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Abstract
In this paper, we first provide a short summary of the main properties of the so-called general fractional 
derivatives with the Sonin kernels introduced so far. These are integro-differential operators defined as 
compositions of the first order derivative and an integral operator of convolution type. Depending on suc-
cession of these operators, the general fractional derivatives of the Riemann-Liouville and of the Caputo 
types were defined and studied. The main objective of this paper is a construction of the 1st level general 
fractional derivatives that comprise both the general fractional derivative of the Riemann-Liouville type 
and the general fractional derivative of the Caputo type. We also provide some of their properties includ-
ing the 1st and the 2nd fundamental theorems of Fractional Calculus for these derivatives and the suitably 
defined general fractional integrals.
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Introduction

In the framework of the theory of integrals and derivatives of non-integer order (Fractional Calculus or FC), a lot of 
attention has recently been attracted by the so-called general fractional integrals and derivatives with the Sonin kernels. 
These kernels were introduced by Sonin in [1] as a natural generalization of the following pair of the power law kernels

where h� is a power law function defined by the formula

(1)𝜅(t) = h𝛼(t), k(t) = h1−𝛼(t), 0 < 𝛼 < 1,

(2)h𝛼(t) ∶=
t𝛼−1

Γ(𝛼)
, 𝛼 > 0.
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In the papers [2, 3], Abel employed the property

of the kernels h� and h1−� (by ∗ we denote the Laplace convolution and by {1} the function that is identically equal to one 
for t > 0 ) to derive a closed form solution formula for an integral equation nowadays known as the Abel integral equation:

Its solution (derived by Abel formally and in the slightly different notations) has the well-known form:

In [1], Sonin used Abel’s method to (formally) solve the integral equation

with a kernel � that possesses an associated kernel k satisfying the following condition (compare it to the property (3)):

The relation (7) is nowadays referred to as the Sonin condition and the kernels � and k satisfying this condition are called 
the Sonin kernels.
Sonin’s solution to the equation (6) looks very similar to Abel’s solution (5) with the only difference that the power law 
kernel h1−� is replaced by the kernel k associated to the kernel �:

Another important contribution of Sonin to this subject was a construction of a general class of the Sonin kernels in form 
of the products of the power law functions and analytical functions. In particular, we mention a famous pair of the Sonin 
kernels that was derived in [1]:

where J� and I� are the Bessel and the modified Bessel functions, respectively.
In the modern FC, the right-hand side of the Abel integral equation (4) is referred to as the Riemann–Liouville fractional 
integral of the order 𝛼, 𝛼 > 0

and the right-hand side of the Abel solution formula (5) is called the Riemann–Liouville fractional derivative of the order 
𝛼, 0 ≤ 𝛼 < 1:

For � = 0 , the Riemann–Liouville fractional integral is defined as the identity operator (of course, this definition is not 
arbitrary, but follows from the properties of the operator I�

0+
 as � → 0+):

(3)(h𝛼 ∗ h1−𝛼)(t) = ∫
t

0

h𝛼(t − 𝜏) h1−𝛼(𝜏) d𝜏 = h1(t) = {1}, t > 0, 0 < 𝛼 < 1

(4)f (t) =
1

Γ(𝛼) ∫
t

0

(t − 𝜏)𝛼−1𝜙(𝜏) d𝜏, t > 0, 0 < 𝛼 < 1.

(5)𝜙(t) =
d

dt

1

Γ(1 − 𝛼) ∫
t

0

(t − 𝜏)−𝛼f (𝜏) d𝜏, t > 0.

(6)f (t) = (𝜅 ∗ 𝜙)(t) = ∫
t

0

𝜅(t − 𝜏)𝜙(𝜏) d𝜏, t > 0

(7)(𝜅 ∗ k)(t) = ∫
t

0

𝜅(t − 𝜏) k(𝜏) d𝜏 = h1(t) = {1}, t > 0.

(8)𝜙(t) =
d

dt
(k ∗ f )(t) =

d

dt ∫
t

0

k(t − 𝜏)f (𝜏) d𝜏, t > 0.

(9)𝜅(t) = (
√

t)𝛼−1J𝛼−1(2
√

t), k(t) = (
√

t)−𝛼I−𝛼(2
√

t), 0 < 𝛼 < 1,

(10)(I𝛼
0+

f )(t) ∶= (h𝛼 ∗ f )(t) =
1

Γ(𝛼) ∫
t

0

(t − 𝜏)𝛼−1f (𝜏) d𝜏, t > 0

(11)(D𝛼

0+
f )(t) ∶=

d

dt
(I1−𝛼
0+

f )(t), t > 0.
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In its turn, the formula

is nothing else as the 1st fundamental theorem of calculus.
In the framework of the Sonin kernels, the above relations are direct consequences from the Sonin condition (3) extended 
to the case � = 0:

Of course, the formula (14) has to be interpreted in the sense of the generalized functions (the function h0 plays the role 
of the Dirac �-function).
It is worth mentioning that in the theory of the fractional differential equations, another kind of the fractional derivatives 
is nowadays often employed ( 0 ≤ 𝛼 < 1):

