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A FRACTIONAL ORDER COVID-19 EPIDEMIC MODELWITH MITTAG–LEFFLER
KERNEL

H. Khan1, M. Ibrahim2, A. Khan3, O. Tunç4;5, and Th. Abdeljawad6 UDC 517.9

We consider a nonlinear fractional-order Covid-19 model in a sense of the Atagana–Baleanu fractional
derivative used for the analytic and computational studies. The model consists of six classes of persons,
including susceptible, protected susceptible, asymptomatic infected, symptomatic infected, quarantined,
and recovered individuals. The model is studied for the existence of solution with the help of a successive
iterative technique with limit point as the solution of the model. The Hyers–Ulam stability is also studied.
A numerical scheme is proposed and tested on the basis of the available literature. The graphical results
predict the curtail of spread within the next 5000 days. Moreover, there is a gradual increase in the
population of protected susceptible individuals.

1. Introduction

The coronavirus infection 2019 (Covid-19) is a communicable respiratory disease. SARS-CoV-2 (Severe
Acute Respiratory Syndrome Coronavirus) is a disease caused by a newly discovered virus strain [1]. In Wuhan,
China, Covid-19 was first identified in December, 2019, and quickly spread over the next four months. Within a
short period, more than 2.9 million inhabitants in 185 nations throughout the world were infected and 206 thousand
persons passed away [2]. On March 11, 2020, “The World Health Organization” announced that this coronavirus
infection is a pandemic [3]. This disease can spread primarily by small droplets via coughing, sneezing, or person-
to-person conversations. By contacting polluted surfaces, prone individuals can also be compromised. The most
prevalent signs of this disease are fever, nausea, dry coughing, fatigue, breath shortages. All these signs are parts
of Covid-19 [4]. Some patients may also have joint pain, nasal stuffiness, runny nose, sore throat, or diarrhea. The
symptoms are typically mild but can slowly occur. In order to prevent infection, hand washing, nose covering,
and/or mouth covering are advised, while sneezing or coughing, as well as avoiding nose or mouth touching plus
some preventive steps for the eyes, and keeping social distances.

Due to the seriousness of the Covid-19 pandemic, many states made drastic decisions in order to curb the
distribution of Covid-19 infection. In addition, they checked and covered their healthcare systems. Hence, they
ruled the cancellation of public events, closing of public events, schools, public places, borders, restrictions on
travel, and lockouts, etc. While these measures were helpful, the indicated lockdown led to the socioeconomic
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damage, such as bankruptcy of numerous workplaces, loss of the respective positions of a part of the staff, and so
on. Further, this shutdown also disrupted supply chains and decreased productivity. The shutdown of China’s drug-
producing plants, i.e., the shutdown of the second largest pharmaceutical products exporter delayed the deliveries
of generic drug processing factories [5]. The sectors of tourism, air transport, and oil were visibly influenced.
It is also clear that invisible impacts are expected irrespective of the duration of pandemic. According to “The
International Monetary Fund,” the worldwide economy is expected to shrink by 3% in 2020 [6].

Governments try to prevent the failures of economy, thinking about security measures in order to relax the
lockdown. Some advanced countries intend to grant immunity passports, which show immunity to the illness.
However, this technique was disapproved by “The World Health Organization”, since there is a lack of adequate
scientific proof that reinfection is not possible in this case. A risk balancing strategy was adopted by the South
African government to lift the lockout restrictions progressively.

We refer the readers to some scientific works done on infectious diseases [7–9] and, in particular, to several
developed mathematical models related to Covid-19 [10–12], as well as to some recent scientific works on various
fractional mathematical models [10, 13–34].

In the present paper, we consider the following Covid-19 model for the existence, stability, and numerical
simulations based on the use of the Atanga–Baleanu fractional derivative in Caputo’s sense; for details, we refer
the readers to [29, 35]:

ABC
0 D

}⇤
1

t S D ƒ1 C �Q � ˛1S � .1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� �S;

ABC
0 D

}⇤
2

t SP D ˛1S � �SP ;

ABC
0 D

}⇤
3

t IA D .1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� .˛2⇢C ˛2r1 C 1 � ˛2 C �/IA;

ABC
0 D

}⇤4

t IS D ˛2⇢IA � .1 � ˛3 C ˛3r2 C �C ı/IS ;

ABC
0 D

}⇤
5

t Q D .1 � ˛2/IA C .1 � ˛3/IS � .� C r3 C �C ı/Q;

ABC
0 D

}⇤
6

t R D ˛2r1IA C ˛3r2IS CR3Q � �R:

The population is divided into six compartments. These are: susceptible class S , protected susceptible class
SP , asymptomatic infected but not quarantined class IA, symptomatic infected not quarantined class IS , quaran-
tined class Q; and recovered class R: The fractional orders are denoted by }⇤

i 2 .0; 1ç: The parameters are as
follows: ˛1 is the fraction of protected susceptible class, ˛2 is the fraction of unidentified asymptomatic infected,
˛3 is the fraction of unidentified symptomatic infected, ⌘1 is the contact rate between S and IA; ⌘2 is the contact
rate between S and IA; ⌘3 is the contact rate between S andQ; ⇢ is the disease progression rate from IA to IS ; r1
is the recovery rate of IA; r2 is the recovery rate of IS ; r3 is the recovery rate of Q; ı is the death rate caused by
the Covid-19 disease, � is the proportion of nonaffected quarantine class, and � is the natural mortality rate. As
far as the ABC-fractional calculus is concerned, we highlight the following useful literature.

