutes with 
all orthogonal projections of one-dimensional range, then such operator is central, that is, belongs to the center of B(H) , 
hence it commutes with all elements of B(H) and thus it must be a multiple of the identity. This fact strongly relies on 
the Hahn-Banach Theorem. Since the Hahn-Banach Theorem also works on Hausdorff locally convex topological vec-
tor spaces, a similar result can be accomplished for continuous linear operators on Hausdorff locally convex topological 
vector spaces. For the sake of completeness, we include a summary of the proof.

Remark 2 Let X be a Hausdorff locally convex topological vector space. If T ∈ B(X) commutes with all rank-one pro-
jections, then T is a multiple of the identity. Indeed, fix arbitrary elements x ∈ X ⧵ {0} and y ∈ X . There exists x∗ ∈ X∗ 
satisfying that x∗(x) = 1 in view of the Hahn-Banach Theorem. Consider the rank-one projection �

�x of X onto �x along 
ker(x∗) given by �

�x(z) ∶= x∗(z)x for all z ∈ X . By hypothesis

In particular, if x = y , then T(x) = x∗(T(x))x . This means that every nonzero vector of X is an eigenvector of T. As a con-
sequence, T is a multiple of the identity.

Appendix D Effect algebras vs. C∗‑algebras

Effect algebras and Boolean algebras are examples of universal algebras which are in between Group Theory and Order 
Theory. They have diverse origins. For example, Boolean algebras have historically been involved in Measure Theory, 
Electronics, Computer Sciences, etc. However, effect algebras were originated from Quantum Mechanics. We refer the 
reader to [46, 48, 41] for a wide perspective on effect algebras and Boolean algebras. Effect algebras were introduced for 
the first time in [12] in the context of Quantum Mechanics.

Definition 5 (Effect algebra) An effect algebra is a universal algebra (L,⊕, 0, 1, ⟂) , where

is a partially defined binary internal operation,

A + B ⊆ rW2 + sW2 ⊆ t−1U.

{
uV ∶ u ∈ U(R),V ∈ N0(M) ∩ B�(M)

}

x∗(y)T(x) = T(x∗(y)x) = T(�
�x(y)) = �

�x(T(y)) = x∗(T(y))x.

⊕ ∶ Σ ⊆ L × L → L

(p, q) ↦ p⊕ q
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is a unary internal operation (called orthocomplementation), and

are nullary internal operations satisfying the following conditions for all p, q, r ∈ L:

• Commutativity: Σ is a symmetric binary relation on L and if (p, q) ∈ Σ , then p⊕ q = q⊕ p.
• Associativity: If (q, r), (p, q⊕ r) ∈ Σ , then (p, q), (p⊕ q, r) ∈ Σ and (p⊕ q)⊕ r = p⊕ (q⊕ r).
• Orthocomplementation: p⟂ is the only element in L such that 

(
p, p⟂

)
∈ Σ and p⊕ p⟂ = 1.

• Zero-One Law: 1 ≠ 0 and 0 is the only element in L such that (1, 0) ∈ Σ.

The first example of effect algebra [12], which also motivated the above definition, is given by the set of positive selfadjoint 
bounded operators on a complex Hilbert space.

Example 2 Let H be a complex Hilbert space. Then (E(H),⊕, 0, I, ⟂) is an effect algebra, where 
E(H) ∶= {T ∈ B(H) ∶ T = T∗, 0 ≤ T ≤ I} and the partially defined binary internal operation is given by 
T ⊕ S ∶= T + S ⇔ 0 ≤ T + S ≤ I and orthocomplementation defined by T⟂ ∶= I − T .

The idea behind all of these is the First Postulate of Quantum Mechanics [34, 44, 36, 35, 37, 45, 11], which establishes 
that a quantum mechanical system is represented by an infinite dimensional separable complex Hilbert space H. The 
observable measurements or magnitudes are given by the (bounded or unbounded) selfadjoint operators on H. The unsharp 
measurements, also called effects, are represented by the positive selfadjoint bounded operators lying below the identity. If 
an observable magnitude is represented by a selfadjoint bounded operator T, then ‖T‖ represents the intensity of the mag-
nitude. The quantum bits are the unit vectors of the Hilbert space H and the quantum states are the complex rays spanned 
by the quantum bits. There are two main universal algebras involved in this frame: C∗-algebras and effect algebras. C∗

-algebras model the behavior of observable measurements. Effect algebras model the behavior of unsharp measurements.
Our next remark is the expected result that the set of positive selfadjoint elements of a unital C∗-algebra that are less than 
or equal to the unity acquires structure of effect algebra. An element a of a C∗-algebra A is called selfadjoint provided that 
a = a∗ . The subset of selfadjoint elements of A is denoted by A�� . If A is unital, then a selfadjoint element a ∈ A is called 
positive provided that 𝜎(a) ⊆ [0,∞) . If a is positive, then it is commonly written that a ≥ 0 and A+ ∶= {a ∈ A ∶ a ≥ 0} . 
The binary internal relation on A�� given by a ≤ b if and only if b − a ≥ 0 is a partial order relation on A�� . Observe that 
A�� is a real vector subspace of A and the previous order relation is compatible with addition and multiplication by posi-
tive scalars.

Remark 3 If A is a unital C∗-algebra, then E(A) ∶= {a ∈ A∗ ∶ a = a∗ and 0 ≤ a ≤ 1} is an effect algebra with the par-
tially defined binary internal operation given by a⊕ b ∶= a + b ⇔ 0 ≤ a + b ≤ 1 and orthocomplementation given by 
a⟂ ∶= 1 − a . Indeed, notice that ⊕ is clearly associative whenever it is defined. Indeed, let a, b, c ∈ E(A) with b + c ∈ E(A) 
and a + (b + c) ∈ E(A) . We have to show that a + b ∈ E(A) . On the one hand, a + b ≥ 0 because a, b ≥ 0 . On the other 
hand, (a + b) + c = a + (b + c) ∈ E(A) so (a + b) + c ≤ 1 , that is, 1 − [(a + b) + c] ≥ 0 , so by compatibility with addition 
1 − (a + b) = 1 − [(a + b) + c] + c ≥ c ≥ 0 , in other words, a + b ∈ E(A) . In a similar way, ⊕ is commutative whenever 
it is defined. The uniqueness of the orthocomplement is also inferred from the uniqueness of the opposite. Finally, the 
Zero-One Law is also trivially verified.

Remark 3 can be easily generalized to ordered modules over ordered rings. An ordered ring is a ring endowed with a 
partial order compatible with addition and multiplication by positive elements. An ordered module over an ordered ring 
is a module over an ordered ring endowed with a partial order compatible with addition and multiplication by positive 
elements of the ring.

⟂ ∶ L → L

p ↦ p⟂

0 ∶ L → L

p ↦ 0
and

1 ∶ L → L

p ↦ 1
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Theorem 10 If M is an ordered module over a unital ordered ring R and m ∈ M is so that m > 0 , then [0, m] is an effect 
algebra with the partially defined binary internal operation given by p⊕ q ∶= p + q ⇔ p + q ≤ m for all p, q ∈ [0,m] 
and orthocomplementation given by p⟂ ∶= m − p for all p ∈ [0,m].
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