This operator is usually referred to as the Caputo fractional derivative of the order 𝛼, 0 ≤ 𝛼 < 1 even if it was introduced 
and treated by several mathematicians before publications by Caputo and even if Caputo did not in fact consider this form 
of the operator and worked with it in the Laplace domain.
One more form of the fractional derivatives has recently become a subject of active research in FC and its applications. 
This derivative is defined as follows:

The operator (16) is usually referred to as the generalized Riemann–Liouville fractional derivative or the Hilfer fractional 
derivative of order � and type � even if it is a particular case of the fractional derivatives introduced by Djrbashian and 
Nersessian in [4], see also [5]. For the properties of this fractional derivative we refer to [6] and subsequent publications 
[7–9].
For � = 0 , this fractional derivative is reduced to the Riemann–Liouville fractional derivative of order � , whereas for 
� = 1 it coincides with the Caputo fractional derivative of order �:

Thus, treating the fractional derivative D�,�

0+
 and the differential equations with this derivative allows avoiding a duplica-

tion of work, namely, a separate consideration of the Riemann–Liouville and the Caputo fractional derivatives and the 
fractional differential equations with these derivatives.
In [10], Kochubei interpreted the operators (6) and (8) with the Sonin kernels � and k as the general fractional integral 
(GFI) and the general fractional derivative (GFD), respectively:

Kochubei defined also another type of the GFD in the form

(12)(I0
0+

f )(t) ∶= f (t), t > 0.

(13)(D0
0+

f )(t) =
d

dt
(I1
0+

f )(t) = f (t), t > 0

(14)h0 ∗ h1 = h1.

(15)(∗D
𝛼

0+
f )(t) ∶= (I1−𝛼

0+
f �)(t) = (D𝛼

0+
f )(t) − f (0)h1−𝛼(t), t > 0.

(16)(D
𝛼,𝛽

0+
f )(t) = (I

𝛽(1−𝛼)

0+

d

dt
I
(1−𝛼)(1−𝛽)

0+
f )(t), 0 ≤ 𝛼 < 1, 0 ≤ 𝛽 ≤ 1.

(17)(D
𝛼,0

0+
f )(x) = (I0

0+

d

dt
I1−𝛼
0+

f )(t) =
d

dt
(I1−𝛼
0+

f )(t) = (D𝛼

0+
f )(t), 0 ≤ 𝛼 < 1,

(18)(D
𝛼,1

0+
f )(t) = (I1−𝛼

0+

d

dt
I0
0+

f )(t) = (I1−𝛼
0+

d

dt
f )(t) = (∗D

𝛼

0+
f )(t), 0 ≤ 𝛼 < 1.

(19)(�(𝜅) f )(t) ∶= (𝜅 ∗ f )(t) = ∫
t

0

𝜅(t − 𝜏)f (𝜏) d𝜏, t > 0,

(20)(�(k) f )(t) ∶=
d

dt
(k ∗ f )(t) =

d

dt
(�(k) f )(t), t > 0.
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For a function f whose first order derivative is integrable, the operator ∗�(k) can be represented as follows:

In the case of the power law kernel k(t) = h1−𝛼(t), 0 ≤ 𝛼 < 1 , this representation is often used as a definition of the Caputo 
fractional derivative of the order �.
In [10] and in the subsequent publications devoted to the same topic, the integral operator (19) was called the GFI, whereas 
the integro-differential operators (20) and (21) (or (22)) were referred to as the GFDs of the Riemann-Liouville and of 
the Caputo types, respectively.
In [10], mainly the GFD of the Caputo type was treated. In particular, this derivative with the kernels from a special class 
K was shown to be a left inverse operator to the GFI (19) with the Sonin kernel � associated to the kernel k of the GFD 
(21). Moreover, in [10], some important properties of the solutions to the fractional relaxation equation and to the Cauchy 
problem for the time-fractional diffusion equation with the GFD of the Caputo type (21) were investigated in detail.
Recently, a series of papers devoted to the GFI and the GFDs of the Riemann-Liouville and Caputo types with the Sonin 
kernels that possess an integrable singularity of power function type at the point zero has been published. In [11], these 
operators were studied on the space of functions that are continuous on the real positive semiaxis and have an integrable 
singularity of power function type at point zero and its suitable subspaces. In [12], the GFDs of arbitrary order of the 
Riemann-Liouville and Caputo types were introduced and investigated. These operators extend the definitions (20) and 
(21) that correspond to the “generalized order” of the derivatives between zero and one to the case of any positive real 
order. An important subclass of the kernels of the GFDs of arbitrary order was suggested in [13]. The Cauchy problems for 
the fractional differential equations were considered in [14] in the case of the GFDs of the Caputo type and in [15, 16] in 
the case of the GFDs of the Riemann-Liouville type. We also mention the papers [17–19], where the theory presented in 
[11–16, 20] was applied for the formulation of a general fractional dynamics, a general non-Markovian quantum dynam-
ics, and a general fractional vector calculus, respectively.
The current situation with the GFDs is very similar to the one with the Riemann–Liouville and the Caputo fractional 
derivatives. Namely, in the publications devoted to this topic, the case of the GFDs of the Riemann-Liouville type and the 
case of the GFDs of the Caputo type were treated separately from each other. The main result of this paper is a construc-
tion of the GFDs that unify and generalize these two important types of the GFDs. Following [5], where the case of the 
power law kernels was considered, we call these operators the 1st level GFDs. These operators are compositions of two 
special GFIs and one first order derivative. This construction can be extended to the compositions of the n + 1 GFIs and 
n first order derivatives following the procedure suggested in [4] for the case of the Riemann-Liouville integrals and then 
adopted in [5] in connection to the fundamental theorems of FC formulated for these operators. These extended operators 
are called the nth level GFDs; they will be considered elsewhere.
The rest of the paper is organized as follows: In the second section, we provide a short summary of the basic results already 
derived in the literature for the GFDs of the Riemann-Liouville and Caputo types. The main results are presented in the 
third section, where the 1st level GFDs are introduced and investigated. In particular, we formulate and prove the first and 
the second fundamental theorems of FC for these operators and a suitably defined GFI. We also present a formula for the 
projector operator for the 1st level GFDs that comprises the form of the natural initial conditions for the fractional differ-
ential equations with these derivatives. Finally, in the fourth section, some discussions and directions for further research 
are presented. In particular, there we suggest a construction of the nth level GFDs that will be discussed elsewhere in detail.