Definition 1. The ABC-fractional differential operator on  2 H⇤.a; b/; b > a; for }⇤
1 2 Œ0; 1ç is defined

as follows:
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ABC
aD

}⇤
1

⌧  .⌧/ D B.}⇤
1 /

1 � }⇤
1

⌧Z

a

 
0
.s/E}⇤

"
�}⇤.⌧ � s/}⇤

1 � }⇤

#
ds; (1)

where B
�
}⇤� satisfies the property B.0/ D B.1/ D 1:

Definition 2. For  2 H⇤.a; b/; b > a; and }⇤ 2 Œ0; 1ç; the ABR-fractional derivative is defined as follows:

ABR
aD}⇤

⌧  .⌧/ D B
�
}⇤�

1 � }⇤
d

d⌧

⌧Z

a

 .s/E}⇤

"
�}⇤.⌧ � s/}⇤

1 � }⇤

#
ds:

Definition 3. The AB-integral of  2 H⇤.a; b/; b > a; 0 < }⇤
1 < 1 is given by

AB
aI

}⇤
1

⌧  .⌧/ D 1 � }⇤
1

B
�
}⇤
1

�  .⌧/C }⇤
1

B
�
}⇤
1

�
Ä
�
}⇤
1

�
⌧Z

a

 .s/.⌧ � s/}⇤
1�1ds:

Lemma 1. The AB fractional derivative and the AB fractional integral of the function  satisfy the Newton–
Leibniz formula

AB
aI

}⇤
1

⌧

⇣
ABC

aD
}⇤

1
⌧  .⌧/

⌘
D  .⌧/ �  .a/:

2. Existence Criteria

By the AB-fractional integral and the Covid-19 model (1), we have

S.t/ � S.0/ D 1 � }⇤
1

ˇ
�
}⇤
1

�

ƒ1 C �Q � ˛1S � .1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� �S

�

C }⇤
1

ˇ
�
}⇤
1

�
Ä}⇤

1

tZ

0

.t � s/}⇤
1�1

"
ƒ1 C �Q � ˛1S

� .1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� �S

#
ds;

Sp.t/ � Sp.0/ D
1 � }⇤

2

ˇ
�
}⇤
2

� Œ˛1S � �SP çC }⇤
1

ˇ
�
}⇤
2

�
Ä}⇤

2

tZ

0

.t � s/}⇤
2�1Œ˛1S � �SP çds;
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IA.t/ � IA.0/ D
1 � }⇤

3

ˇ
�
}⇤
3

�
"
.1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR

� .˛2⇢C ˛2r1 C 1 � ˛2 C �/IA

#
C }⇤

1

ˇ
�
}⇤
3

�
Ä}⇤

3

tZ

0

.t � s/}⇤
3�1

⇥

.1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
.˛2⇢C ˛2r1 C 1 � ˛2 C �/IA

�
ds;

Is.t/ � Is.0/ D
1 � }⇤

4

ˇ
�
}⇤
4

�
h
˛2⇢IA � .1 � ˛3 C ˛3r2 C �C ı/IS˛2⇢IA

� .1 � ˛3 C ˛3r2 C �C ı/IS

i
C }⇤

4

ˇ
�
}⇤
4

�
.Ä}⇤

4 /

⇥
tZ

0

.t � s/}⇤
4�1 Œ˛2⇢IA � .1 � ˛3 C ˛3r2 C �C ı/IS ç ds;

Q.t/ �Q.0/ D 1 � }⇤
5

ˇ
�
}⇤
5

� Œ.1 � ˛2/IA C .1 � ˛3/IS � .� C r3 C �C ı/Qç

C }⇤
5

ˇ
�
}⇤
5

��
Ä}⇤

5

�
tZ

0

.t � s/}⇤
5�1 Œ.1 � ˛2/IA C .1 � ˛3/IS � .� C r3 C �C ı/Qç ds;

R.t/ �R.0/ D 1 � }⇤
6

ˇ
�
}⇤
6

� Œ˛2r1IA C ˛3r2IS CR3Q � �Rç

C }⇤
6

ˇ
�
}⇤
6

��
Ä}⇤

6

�
tZ

0

.t � s/}⇤
6�1 Œ˛2r1IA C ˛3r2IS CR3Q � �Rç ds:

Assume the functions Yi ; i D 1; : : : ; 6; are given below:

Y1.t; S/ D ƒ1 C �Q � ˛1S � .1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� �S;

Y2.t; Sp/ D ˛1S � �SP ;

Y3.t; IA/ D
.1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� .˛2⇢C ˛2r1 C 1 � ˛2 C �/IA;

Y4.t; Is/ D ˛2⇢IA � .1 � ˛3 C ˛3r2 C �C ı/IS ;
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Y5.t;Q/ D .1 � ˛2/IA C .1 � ˛3/IS � .� C r3 C �C ı/Q;

Y6.t; R/ D ˛2r1IA C ˛3r2IS CR3Q � �R;

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

 1 D ˛1 C k1 C �;

 2 D �;

 3 D k2 C .˛2⇢C ˛2r1 C 1 � ˛2 C �/;

 4 D �c ;

 5 D 1 � ˛3 C ˛3r2 C �C ı;

 6 D �:

Assumption .B/: Assume that, for S.t/; S⇤.t/; Sp.t/; S⇤
p .t/; IA.t/; I

⇤
A .t/; Is.t/; I

⇤
s .t/; Q.t/; Q

⇤.t/; R.t/;
R⇤.t/ 2 LŒ0; 1ç; there exists constants i > 0; i D 1; : : : ; 6; such that

kS.t/k  1; kSp.t/k  2; kIA.t/k  3; kIs.t/k  4; kQ.t/k  5; kR.t/k  6; ⇠1; ⇠2 > 0;

and

kS.t/C IA.t/CQ.t/k  ⇠1;

kIs.t/CR.t/k  ⇠2:

Theorem 1. The functions Yi ; i 2 N 6
1 ; satisfy the Lipschitz condition provided that Assumption .B/ is obeyed.

Proof. For Y1; we obtain

��Y1.t; S/�Y1
�
t; S⇤��� D

�����ƒ1 C �Q � ˛1S � .1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR
� �S

�
✓
ƒ1 C �Q � ˛1S⇤ � .1 � ˛1/.˛2⌘1IAC˛3⌘2ISC⌘3Q/S

⇤

S⇤ C SP C IA C IS CQCR
� �S⇤

◆�����


����˛1 C

.1 � ˛1/ .˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S
⇤

S⇤ C SP C IA C IS CQCR
C �

���� kS � S⇤k

 Œ˛1 C k1 C �çkSc � S⇤
c k D  1kS � S⇤k: (2)

For Y2.t; Ec/; we get
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��Y2.t; Sp/ � Y2
�
t; S⇤

p

��� D
��.˛1S � �SP / �

�
˛1S � �S⇤

P ;
���

 Œ�ç
��Sc �E⇤

c

��   2kEc �E⇤
c k: (3)

Further, for Y3.t; I⇤A /; we find

��Y3.t; IA/ � Y3
�
t; I⇤A

��� D
�����

 
.1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR

� .˛2⇢C ˛2r1 C 1 � ˛2 C �/IA

!

�
 
.1 � ˛1/.˛2⌘1I⇤A C ˛3⌘2IS C ⌘3Q/S

S C SP C I⇤A C IS CQCR

� .˛2⇢C ˛2r1 C 1 � ˛2 C �/I⇤A

!�����


�����
.1 � ˛1/.˛2⌘1IA C ˛3⌘2IS C ⌘3Q/S

S C SP C IA C IS CQCR

C .˛2⇢C ˛2r1 C 1 � ˛2 C �/

�����
��IA � I⇤A

��

 Œk2 C .˛2⇢C ˛2r1 C 1 � ˛2 C �/ç
��Ic � I⇤c

��

D  3

��IA � I⇤A
�� (4)

For Y4.t; I /; we obtain

��Y4.t; Is/ � Y4
�
t; I⇤s

��� D
���.˛2⇢IA � .1 � ˛3 C ˛3r2 C �C ı/IS /

�
�
˛2⇢IA � .1 � ˛3 C ˛3r2 C �C ı/ I⇤S

� ���

 k1 � ˛3 C ˛3r2 C �C ık
��Is � I⇤s

��


h
1 � ˛3 C ˛3r2 C �C ı

i
kIs � I⇤s k   4

��Is � I⇤s
�� (5)

For Y5.t;Q/; we get

��Y5.t;Q/ � Y5
�
t;Q⇤��� D

��� ..1 � ˛2/IA C .1 � ˛3/IS � .� C r3 C �C ı/Q/
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�
�
.1 � ˛2/IA C .1 � ˛3/IS � .� C r3 C �C ı/Q⇤�

���

 k� C r3 C �C ık
��Q �Q⇤�� D  5

��Q �Q⇤�� : (6)

Further, for Y6.t; R/ we have

��Y6.t; R/ � Y6
�
t; R⇤��� D

���.˛2r1IA C ˛3r2IS C r3Q � �R; /

�
�
˛2r1IA C ˛3r2IS C r3Q � �R⇤�

���

 k�k
��R �R⇤�� D  6

��R �R⇤�� : (7)

Thus, it follows from (2)–(7) that Yi ; i D 1; : : : ; 6; satisfy the Lipschitz condition.
This completes the proof.