Basic properties of the general fractional integrals and derivatives

The GFI (19), the GFD of the Riemann-Liouville type (20), and the GFD of the Caputo type (21) with the Sonin kernels 
� and k are a far reaching generalization of the Riemann-Liouville fractional integral (10) and the Riemann-Liouville 
and the Caputo fractional derivatives (11) and (15), respectively, with the power law kernels 𝜅(t) = h𝛼(t), 0 < 𝛼 < 1 and 
k(t) = h1−𝛼(t), 0 < 𝛼 < 1 . Because of the Sonin condition (7), the “generalized orders” of the GFI (19) and the GFDs (20) 
and (21) with the Sonin kernels � and k are between zero and one. In [12], an extension of the Sonin condition as well as 

(21)(∗�(k) f )(t) ∶= (�(k) f )(t) − f (0)k(t), t > 0.

(22)(∗�(k) f )(t) = (�(k) f
�)(t), t > 0.
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the suitable definitions of the GFI and the GFDs of arbitrary order have been suggested. However, in this paper, we restrict 
ourselves to the case of the GFI (19) and the GFDs (20) and (21) with the Sonin kernels � and k.
Another important remark is that the general framework of the GFI (19) and the GFD (20) has been suggested by Sonin 
in [1] without any connection to FC. Sonin presented his results in the spirit of that time, i.e., without introducing any 
spaces of functions and without providing conditions for validity of his derivations and the final formulas. In [10], for the 
first time, Kochubei treated these matters mathematically rigorously. In particular, he introduced a very important class 
K of the Sonin kernels and provided analysis of the operators (19), (20), and (21) with the kernels from this class on the 
suitable spaces of functions.
In the recent publications [11, 12, 14–16, 20], another important class L1 of the Sonin kernels has been suggested. Moreo-
ver, in these publications, the GFI and the GFDs with the kernels from this class have been investigated on the spaces of 
functions continuous on the positive real semi-axes that can have a power law singularity at the origin and its subspaces. 
In this paper, we follow and extend this approach to the GFI and the GFDs with the Sonin kernels.

Definition 2.1  ([11]) Let the functions � and k satisfy the Sonin condition (7) and the inclusions � ∈ C−1(0,+∞) and 
k ∈ C−1(0,+∞) , where the space of functions C−1(0,+∞) is defined as follows:

The set of pairs (�, k) of such kernels is denoted by L1.

It is worth mentioning that the kernels of the most time-fractional derivatives and integrals introduced so far belong to 
the set L1 . In particular, the kernels of the Riemann-Liouville fractional integral and derivative, h� and h1−� , respectively, 
are from L1 if 0 < 𝛼 < 1.
An important subset of L1 was introduced by Sonin in [1]:

where �1 = �1(t) has an infinite convergence radius and

where the coefficients bk, k ∈ ℕ0 are uniquely determined by the coefficients ak, k ∈ ℕ0 as solutions to the following 
triangular system of linear equations:

In particular the kernels (9) provided in terms of the Bessel and the modified Bessel functions are from the class L1 . 
Another example of this type was presented in [21]:

where the function h�,� is defined by

Finally, let us mention a pair of the Sonin kernels from L1 derived in [22]:

(23)C−1(0,+∞) ∶= {f ∶ f (t) = tpf1(t), t > 0, p > −1, f1 ∈ C[0,+∞)}.

(24)𝜅(t) = h𝛼(t) ⋅ 𝜅1(t), 𝜅1(t) =

+∞
∑

k=0

akt
k, a0 ≠ 0, 0 < 𝛼 < 1,

(25)k(t) = h1−�(t) ⋅ k1(t), k1(t) =

+∞
∑

k=0

bkt
k,

(26)a0b0 = 1,

n
∑

k=0

Γ(k + 1 − �)Γ(� + n − k)an−kbk = 0, n ≥ 1.