Assume that

S.0/ D Sp.0/ D IA.0/ D IS .0/ D Q.0/ D R.0/ D 0;

This yields

S.t/ D 1 � }⇤
1

ˇ
�
}⇤
1

� Y1.t; S.t//C
}⇤
1

ˇ
�
}⇤
1

�
Ä.}⇤

1 /

tZ

0

.t � s/}⇤
1�1Y1.s; S.s//ds; (8)

Sp.t/ D
1 � }⇤

2

ˇ
�
}⇤
2

� Y2.t; Sp.t//C
}⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1Y2.s; Sp.s//ds; (9)

IA.t/ D
1 � }⇤

3

ˇ
�
}⇤
3

� Y3.t; IA.t//C
}⇤
3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
tZ

0

.t � s/}⇤
3�1Y3.s; IA.s//ds; (10)

Is.t/ D
1 � }⇤

4

ˇ
�
}⇤
4

� Y4.t; Is.t//C
}⇤
4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
tZ

0

.t � s/}⇤
4�1Y4.s; Is.s//ds; (11)

Q.t/ D 1 � }⇤
5

ˇ
�
}⇤
5

� Y5.t;Q.t//C
}⇤
5

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
tZ

0

.t � s/}⇤
5�1Y5.s;Q.s//ds; (12)

R.t/ D 1 � }⇤
6

ˇ
�
}⇤
6

� Y6.t; R.t//C
}⇤
6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1Y6.s; R.s//ds: (13)
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For the iterative scheme of the model (1), we define

Sn.t/ D
1 � }⇤

1

ˇ
�
}⇤
1

� Y1.t; Sn�1.t//C
}⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
tZ

0

.t � s/}⇤
1�1Y1.s; Sn�1.s//ds;

Spn.t/ D
1 � }⇤

2

ˇ
�
}⇤
2

� Y2.t; Spn�1.t//C
}⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1Y2.s; Spn�1.s//ds;

IAn.t/ D
1 � }⇤

3

ˇ
�
}⇤
3

� Y3.t; IAn�1.t//C
}⇤
3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
tZ

0

.t � s/}⇤
3�1Y3.s; IAn�1.s//ds;

Isn.t/ D
1 � }⇤

4

ˇ
�
}⇤
4

� Y4.t; Isn�1.t//C
}⇤
4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
tZ

0

.t � s/}⇤
4�1Y4.s; Isn�1.s//ds;

Qn.t/ D
1 � }⇤

5

ˇ
�
}⇤
5

� Y5.t;Qn�1.t//C
}⇤
5

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
tZ

0

.t � s/}⇤
5�1Y5.s;Qn�1.s//ds;

Rn.t/ D
1 � }⇤

6

ˇ
�
}⇤
6

� Y6.t; Rn�1.t//C
}⇤
6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1Y6.s; Rn�1.s//ds:

Theorem 2. The fractional-order Covid-19 model (1) has a solution provided that

Å D maxf‰ig < 1; i 2 N 6
1 :

Proof. We define the functions

K1n.t/ D SnC1.t/ � S.t/; K2n.t/ D SpnC1.t/ � Sp.t/; K3n.t/ D IAnC1.t/ � IA.t/;

K4n.t/ D IsnC1.t/ � Is.t/; K5n.t/ D QnC1.t/ �Q.t/; K6n.t/ D RnC1.t/ �R.t/:

Thus, by using the above equations, we conclude that

kK1nk  1 � }⇤
1

ˇ
�
}⇤
1

� kY1.t;Sn.t// � Y1.t; Sn�1.t//k

C }⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
tZ

0

.t � s/}⇤
1�1kY1.s; Sn.s// � Y1.t; Sn�1.t//kds
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
"
1 � }⇤

1

ˇ
�
}⇤
1

� C 1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
#
 1kSn � Sk


"
1 � }⇤

1

ˇ
�
}⇤
1

� C 1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
#n

ÅnkS1 � Sk

and

kK2nk  1 � }⇤
2

ˇ
�
}⇤
2

� kY2.t; Spn.t// � Y2.t; Spn�1.t//k

C }⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1kY2.s; Spn.s// � Y2.t; Spn�1.t//kds


"
1 � }⇤

2

ˇ
�
}⇤
2

� C 1

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
#
 2kSpn � Spk


"
1 � }⇤

2

ˇ
�
}⇤
2

� C 1

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
#n

ÅnkSp1 � Spk:

Similarly,

kK3nk  1 � }⇤
3

ˇ
�
}⇤
3

� kY3.t; IAn.t// � Y3.t; IAn�1.t//k

C }⇤
3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
tZ

0

.t � s/}⇤
3�1kY3.s; IAn.s// � Y3.t; IAn�1.t//kds


"
1 � }⇤

3

ˇ
�
}⇤
3

� C 1

ˇ
�
}⇤
1

�
Ä
�
}⇤
3

�
#
 3kIAn � IAk


"
1 � }⇤

3

ˇ
�
}⇤
3

� C 1

ˇ
�
}⇤
1

�
Ä
�
}⇤
3

�
#n

ÅnkIA1 � IAk;