(27)𝜅(t) = h𝛼,𝜌(t), 0 < 𝛼 < 1, 𝜌 ≥ 0,

(28)k(t) = h1−�,�(t) + � ∫
t

0

h1−�,�(�) d�,

(29)h𝛼,𝜌(t) =
t𝛼−1

Γ(𝛼)
e−𝜌t, 𝛼 > 0, 𝜌 ∈ ℝ, t > 0.
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where E�,� stands for the two-parameters Mittag-Leffler function defined by the following convergent series:

In the rest of this section, we shortly present some properties of the GFI and the GFDs with the kernels from L1 on the 
space C−1(0,+∞) and its suitable subspaces.
The basic properties of the GFI (19) on the space C−1(0,+∞) immediately follow from the known properties of the Laplace 
convolution and a theorem provided below.

Theorem 2.1  ([23]) The triple R−1 = (C−1(0,+∞),+, ∗) with the usual addition + and multiplication ∗ in form of the 
Laplace convolution is a commutative ring without divisors of zero.

In particular, the following relations hold true on the space C−1(0,+∞) ([11]):

According to the axioms of FC discussed in [24], a fractional derivative is an operator left inverse to the corresponding 
fractional integral. This property is fulfilled both for the GFD of the Riemann-Liouville type (20) and for the GFD of the 
Caputo type (21).

Theorem 2.2  ([11]) Let � ∈ L1 and k be its associated Sonin kernel.

Then, the GFD of the Riemann-Liouville type (20) is a left inverse operator to the GFI (19) on the space C−1(0,+∞):

and the GFD of the Caputo type (21) is a left inverse operator to the GFI (19) on the space C−1,(k)(0,+∞):

where

The statement formulated in Theorem 2.2 is usually referred to as the 1st fundamental theorem of FC for the GFDs (see 
[5] for a discussion of the 1st and the 2nd fundamental theorems of FC for several different kinds of the fractional deriva-
tives). As we see, it is valid both for the GFD of the Riemann-Liouville type (20) and for the GFD of the Caputo type 
(21). However, the spaces of functions, where these GFDs are left inverse to the GFI are very different. The same is of 
course valid for the conventional Riemann-Liouville and Caputo fractional derivatives. It is worth mentioning that the 
space C−1,(k)(0,+∞) defined by (38) can be also characterized as follows ([11]):

where the space C1
−1
(0,+∞) is defined by

(30)𝜅(t) = h1−𝛽+𝛼(t) + h1−𝛽(t), 0 < 𝛼 < 𝛽 < 1,

(31)k(t) = t�−1 E�,�(−t
�),

(32)E𝛼,𝛽(z) =

+∞
∑

k=0

zk

Γ(𝛼 k + 𝛽)
, 𝛼 > 0, 𝛽, z ∈ ℂ.

(33)�(�) ∶ C−1(0,+∞) → C−1(0,+∞), � ∈ L1 (mapping property) ,

(34)�(�1)
�(�2)

= �(�2)
�(�1)

, �1, �2 ∈ L1 (commutativity law) ,

(35)�(�1)
�(�2)

= �(�1∗�2)
, �1, �2 ∈ L1 (index law) .

(36)(�(k) �(𝜅) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0,

(37)(∗�(k) �(𝜅) f )(t) = f (t), f ∈ C−1,(k)(0,+∞), t > 0,

(38)C−1,(k)(0,+∞) ∶= {f ∶ f (t) = (�(k) �)(t), � ∈ C−1(0,+∞)}.

C−1,(k)(0,+∞) = {f ∶ �(�)f ∈ C1
−1
(0,+∞) ∧ (�(�) f )(0) = 0},
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This representation of the space C−1,(k)(0,+∞) is a generalization of the known property

of the spaces of functions employed while treating the Abel integral equation (Theorem 2.3 in [25]) to the case of the 
GFI with the Sonin kernel � ∈ L1.
The GFD of the Riemann-Liouville type (11) is also a right inverse operator to the GFI (19) on the space C−1,(�)(0,+∞) , 
where � is the Sonin kernel associated to the kernel k of the GFD. Indeed, in this case, we have the representation 
f (t) = (�(�) �)(t), � ∈ C−1(0,+∞) that leads to the following chain of equations:

However, it is not the case if one considers the GFD of the Riemann-Liouville type (11) on its natural domain

The inclusion C−1,(𝜅)(0,+∞) ⊂ C1
−1,(k)

(0,+∞) follows from Theorem  2.2. For the 1st order derivative, the space 
C1
−1,(k)

(0,+∞) corresponds to the space of the continuously differentiable functions, whereas the space C−1,(�)(0,+∞) 
consists of all functions that can be represented as integrals of continuous functions.
Now, we proceed with the 2nd fundamental theorems of FC for the GFD of the Riemann-Liouville type �(k) and for the 
GFD of the Caputo type ∗�(k) , respectively.

Theorem 2.3  ([20]) Let � ∈ L1 and k be its associated Sonin kernel.

For a function f ∈ C1
−1,(k)

(0,+∞) , the formula

holds valid.

In the case of the Riemann-Liouville fractional derivative (11) of order 𝛼, 0 < 𝛼 < 1 , the kernel function k is the power law 
function h1−� and its associated kernel � is the function h� . The formula (41) takes the well-known form (see, e.g., [25]):

Theorem 2.4  ([11]) Let � ∈ L1 and k be its associated Sonin kernel.