kK4nk  1 � }⇤
4

ˇ
�
}⇤
4

� kY4.t; Isn.t// � Y4.t; Isn�1.t//k

C }⇤
4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
tZ

0

.t � s/}⇤
4�1kY4.s; Isn.s// � Y4.t; Isn�1.t//kds


"
1 � }⇤

4

ˇ
�
}⇤
4

� C 1

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
#
 4kIsn � Isk



A FRACTIONAL ORDER COVID-19 EPIDEMIC MODEL WITH MITTAG–LEFFLER KERNEL 293


"
1 � }⇤

4

ˇ
�
}⇤
4

� C 1

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
#n

ÅnkIs1 � Isk;

kK5nk  1 � }⇤
5

ˇ
�
}⇤
5

� kY5.t;Qn.t// � Y5.t;Qn�1.t//k

C }⇤
5

ˇ
�
}⇤
1

�
Ä
�
}⇤
5

�
tZ

0

.t � s/}⇤
5�1kY5.s;Qn.s// � Y5.t;Qn�1.t//kds


"
1 � }⇤

5

ˇ
�
}⇤
5

� C 1

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
#
 5kQn �Qk


"
1 � }⇤

5

ˇ
�
}⇤
5

� C 1

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
#n

ÅnkQ1 �Qk;

kK6nk  1 � }⇤
6

ˇ
�
}⇤
6

� kY6.t; Rn.t// � Y6.t; Rn�1.t//k

C }⇤
6

ˇ
�
}⇤
1

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1kY6.s; Rn.s// � Y5.t; Rn�1.t//kds


"
1 � }⇤

6

ˇ
�
}⇤
6

� C 1

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
#
 6kRn �Rk


"
1 � }⇤

6

ˇ
�
}⇤
6

� C 1

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
#n

ÅnkR1 �Rk:

Thus, we get K.t/n ! 0; i 2 1; : : : ; 6; as n! 1 for Å < 1; which is the required proof.

3. Uniqueness of Solution

For our suggested model (1), we now analyze the problem of uniqueness of the solution.

Theorem 3. The Covid-19 model (1) has a unique solution if


1 � 'i
ˇ.'i /

C 1

ˇ.'i /Ä.'i /

�
 i  1; i 2 N 6

1 : (14)

Proof. Assume that there exists another solution S.t/; Sc.t/; IA.t/; is.t/; Q.t/; R.t/ such that

S.t/ D 1 � }⇤
1

ˇ
�
}⇤
1

� Y1.t; S.t//C
}⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
tZ

0

.t � s/}⇤
1�1Y1.s; S.s//ds;
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Sp.t/ D
1 � }⇤

2

ˇ
�
}⇤
2

� Y2.t; Sp.t//C
}⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1Y2.s; Sp.s//ds;

IA.t/ D
1 � }⇤

3

ˇ
�
}⇤
3

� Y3.t; IA.t//C
}⇤
3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
tZ

0

.t � s/}⇤
3�1Y3.s; IA.s//ds;

Is.t/ D
1 � }⇤

4

ˇ
�
}⇤
4

� Y4.t; Is.t//C
}⇤
4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
tZ

0

.t � s/}⇤
4�1Y4.s; Is.s//ds;

Q.t/ D 1 � }⇤
5

ˇ
�
}⇤
5

� Y5.t;Q.t//C
}⇤
5

ˇ.}⇤
5 /Ä.}

⇤
5 /

tZ

0

.t � s/}⇤
5�1Y5.s;Q.s//ds;

R.t/ D 1 � }⇤
6

ˇ
�
}⇤
6

� Y6.t; R.t//C
}⇤
6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1Y6.s; R.s//ds:

Thus,

kS.t/ � S.t/k  1 � }⇤
1

ˇ
�
}⇤
1

� kY1.t; S.t// � Y1.t; S.t//k

C }⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
tZ

0

.t � s/}⇤
1�1kY1.s; S.s// � Y1.t; S.t//kds


"
1 � }⇤

1

ˇ
�
}⇤
1

� C 1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
#
 1kS � Sk;

whence it follows that

"
1 � }⇤

1

ˇ
�
}⇤
1

�  1 C
 1

ˇ
�
}⇤
1

�
Ä.}⇤

1 /
� 1

#
kS�Sk � 0: (15)

By virtue of (14), relation (15) is true if

��S � S
�� D 0;

which implies that S.t/ D S.t/: Similarly, we have
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��Sp.t/ � Sp.t/
��  1 � }⇤

2

ˇ
�
}⇤
2

�
��Y2.t; Sp.t// � Y2

�
t; Sp.t/

���

C }⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1

��Y2.s; Sp.s// � Y2.t; Sp.t//
�� ds


"
1 � }⇤

2

ˇ
�
}⇤
2

� C 1

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
#
 2

��SP � Sp
�� ;

"
1 � }⇤

2

ˇ
�
}⇤
2

�  2 C
 2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

� � 1
#
��SP � Sp

�� � 0; (16)

which follows. By virtue of (14), inequality (16) is true for kSp � Spk D 0; which implies that Sp.t/ D Sp.t/:

Further, for IA; we obtain

��IA.t/ � IA.t/
��  1 � }⇤

3

ˇ
�
}⇤
3

�
��Y3.t; IA.t// � Y3.t; IA.t//

��

C }⇤
3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
tZ

0

.t � s/}⇤
3�1

��Y3.s; IA.s// � Y3.t; IA.t//
�� ds


"
1 � }⇤

3

ˇ
�
}⇤
3

� C 1

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
#
 3

��IA � IA
�� :

This gives
"
1 � }⇤

3

ˇ
�
}⇤
3

�  3 C
 3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

� � 1
#
��IA � IA

�� � 0: (17)

Thus, in view of (14), inequality (17) is true if kIA � IAk D 0; which means that IA.t/ D IA.t/ and, therefore,

��Is.t/ � Is.t/
��  1 � }⇤

4

ˇ
�
}⇤
4

�
��Y4.t; Is.t// � Y4.t; Is.t//

��

C }⇤
4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
tZ

0

.t � s/}⇤
4�1

��Y4.s; Is.s// � Y4.t; Is.t//
�� ds


"
1 � }⇤

4

ˇ
�
}⇤
4

� C 1

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
#
 4

��Is � Is
�� :

Hence, we get
"
1 � }⇤

4

ˇ
�
}⇤
4

�  4 C
 4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

� � 1
#
��Is�Is

�� � 0: (18)
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By virtue of (14), inequality (18) is true if kIs � Isk D 0: This yields Is.t/ D Is.t/: Further, forQ; we obtain

��Q.t/ �Q.t/
��  1 � }⇤

5

ˇ
�
}⇤
5

�
��Y5.t;Q.t// � Y5.t;Q.t//

��

C }⇤
5

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
tZ

0

.t � s/}⇤
5�1

��Y5.s;Q.s// � Y5
�
t;Q.t/

��� ds


"
1 � }⇤

5

ˇ
�
}⇤
5

� C 1

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
#
 5

��Q �Q
�� :

This yields

"
1 � }⇤

5

ˇ
�
}⇤
5

�  5 C
 5

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

� � 1
#
��Q �Q

�� � 0;

��R.t/ �R.t/
��  1 � }⇤

6

ˇ
�
}⇤
6

�
��Y6.t; R.t// � Y6.t; R.t//

��

C }⇤
6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1

��Y6.s; R.s// � Y6.t; R.t//
�� ds


"
1 � }⇤

6

ˇ
�
}⇤
6

� C 1

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
#
 6

��R �R
�� :

Therefore,

"
1 � }⇤

6

ˇ
�
}⇤
6

�  6 C
 6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

� � 1
#
��R �R

�� � 0: (19)

By virtue of (14), this implies that relation (19) is true if kR � Rk D 0; which means that R.t/ D R.t/: Thus,
model (1) has a unique solution.

4. Hyers–Ulam Stability

Definition 4. The integral system (8)–(13) is Hyers–Ulam stable if, forÅi > 0; i 2 N 6
1 ; and �i > 0; i 2 N 6

1 ;

we have

ˇ̌
ˇ̌
ˇ̌S.t/ �

1 � }⇤
1

ˇ
�
}⇤
1

� Y1.t; S.t// �
}⇤
1

ˇ
�
}⇤
1

�
Ä.}⇤

1 /

tZ

0

.t � s/}⇤
1�1Y1.s; S.s//ds

ˇ̌
ˇ̌
ˇ̌  �1;

ˇ̌
ˇ̌
ˇ̌Sp.t/ �

1 � }⇤
2

ˇ
�
}⇤
2

� Y2.t; Sp.t// �
}⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1Y2.s; Sp.s//ds

ˇ̌
ˇ̌
ˇ̌  �2;
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ˇ̌
ˇ̌
ˇ̌IA.t/ �

1 � }⇤
3

ˇ
�
}⇤
3

� Y3.t; IA.t// �
}⇤
3

ˇ
�
}⇤
3

�
Ä
�
}⇤
3

�
tZ

0

.t � s/}⇤
3�1Y3.s; IA.s//ds

ˇ̌
ˇ̌
ˇ̌  �3;

ˇ̌
ˇ̌
ˇ̌Is.t/ �

1 � }⇤
4

ˇ
�
}⇤
4

� Y4.t; Is.t// �
}⇤
4

ˇ
�
}⇤
4

�
Ä.}⇤

4 /

tZ

0

.t � s/}⇤
4�1Y4.s; Is.s//ds

ˇ̌
ˇ̌
ˇ̌  �4;

ˇ̌
ˇ̌
ˇ̌Q.t/ �

1 � }⇤
5

ˇ
�
}⇤
5

� Y5.t;Q.t// �
}⇤
5

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
tZ

0

.t � s/}⇤
5�1Y5.s;Q.s//ds

ˇ̌
ˇ̌
ˇ̌  �5;

ˇ̌
ˇ̌
ˇ̌R.t/ �

1 � }⇤
6

ˇ
�
}⇤
6

� Y6.t;Q.t// �
}⇤
6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1Y6.s; R.s//ds