Then, the relation

holds valid on the space C1
−1
(0,+∞) defined as in (39).

For the properties of the space C1
−1
(0,+∞) we refer to [23]. For the Caputo fractional derivative (15) of order 𝛼, 0 < 𝛼 < 1 , 

the formula (43) is well-known (see, e.g., [23]):

(39)C1
−1
(0,+∞) = {f ∈ C−1(0,+∞) ∶ f � ∈ C−1(0,+∞)}.

{

f ∶ f = I1−�
0+

�, � ∈ L1(0, 1)
}

=
{

f ∶ I�
0+
f ∈ AC ([0, 1]) ∧ (I�

0+
f )(0) = 0

}

(�(�) �(k) f )(t) = (�(�)
d

dt
(k ∗ f )(t) = (�(�)

d

dt
(k ∗ (� ∗ �))(t) =

(�(�)
d

dt
({1} ∗ �))(t) = (�(�) �)(t) = f (t).

(40)C1
−1,(k)

(0,+∞) = {f ∈ C−1(0,+∞) ∶
d

dt
�(k) f ∈ C−1(0,+∞)}.

(41)(�(𝜅) �(k) f )(t) = f (t) − (k ∗ f )(0)𝜅(t) = f (t) − (�(k) f )(0)𝜅(t), t > 0

(42)(I𝛼
0+

D𝛼

0+
f )(t) = f (t) − (I1−𝛼

0+
f )(0)h𝛼(t), t > 0.

(43)(�(𝜅) ∗�(k) f )(t) = f (t) − f (0), t > 0
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Remark 2.1  The results presented in Theorem 2.3 and in Theorem 2.4 can be reformulated in terms of the projector opera-
tors of the GFDs of the Riemann-Liouville and Caputo types, respectively:

The right-hand sides of the formulas (45) and (46) determine the natural initial conditions that should be posed while 
dealing with the initial-value problems for the fractional differential equations with the GFDs of the Riemann-Liouville 
and Caputo types, respectively.

We refer to [15, 16] for the results related to the fractional differential equations with the GFDs of the Riemann-Liou-
ville type and to [10, 14, 26–28] for analysis of the fractional differential equations with the GFDs of the Caputo type.

It is also worth mentioning that the relation (14) can be employed for an extension of the definitions of the GFDs of the 
Riemann-Liouville and Caputo types to the case of the kernel h0 and of the definition of the GFI to the case of the kernels 
h0 and h1 that are the Sonin kernels in the generalized sense:

The 1st level general fractional derivatives

In this section, we introduce the 1st level GFDs and investigate their basic properties. We start with defining a suitable 
generalization of the Sonin kernels.

Definition 3.1  The functions �, k1, k2 ∈ C−1(0,+∞) that satisfy the condition

are called the 1st level kernels of the GFDs.

In what follows, the set of the triples (�, k1, k2) of the 1st level kernels will be denoted by L1
1
 (the denotation Lm

n
 stands for 

the set of the kernels of the mth level GFDs with the generalized order from the interval (n − 1, n) and we set L0
n
∶= Ln ). 

Because the Laplace convolution is commutative, the triples of the kernels from L1
1
 are unordered. However, we agree to 

associate the first kernel � with the GFI defined by (19) (strictly speaking, this operator cannot be called the GFI anymore 
because its kernel � is not a Sonin kernel) and the kernels k1 and k2 with a suitably defined GFD of the 1st level. Another 
important remark is that any of the kernels from the triple (�, k1, k2) is unique as soon as two other kernels are fixed. This 
follows from the property that the ring R−1 = (C−1(0,+∞),+, ∗) does not have any divisors of zero, see Theorem 2.1. The 
kernel � from a triple (�, k1, k2) will be called the 1st level kernel associated to the pair of the kernels (k1, k2).
The simplest but an important example of the kernels from L1

1
 is a triple built by the power law functions

(44)(I𝛼
0+ ∗D

𝛼

0+
f )(t) = f (t) − f (0), t > 0.

(45)(P1 f )(t) ∶= f (t) − (�(𝜅) �(k) f )(t) = (I1−𝛼
0+

f )(0)h𝛼(t), t > 0,

(46)(P2 f )(t) ∶= f (t) − (�(𝜅) ∗�(k) f )(t) = f (0), t > 0.

(47)(�(h0) f )(t) ∶= (I0
0+

f )(t) = f (t), t > 0,

(48)(�(h1) f )(t) ∶= (I1
0+

f )(t), t > 0,

(49)(�(h0)
f )(t) ∶=

d

dt
(�(h1) f )(t) = f (t), t > 0,

(50)(∗�(h0)
f )(t) ∶= (�(h1) f

�)(t) = f (t) − f (0), t > 0.