ˇ̌
ˇ̌
ˇ̌  �5:

Further, for PS.t/; PSp.t/; PIA.t/; PIs.t/; PQ.t/; PR.t/; we get

PS.t/ D 1 � }⇤
1

ˇ
�
}⇤
1

� Y1.t; PS.t//C
}⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
tZ

0

.t � s/}⇤
1�1Y1.s; PS.s//ds;

PSp.t/ D
1 � }⇤

2

ˇ
�
}⇤
2

� Y2.t; PSp.t//C
}⇤
2

ˇ
�
}⇤
2

�
Ä
�
}⇤
2

�
tZ

0

.t � s/}⇤
2�1Y2.s; PSp.s//ds;

PIA.t/ D
1 � }⇤

3

ˇ
�
}⇤
3

� Y3.t; PIA.t//C
}⇤
3

ˇ
�
}⇤
3

�
Ä.}⇤

3 /

tZ

0

.t � s/}⇤
3�1Y3

�
s; PIA.s/

�
ds;

PIs.t/ D
1 � }⇤

4

ˇ
�
}⇤
4

� Y4

�
t; PIs.t/

�
C }⇤

4

ˇ
�
}⇤
4

�
Ä
�
}⇤
4

�
tZ

0

.t � s/}⇤
4�1Y4

�
s; PIs.s/

�
ds;

PQ.t/ D 1 � }⇤
5

ˇ
�
}⇤
5

� Y5.t; PQ.t//C }⇤
5

ˇ
�
}⇤
5

�
Ä
�
}⇤
5

�
tZ

0

.t � s/}⇤
5�1Y5

�
s; PQ.s/

�
ds;

PR.t/ D 1 � }⇤
6

ˇ
�
}⇤
6

� Y6

�
t; PR.t/

�
C }⇤

6

ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ

0

.t � s/}⇤
6�1Y6

�
s; PR.s/

�
ds

such that

ˇ̌
S.t/ � PS.t/

ˇ̌
 ı1�1;

ˇ̌
Sp.t/ � PSp.t/

ˇ̌
 ı2�2;

ˇ̌
IA.t/ � PIA.t/

ˇ̌
 ı3�3;
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ˇ̌
Is.t/ � PIs.t/

ˇ̌
 ı4�4;

ˇ̌
Q.t/ � PQ.t/

ˇ̌
 ı5�5;

ˇ̌
R.t/ � PR.t/

ˇ̌
 ı6�6:

Theorem 4. If Assumption .B/ is satisfied, then model (1) is Hyers–Ulam-stable.

Proof. By Theorem 3, the Covid-19 model (1) has a unique solution, say, S.t/; Sp.t/; IA.t/; Is.t/; Q.t/;
R.t/: Let

� PS.t/; PSp.t/; PIA.t/; PIs.t/; PQ.t/; PR.t/
�
be an approximate solution of (1) satisfying (8)–(13). Thus, we

get

��S.t/ � PS.t/
��  1 � }⇤

1

ˇ
�
}⇤
1

�
��Y1.t; S.t// � Y1

�
t; PS.t/

���

C }⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
tZ

0

.t � s/}⇤
1�1

��Y1.s; S.s// � Y1
�
t; PS.t/

��� ds


"
1 � }⇤

1

ˇ
�
}⇤
1

� C 1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
#
 1kS � PSk:

If we take �1 D  1 and

Å D 1 � }⇤
1

ˇ
�
}⇤
1

� C }⇤
1

ˇ
�
}⇤
1

�
Ä
�
}⇤
1

� ;

then we get

��S.t/ � PS.t/
��  �1Å1:

Similarly, for Sp.t/; PSp.t/; IA.t/; PIA.t/; Is.t/; PIs.t/; Q.t/; PQ.t/; R.t/; PR.t/; we get
��Sp.t/ � PSp.t/

��  �2Å2;

��IA.t/ � PIA.t/
��  �3Å3;

��Is.t/ � PIs.t/
��  �4Å4;

��Q.t/ � PQ.t/
��  �5Å5;

��R.t/ � PR.t/
��  �6Å6:

This implies that system (1) is Hyers–Ulam stable, which ultimately ensures the stability of (1).
This completes the proof.
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5. Numerical Scheme

By using (2)–(7), we produce the following numerical scheme:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

ABC
0 D}⇤

1

t S.t/ D Y1.t; S/;

ABC
0 D}⇤

2

t Sp.t/ D Y2.t; Sp/;

ABC
0 D}⇤

3

t IA.t/ D Y3.t; IA/;

ABC
0 D}⇤

4

t Is.t/ D Y4.t; Is/;

ABC
0 D}⇤

5

t Q.t/ D Y5.t;Q/;

ABC
0 D}⇤

6

t R.t/ D Y6.t; R/:

(20)

With the help of the fractional AB-integral operator, relations (20) take the following form:
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ˇ
�
}⇤
1

� Y1.t; S/C
}⇤
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�
}⇤
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�
Ä
�
}⇤
1