(51)(𝜅 ∗ k1 ∗ k2)(t) = h1(t) = {1}, t > 0
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under the conditions

The inequalities (53) ensure that all three exponents of the power functions from (52) are from the interval (−1, 0) and 
thus these functions possess the integrable singularities at the origin and belong to the space C−1(0,+∞) . For the func-
tions given by (52), the condition (51) is satisfied due to the relation

that in its turn follows from the well-known connection between the Euler beta- and gamma-functions:

Following the procedure suggested by Sonin in [1], a general class of the 1st level kernels can be constructed in form of 
the products of the power law functions defined by (52) and the analytical functions. Indeed, we first fix two out of three 
kernels from the triple (�, k1, k2) in the form

For the function k2 , the ansatz

is employed. The unknown coefficients ck are determined by substituting the power series (55), (56), and (57) into the 
condition (51) that leads to an infinite system of the linear equations with a triangular coefficient matrix similar to the 
one presented in (26).
Another possibility for producing the 1st level kernels is by using the Laplace transform technique. Let us assume that 
the Laplace transforms of the kernels � , k1 , and k2 exist in the complex half-plane ℜ(p) > c with a certain constant c ∈ ℝ . 
Applying the Laplace transform to the condition (51) leads to the relation

for the Laplace transforms of the 1st level kernels � , k1 , and k2 . Then the tables of the Laplace transforms and the inverse 
Laplace transforms can be used to first find some triples that satisfy the equation (58) and then to return back to the time 
domain.
For other techniques for construction of the Sonin kernels that can be also applied in the case of the 1st level kernels we 
refer to [29].
We also mention that the formula (14) leads to the following useful implication for a triple of the 1st level kernels involv-
ing the generalized function h0:

that means that the remaining kernels k1 and k2 build a pair of the Sonin kernels from L1 (or L0
1
 ). In this sense, the GFDs 

of the Riemann-Liouville and Caputo types can be interpreted as the 0th level GFDs.

(52)𝜅(t) = h𝛼(t), k1(t) = h𝛾 (t), k2(t) = h1−𝛼−𝛾 (t), t > 0

(53)0 < 𝛼 < 1, 0 < 𝛾 < 1 − 𝛼.

(54)(h𝛼 ∗ h𝛽)(t) = h𝛼+𝛽(t), t > 0, 𝛼 > 0, 𝛽 > 0

B(�, �) = ∫
1

0

t�−1(1 − t)�−1 dt =
Γ(�)Γ(�)

Γ(� + �)
.

(55)𝜅(t) = h𝛼(t) ⋅ f1(t), f1(t) =

+∞
∑

k=0

akt
k, a0 ≠ 0, 0 < 𝛼 < 1,

(56)k1(t) = h𝛾 (t) ⋅ f2(t), f2(t) =

+∞
∑

k=0

bkt
k, b0 ≠ 0, 0 < 𝛾 < 1 − 𝛼.

(57)k2(t) = h1−�−� (t) ⋅ f3(t), f3(t) =

+∞
∑

k=0

ckt
k

(58)𝜅̃(p) ⋅ k̃1(p) ⋅ k̃2(p) =
1

p
, ℜ(p) > c

(59)h0 ∗ k1 ∗ k2 = h1 ⇒ k1 ∗ k2 = h1
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Having defined the 1st level kernels, we now proceed with defining the GFDs with these kernels.

Definition 3.2  For a triple (�, k1, k2) ∈ L
1
1
 , a 1st level GFD is defined in the form

whereas the corresponding GFI with the kernel � is given by the right-hand side of the formula (19).

The main utility of Definition 3.2 is that it covers both the GFD of the Riemann-Liouville type and the GFD of the Caputo 
type. Indeed, taking into account the representation (47) we arrive at the following particular cases of the 1st level GFD 
(60): 

	 I.	 For k1 = h0 , the GFD of the Riemann-Liouville type with the kernel k2 : 

	 II.	 For k2 = h0 , the GFD of the Caputo type with the kernel k1 : 

Please note that the pairs of the remaining kernels (�, k2) and (�, k1) mentioned in the cases I and II, respectively, are 
the Sonin kernels from L1 , see the implication (59).
Let us now consider the 1st level GFD (60) in the case of the power law kernels from L1

1
 defined by (52). The GFI with 

a power law kernel is the conventional Riemann-Liouville fractional integral defined by (10) and thus the formula (60) 
takes the following form:

The operator (63) is the Hilfer fractional derivative defined by (16) in a slightly different parametrization introduced in [5] 
(the representation (16) is the formula (63) with � = �(1 − �) ). In [5], the form (63) of the Hilfer fractional derivative was 
called the 1st level fractional derivative. Because the operator (60) is a natural generalization of the 1st level fractional 
derivative (63) to the case of the arbitrary 1st level kernels from L1

1
 , we called it the 1st level GFD, see Definition 3.2.

In the previous section, we provided the 1st and the 2nd fundamental theorems of FC for the GFDs of the Riemann-
Liouville and Caputo types. These results were derived in separate publications and for different spaces of functions. In 
this section, we present a unified approach for handling the 1st level GFDs including its particular cases (61) and (62) in 
form of the GFDs of the Riemann-Liouville and Caputo types.

Theorem 3.1  For the kernels (�, k1, k2) ∈ L
1
1
 , the 1st level GFD (60) is a left inverse operator to the GFI (19) on the 

space C−1,(k1)
(0,+∞) defined by (38):

Proof  A function f ∈ C−1,(k1)
(0,+∞) can be represented as

with a function � ∈ C−1(0,+∞) . Because the kernels (�, k1, k2) ∈ L
1
1
 satisfy the condition (51), we arrive at the follow-

ing chain of the equations

(60)(1L�(k1,k2)
f )(t) ∶=

(

�(k1)
d

dt
�(k2)

f
)

(t),

(61)(1L�(h0,k2)
f )(t) =

(

�(h0)
d

dt
�(k2)

f
)

(t) =
(

d

dt
�(k2)

f
)

(t) = (�(k2)
f )(t).

(62)(1L�(k1,h0)
f )(t) =

(

�(k1)
d

dt
�(h0)

f
)

(t) =
(

�(k1)
d

dt
f
)

(t) = (∗�(k1)
f )(t).

(63)(1L�(h� ,h1−�−� )
f )(t) =

(

I
�

0+

d

dt
I
1−�−�

0+
f
)

(t).

(64)(1L�(k1,k2)
�(𝜅) f )(t) = f (t), f ∈ C−1,(k1)

(0,+∞), t > 0.

f (t) = (�(k1) �)(t) = (k1 ∗ �)(t)

(1L�(k1,k2)
�(�) f )(t) =

(

�(k1)
d

dt
�(k2)

�(�) f
)

(t) =
(

�(k1)
d

dt
�(k2)

�(�) �(k1)
�

)

(t) =
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that proves the formula (64).

For k1 = h0 and k2 = h0 , the 1st level GFD is reduced to the GFD of the Riemann-Liouville type with the kernel k2 and to 
the GFD of the Caputo type with the kernel k1 , respectively. Thus, Theorem 3.1 covers the results presented in Theorem 2.2 
including the descriptions of the spaces of functions used in its formulation.
In the next theorem (2nd fundamental theorem of FC for the 1st level GFD), we present a formula for a composition of 
the GFI with the kernel � and the 1st level GFD on the space of functions C1

−1,(k2)
(0,+∞) defined as in (40).

Theorem 3.2  For the kernels (�, k1, k2) ∈ L
1
1
 , the formula

holds valid.

Proof  For a function f ∈ C1
−1,(k2)

(0,+∞) , the 1st level GFD does exist and is from the space C−1,(k1)
(0,+∞) . Let us now 

introduce an auxiliary function that we denote by �:

Because of the inclusion 1L�(k1,k2)
f ∈ C−1,(k1)

(0,+∞) , Theorem 3.1 leads to the relation

that implicates that the function � − f  belongs to the kernel of the operator 1L�(k1,k2)
:

Let us now determine the null-space of the 1st level GFD 1L�(k1,k2)
:

Thus, we arrive at the representation

Combining it with the relation (68), we get the formula

To determine the constant C, we apply the operator �(k2) to both sides of the representation (70):

On the other hand, we have the following chain of equations:

(

�(k1)
d

dt
(k2 ∗ � ∗ k1 ∗ �)(t)

)

(t) =
(

�(k1)
d

dt
({1} ∗ �)(t)

)

(t) = (�(k1) �)(t) = f (t)

(65)(�(𝜅) 1L�(k1,k2)
f )(t) = f (t) − (�(k2) f )(0) (k1 ∗ 𝜅)(t), f ∈ C1

−1,(k2)
(0,+∞), t > 0

(66)�(t) ∶= (�(�) 1L�(k1,k2)
f )(t).

(67)(1L�(k1,k2)
�)(t) = (1L�(k1,k2)

�(�) 1L�(k1,k2)
f )(t) = (1L�(k1,k2)

f )(t)

(68)(1L�(k1,k2)
(𝜙 − f ))(t) = 0, t > 0.

(1L�(k1,k2)
f )(t) = 0 ⇔

d

dt
�(k2)

f = 0 ⇔ (�(k2) f )(t) = (k2 ∗ f )(t) = C ⇔

(� ∗ k1 ∗ k2 ∗ f )(t) = ({C} ∗ � ∗ k1)(t) ⇔ ({1} ∗ f )(t) = C({1} ∗ � ∗ k1)(t) ⇔

f (t) = C(� ∗ k1)(t).

(69)ker 1L𝔻(k1,k2)
= {C(� ∗ k1)(t), C ∈ ℝ}.

(70)𝜙(t) = f (t) + C(𝜅 ∗ k1)(t), t > 0.

(71)(�(k2) �)(t) = (�(k2) f )(t) + C(k2 ∗ � ∗ k1)(t) = (�(k2) f )(t) + C.

(�(k2) �)(t) = (�(k2) �(�) �(k1,k2)
f )(t) = (�(k2) �(�) �(k1)

d

dt
�(k2)

f )(t) =
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Comparing the last formula with the formula (71), we determine the constant C in the form

The representation (65) follows now from the formulas (66), (70), and (72) that completes the proof of the theorem.

In the case, the kernel k1 is the (generalized) kernel h0 , the 1st level GFD coincides with the GFD of the Riemann-Liouville 
type with the kernel k2 and the formula (65) is reduced to the following form (see Theorem 2.3):

For the kernel k2 = h0 , the 1st level GFD is the GFD of the Caputo type with the kernel k1 and the formula (65) takes the 
form (see Theorem 2.4):

Another important particular case of the formula (65) is the one that corresponds to the Hilfer fractional derivative (63). 
In this case, the 1st level kernels (�, k1, k2) are given by the power functions (52). Thus, we have the relations

that lead to the following form of the 2nd fundamental theorem for the Hilfer fractional derivative in form (63):

This formula (in a slightly different parametrization) was derived for the first time in [8].