�
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0

.t � s/}⇤
1�1Y1.s; S/ds;
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1 � }⇤
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�
}⇤
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�
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4
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}⇤
4
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}⇤
4

ˇ
�
}⇤
4

�
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�
}⇤
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�
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0

.t � s/}⇤
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�
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}⇤
5

ˇ
�
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5

�
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�
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�
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.t � s/}⇤
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6

ˇ
�
}⇤
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� Y6.t; R/C
}⇤
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ˇ
�
}⇤
6

�
Ä
�
}⇤
6

�
tZ
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.t � s/}⇤
6�1Y6.s; R/ds:

Dividing the assumed interval Œ0; t ç into subintervals with the help of points tmC1; for m D 0; 1; 2 : : : ; we
obtain

S.tmC1/ � S.0/ D
1 � }⇤

1

ˇ
�
}⇤
1

� Y1.tm; S/C
}⇤
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ˇ
�
}⇤
1

�
Ä
�
}⇤
1

�
nX

kD0

tkC1Z

tk

.tmC1 � s/}
⇤
1�1Y1.s; S/ds;
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Fig. 1. Comparative analysis for the S.t/ and SP .t/ and the following orders: 1:0; 0:99; 0:98; and 0:97:
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Now, by using Lagrange’s interpolation, we get
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Fig. 3. Comparative analysis of the SP .t/ for the orders 1:0; 0:99; 0:98; and 0:97:
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Fig. 4. Comparative analysis of the I.t/ for the orders 1:0; 0:99; 0:98; and 0:97:
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This numerical scheme helps us to predict the role of protected susceptible persons, which was practically
exercised in various nations as a control strategy. Although this strategy has the worst effect on the economy of a
nation, it is essential to curtail the process of spread of the infection of lethal Covid-19. The sensitivity analysis
was given in [36]. It shows that the role of this strategy is very much effective in the curtail of the spread process.

5.1. Numerical Results. In this section, we provide a detail of numerical results related to the model with
the data available from the literature. The parameters and initial data were taken from the available literature. The
initial values are as follows: S.0/ D 59300000; SP .0/ D 0; IS .0/ D 0; Q.0/ D 0; IA.0/ D 2079; R.0/ D 903;

and the values of parameters are as follows: ˛1 D 0:0008; ˛2 D 0:1; eta1 D 0:25; ⇢ D 0:0001; ⌘2 D 0;

⌘3 D 0:385; r1 D 0:2976; r2 D 0; � D 0; r3 D 0:2976; � D 0:00236=90; ı D 0:017=90; ˛3 D 1; and
ƒ1 D 296425:875=90 [36].

In Fig. 1, we present a joint comparative simulation for the two classes S.t/ and SP .t/ for the following orders:
1:0; 0:99; 0:98; 0:97: In Fig. 2, we present a graphical study of the S.t/ class for various orders 1:0; 0:99; 0:98;
and 0:97 for a long period of 5000 days. There is a decrease in the population of the class. Moreover, as the order
decreases, a relatively large decrease is observed in the population while the behavior of the class remains similar.
Figure 3 shows the comparative analysis of the SP .t/ for the indicated orders and a gradual increase can be seen
in the graph.
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Fig. 5. Comparative analysis of the IS .t/ for the orders 1:0; 0:99; 0:98; and 0:97:

In Fig. 4, we present the plots for the infected population, which show an increase detected up to 300 days
and a decrease observed after 300–600 days. In Fig. 5, we show a numerical representation of the class IS .t/ for
various orders, whereas Fig. 6 displays the plots for the R.t/ class.

6. Conclusions

In the present article, we focus on the theoretical and computational studies of the fractional-order Covid-19
model in the ABC-sense of derivative. The existence and uniqueness results were carried out with the help of
an iterative sequential approach with limit point as the solution of the suggested model (1). We also estimated
the Hyers–Ulam stability and a numerical scheme was obtained on the basis of Lagrange’s interpolation. The
numerical scheme was then tested and very similar results, like the integer order, were obtained. The numerical
results were interpreted with the help of six graphs. The details are as follows: In Fig. 1, we present a joint
comparative simulation for the two classes S.t/ and SP .t/ and the orders 1:0; 0:99; 0:98; and 0:97: In Fig. 2, we
present a graphical study of the S.t/ class for various orders 1:0; 0:99; 0:98; and 0:97 for a long time of 5000
days. There is a decrease in the population of the analyzed class. Moreover, as the order decreases, we observe a
relatively large decrease in the population, while the behavior of the class remains similar. In Fig. 3, we show the
comparative analysis of the class SP .t/ for the mentioned orders and a gradual increase can be seen in the graph.
Figure 4 is for the infected population and shows an increase for up to 300 days followed by a decrease observed
after 300–600 days. Figure 5 shows a numerical representation of the class IS .t/ for the various orders. Finally,
Fig. 6 shows the behavior of the R.t/ class. The reader of the paper can work on the comparative analysis of
different fractional operators for higher accuracy and better results.
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Fig. 6. Comparative analysis of the R.t/ for the orders 1:0; 0:99; 0:98; and 0:97:
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