Remark 3.1  The formula (65) can be represented in terms of the projector operator of the 1st level GFD as follows:

The right-hand side of the formula (74) determines the form of the natural initial conditions that should be posed while 
dealing with the initial-value problems for the fractional differential equations with the 1st level GFDs (see [8] for an 
operational method for derivation of the closed form formulas for solutions to the initial-value problems for the linear 
fractional differential equations with the Hilfer fractional derivatives and the initial conditions determined by the right-
hand side of the formula (73)).

Discussions and directions for further research

In this paper, a construction of the 1st level GFD that contains both the GFD of the Riemann-Liouville type the GFD 
of the Caputo type as its particular cases is suggested. To this end, a suitable generalization of a pair of the Sonin kernels 
to the case of a kernel triple is first introduced. An important particular case of these kernels is given by three power 
law functions such that the sum of their exponents is equal to one. This case corresponds the so-called Hilfer fractional 
derivative that involves the conventional Riemann-Liouville and Caputo fractional derivatives as its particular cases.

(k2 ∗ � ∗ k1 ∗ (
d

dt
�(k2)

f ))(t) = ({1} ∗ (
d

dt
�(k2)

f ))(t) =

(I1
0+

d

dt
�(k2)

f )(t) = (�(k2) f )(t) − (�(k2) f )(0).

(72)C = −(�(k2) f )(0).

(�(𝜅) �(k2)
f )(t) = f (t) − (�(k2) f )(0)𝜅(t), f ∈ C1

−1,(k2)
(0,+∞), t > 0.

(�(𝜅) ∗�(k) f )(t) = f (t) − f (0), f ∈ C1
−1
(0,+∞), t > 0.

(I(�) f )(t) = (I�
0+

f )(t), (�(k2) f )(t) = (I1−�−� f )(t), (h� ∗ h� )(t) = h�+� (t)

(73)(I𝛼
0+ 1L�(h𝛾 ,h1−𝛼−𝛾 )

f )(t) = f (t) − (I1−𝛼−𝛾 f )(0) h𝛼+𝛾 (t), t > 0.

(74)(P1L f )(t) ∶= f (t) − (�(𝜅) 1L�(k1,k2)
f )(t) = (�(k2) f )(0) (k1 ∗ 𝜅)(t), t > 0.
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For the 1st level GFDs, two fundamental theorems of FC are formulated and proved. Based on the 2nd fundamental theo-
rem, a closed form formula for the projector operator of the 1st level GFD is deduced. This operator determines the form 
of the natural initial conditions while dealing with the initial-value problems containing the 1st level GFDs.
As to the topics for further research, we mention an in-depth investigation of the fractional differential equations with the 
1st level GFDs in the linear and non-linear cases (see [15, 16] for some results related to the fractional differential equa-
tions with the GFDs of the Riemann-Liouville type and [10, 14, 26–28] for analysis of the fractional differential equations 
with the GFDs of the Caputo type). Because the 1st level GFD contains the GFDs of the Riemann-Liouville and of the 
Caputo types as its particular cases, one can cover both types of the fractional differential equations while considering 
the fractional differential equations with the 1st level GFDs.
Another important topic would be an extension of the notions of the 1st level kernels and the 1st level GFDs to the case 
of an arbitrary order (in this paper, we restricted ourselves to the case of the “generalized order” between zero and one). 
To this end, one can follow the schema suggested in [12] for the case of the GFDs of the Riemann-Liouville and of the 
Caputo types, namely, first to replace the condition (51) with a more general condition

and then to define the 1st level GFD with a kernel pair (k1, k2) in the form (the corresponding GFI is generated by the 
kernel �)

Finally, we mention that the notion of the 1st level GFDs can be generalized to the case of the 2nd and even nth level 
GFDs following the procedure presented in [5] for the case of the Riemann-Liouville fractional integrals. Say, the 2nd 
level GFDs that correspond to the GFI with the kernel � are compositions of three GFIs and two first order derivatives:

where

The nth level GFDs are defined as follows:

where

All these and further related topics will be considered elsewhere.
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(� ∗ k1 ∗ k2)(t) = hn(t) =
tn−1

(n − 1)!
, n ∈ ℕ

(1L�(k1,k2)
f )(t) ∶=

(

�(k1)
dn

dtn
�(k2)

f
)

(t).

(2L�(k1,k2,k3)
f )(t) ∶=

(

�(k1)
d

dt
�(k2)

d

dt
�(k3)

f
)

(t),

(𝜅 ∗ k1 ∗ k2 ∗ k3)(t) = h1(t) = {1}, t > 0.

(nL�(k1,…,kn+1)
f )(t) ∶=

(

�(k1)
d

dt
… �(kn)

d

dt
�(kn+1)

f
)

(t),

(𝜅 ∗ k1 ∗ … ∗ kn+1)(t) = h1(t) = {1}, t > 0.
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